]> git.sesse.net Git - stockfish/blobdiff - src/position.cpp
Fix random moves when time < 10ms
[stockfish] / src / position.cpp
index 9af42558867b52aeec7c5e525dbb8c21ed2407ee..0b687a8d1496e797e22983b36ca7b0819fd92ea8 100644 (file)
@@ -1,7 +1,7 @@
 /*
   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
   Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
-  Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
+  Copyright (C) 2008-2013 Marco Costalba, Joona Kiiski, Tord Romstad
 
   Stockfish is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
 
+#include <algorithm>
 #include <cassert>
 #include <cstring>
+#include <iomanip>
 #include <iostream>
 #include <sstream>
-#include <algorithm>
 
 #include "bitcount.h"
 #include "movegen.h"
+#include "notation.h"
 #include "position.h"
 #include "psqtab.h"
 #include "rkiss.h"
@@ -35,43 +37,59 @@ using std::string;
 using std::cout;
 using std::endl;
 
-Key Position::zobrist[2][8][64];
-Key Position::zobEp[8];
-Key Position::zobCastle[16];
-Key Position::zobSideToMove;
-Key Position::zobExclusion;
-
-Score Position::pieceSquareTable[16][64];
-
-// Material values arrays, indexed by Piece
-const Value PieceValueMidgame[17] = {
-  VALUE_ZERO,
-  PawnValueMidgame, KnightValueMidgame, BishopValueMidgame,
-  RookValueMidgame, QueenValueMidgame,
-  VALUE_ZERO, VALUE_ZERO, VALUE_ZERO,
-  PawnValueMidgame, KnightValueMidgame, BishopValueMidgame,
-  RookValueMidgame, QueenValueMidgame
-};
-
-const Value PieceValueEndgame[17] = {
-  VALUE_ZERO,
-  PawnValueEndgame, KnightValueEndgame, BishopValueEndgame,
-  RookValueEndgame, QueenValueEndgame,
-  VALUE_ZERO, VALUE_ZERO, VALUE_ZERO,
-  PawnValueEndgame, KnightValueEndgame, BishopValueEndgame,
-  RookValueEndgame, QueenValueEndgame
-};
+static const string PieceToChar(" PNBRQK  pnbrqk");
+
+CACHE_LINE_ALIGNMENT
 
+Score psq[COLOR_NB][PIECE_TYPE_NB][SQUARE_NB];
+Value PieceValue[PHASE_NB][PIECE_NB] = {
+{ VALUE_ZERO, PawnValueMg, KnightValueMg, BishopValueMg, RookValueMg, QueenValueMg },
+{ VALUE_ZERO, PawnValueEg, KnightValueEg, BishopValueEg, RookValueEg, QueenValueEg } };
+
+namespace Zobrist {
+
+  Key psq[COLOR_NB][PIECE_TYPE_NB][SQUARE_NB];
+  Key enpassant[FILE_NB];
+  Key castle[CASTLE_RIGHT_NB];
+  Key side;
+  Key exclusion;
+}
+
+Key Position::exclusion_key() const { return st->key ^ Zobrist::exclusion;}
 
 namespace {
 
-  // Bonus for having the side to move (modified by Joona Kiiski)
-  const Score Tempo = make_score(48, 22);
+// min_attacker() is an helper function used by see() to locate the least
+// valuable attacker for the side to move, remove the attacker we just found
+// from the bitboards and scan for new X-ray attacks behind it.
+
+template<int Pt> FORCE_INLINE
+PieceType min_attacker(const Bitboard* bb, const Square& to, const Bitboard& stmAttackers,
+                       Bitboard& occupied, Bitboard& attackers) {
+
+  Bitboard b = stmAttackers & bb[Pt];
+  if (!b)
+      return min_attacker<Pt+1>(bb, to, stmAttackers, occupied, attackers);
 
-  // To convert a Piece to and from a FEN char
-  const string PieceToChar(" PNBRQK  pnbrqk  .");
+  occupied ^= b & ~(b - 1);
+
+  if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN)
+      attackers |= attacks_bb<BISHOP>(to, occupied) & (bb[BISHOP] | bb[QUEEN]);
+
+  if (Pt == ROOK || Pt == QUEEN)
+      attackers |= attacks_bb<ROOK>(to, occupied) & (bb[ROOK] | bb[QUEEN]);
+
+  attackers &= occupied; // After X-ray that may add already processed pieces
+  return (PieceType)Pt;
+}
+
+template<> FORCE_INLINE
+PieceType min_attacker<KING>(const Bitboard*, const Square&, const Bitboard&, Bitboard&, Bitboard&) {
+  return KING; // No need to update bitboards, it is the last cycle
 }
 
+} // namespace
+
 
 /// CheckInfo c'tor
 
@@ -92,26 +110,75 @@ CheckInfo::CheckInfo(const Position& pos) {
 }
 
 
+/// Position::init() initializes at startup the various arrays used to compute
+/// hash keys and the piece square tables. The latter is a two-step operation:
+/// First, the white halves of the tables are copied from PSQT[] tables. Second,
+/// the black halves of the tables are initialized by flipping and changing the
+/// sign of the white scores.
+
+void Position::init() {
+
+  RKISS rk;
+
+  for (Color c = WHITE; c <= BLACK; c++)
+      for (PieceType pt = PAWN; pt <= KING; pt++)
+          for (Square s = SQ_A1; s <= SQ_H8; s++)
+              Zobrist::psq[c][pt][s] = rk.rand<Key>();
+
+  for (File f = FILE_A; f <= FILE_H; f++)
+      Zobrist::enpassant[f] = rk.rand<Key>();
+
+  for (int cr = CASTLES_NONE; cr <= ALL_CASTLES; cr++)
+  {
+      Bitboard b = cr;
+      while (b)
+      {
+          Key k = Zobrist::castle[1ULL << pop_lsb(&b)];
+          Zobrist::castle[cr] ^= k ? k : rk.rand<Key>();
+      }
+  }
+
+  Zobrist::side = rk.rand<Key>();
+  Zobrist::exclusion  = rk.rand<Key>();
+
+  for (PieceType pt = PAWN; pt <= KING; pt++)
+  {
+      PieceValue[MG][make_piece(BLACK, pt)] = PieceValue[MG][pt];
+      PieceValue[EG][make_piece(BLACK, pt)] = PieceValue[EG][pt];
+
+      Score v = make_score(PieceValue[MG][pt], PieceValue[EG][pt]);
+
+      for (Square s = SQ_A1; s <= SQ_H8; s++)
+      {
+         psq[WHITE][pt][ s] =  (v + PSQT[pt][s]);
+         psq[BLACK][pt][~s] = -(v + PSQT[pt][s]);
+      }
+  }
+}
+
+
 /// Position::operator=() creates a copy of 'pos'. We want the new born Position
 /// object do not depend on any external data so we detach state pointer from
 /// the source one.
 
-void Position::operator=(const Position& pos) {
+Position& Position::operator=(const Position& pos) {
 
-  memcpy(this, &pos, sizeof(Position));
+  std::memcpy(this, &pos, sizeof(Position));
   startState = *st;
   st = &startState;
   nodes = 0;
 
   assert(pos_is_ok());
+
+  return *this;
 }
 
 
-/// Position::from_fen() initializes the position object with the given FEN
-/// string. This function is not very robust - make sure that input FENs are
-/// correct (this is assumed to be the responsibility of the GUI).
+/// Position::set() initializes the position object with the given FEN string.
+/// This function is not very robust - make sure that input FENs are correct,
+/// this is assumed to be the responsibility of the GUI.
 
-void Position::from_fen(const string& fenStr, bool isChess960, Thread* th) {
+void Position::set(const string& fenStr, bool isChess960, Thread* th) {
 /*
    A FEN string defines a particular position using only the ASCII character set.
 
@@ -149,38 +216,38 @@ void Position::from_fen(const string& fenStr, bool isChess960, Thread* th) {
   char col, row, token;
   size_t p;
   Square sq = SQ_A8;
-  std::istringstream fen(fenStr);
+  std::istringstream ss(fenStr);
 
   clear();
-  fen >> std::noskipws;
+  ss >> std::noskipws;
 
   // 1. Piece placement
-  while ((fen >> token) && !isspace(token))
+  while ((ss >> token) && !isspace(token))
   {
       if (isdigit(token))
           sq += Square(token - '0'); // Advance the given number of files
 
       else if (token == '/')
-          sq = make_square(FILE_A, rank_of(sq) - Rank(2));
+          sq -= Square(16);
 
       else if ((p = PieceToChar.find(token)) != string::npos)
       {
-          put_piece(Piece(p), sq);
+          put_piece(sq, color_of(Piece(p)), type_of(Piece(p)));
           sq++;
       }
   }
 
   // 2. Active color
-  fen >> token;
+  ss >> token;
   sideToMove = (token == 'w' ? WHITE : BLACK);
-  fen >> token;
+  ss >> token;
 
   // 3. Castling availability. Compatible with 3 standards: Normal FEN standard,
   // Shredder-FEN that uses the letters of the columns on which the rooks began
   // the game instead of KQkq and also X-FEN standard that, in case of Chess960,
   // if an inner rook is associated with the castling right, the castling tag is
   // replaced by the file letter of the involved rook, as for the Shredder-FEN.
-  while ((fen >> token) && !isspace(token))
+  while ((ss >> token) && !isspace(token))
   {
       Square rsq;
       Color c = islower(token) ? BLACK : WHITE;
@@ -194,7 +261,7 @@ void Position::from_fen(const string& fenStr, bool isChess960, Thread* th) {
           for (rsq = relative_square(c, SQ_A1); type_of(piece_on(rsq)) != ROOK; rsq++) {}
 
       else if (token >= 'A' && token <= 'H')
-          rsq = make_square(File(token - 'A'), relative_rank(c, RANK_1));
+          rsq = File(token - 'A') | relative_rank(c, RANK_1);
 
       else
           continue;
@@ -203,26 +270,26 @@ void Position::from_fen(const string& fenStr, bool isChess960, Thread* th) {
   }
 
   // 4. En passant square. Ignore if no pawn capture is possible
-  if (   ((fen >> col) && (col >= 'a' && col <= 'h'))
-      && ((fen >> row) && (row == '3' || row == '6')))
+  if (   ((ss >> col) && (col >= 'a' && col <= 'h'))
+      && ((ss >> row) && (row == '3' || row == '6')))
   {
-      st->epSquare = make_square(File(col - 'a'), Rank(row - '1'));
+      st->epSquare = File(col - 'a') | Rank(row - '1');
 
-      if (!(attackers_to(st->epSquare) & pieces(PAWN, sideToMove)))
+      if (!(attackers_to(st->epSquare) & pieces(sideToMove, PAWN)))
           st->epSquare = SQ_NONE;
   }
 
   // 5-6. Halfmove clock and fullmove number
-  fen >> std::skipws >> st->rule50 >> startPosPly;
+  ss >> std::skipws >> st->rule50 >> gamePly;
 
   // Convert from fullmove starting from 1 to ply starting from 0,
   // handle also common incorrect FEN with fullmove = 0.
-  startPosPly = std::max(2 * (startPosPly - 1), 0) + int(sideToMove == BLACK);
+  gamePly = std::max(2 * (gamePly - 1), 0) + int(sideToMove == BLACK);
 
   st->key = compute_key();
   st->pawnKey = compute_pawn_key();
   st->materialKey = compute_material_key();
-  st->psqScore = compute_psq_score();
+  st->psq = compute_psq_score();
   st->npMaterial[WHITE] = compute_non_pawn_material(WHITE);
   st->npMaterial[BLACK] = compute_non_pawn_material(BLACK);
   st->checkersBB = attackers_to(king_square(sideToMove)) & pieces(~sideToMove);
@@ -260,137 +327,127 @@ void Position::set_castle_right(Color c, Square rfrom) {
 }
 
 
-/// Position::to_fen() returns a FEN representation of the position. In case
+/// Position::fen() returns a FEN representation of the position. In case
 /// of Chess960 the Shredder-FEN notation is used. Mainly a debugging function.
 
-const string Position::to_fen() const {
+const string Position::fen() const {
 
-  std::ostringstream fen;
-  Square sq;
-  int emptyCnt;
+  std::ostringstream ss;
 
   for (Rank rank = RANK_8; rank >= RANK_1; rank--)
   {
-      emptyCnt = 0;
-
       for (File file = FILE_A; file <= FILE_H; file++)
       {
-          sq = make_square(file, rank);
+          Square sq = file | rank;
 
-          if (square_empty(sq))
-              emptyCnt++;
-          else
+          if (is_empty(sq))
           {
-              if (emptyCnt > 0)
-              {
-                  fen << emptyCnt;
-                  emptyCnt = 0;
-              }
-              fen << PieceToChar[piece_on(sq)];
+              int emptyCnt = 1;
+
+              for ( ; file < FILE_H && is_empty(sq++); file++)
+                  emptyCnt++;
+
+              ss << emptyCnt;
           }
+          else
+              ss << PieceToChar[piece_on(sq)];
       }
 
-      if (emptyCnt > 0)
-          fen << emptyCnt;
-
       if (rank > RANK_1)
-          fen << '/';
+          ss << '/';
   }
 
-  fen << (sideToMove == WHITE ? " w " : " b ");
+  ss << (sideToMove == WHITE ? " w " : " b ");
 
   if (can_castle(WHITE_OO))
-      fen << (chess960 ? char(toupper(file_to_char(file_of(castle_rook_square(WHITE, KING_SIDE))))) : 'K');
+      ss << (chess960 ? file_to_char(file_of(castle_rook_square(WHITE,  KING_SIDE)), false) : 'K');
 
   if (can_castle(WHITE_OOO))
-      fen << (chess960 ? char(toupper(file_to_char(file_of(castle_rook_square(WHITE, QUEEN_SIDE))))) : 'Q');
+      ss << (chess960 ? file_to_char(file_of(castle_rook_square(WHITE, QUEEN_SIDE)), false) : 'Q');
 
   if (can_castle(BLACK_OO))
-      fen << (chess960 ? file_to_char(file_of(castle_rook_square(BLACK, KING_SIDE))) : 'k');
+      ss << (chess960 ? file_to_char(file_of(castle_rook_square(BLACK,  KING_SIDE)),  true) : 'k');
 
   if (can_castle(BLACK_OOO))
-      fen << (chess960 ? file_to_char(file_of(castle_rook_square(BLACK, QUEEN_SIDE))) : 'q');
+      ss << (chess960 ? file_to_char(file_of(castle_rook_square(BLACK, QUEEN_SIDE)),  true) : 'q');
 
   if (st->castleRights == CASTLES_NONE)
-      fen << '-';
+      ss << '-';
 
-  fen << (ep_square() == SQ_NONE ? " - " : " " + square_to_string(ep_square()) + " ")
-      << st->rule50 << " " << 1 + (startPosPly - int(sideToMove == BLACK)) / 2;
+  ss << (ep_square() == SQ_NONE ? " - " : " " + square_to_string(ep_square()) + " ")
+      << st->rule50 << " " << 1 + (gamePly - int(sideToMove == BLACK)) / 2;
 
-  return fen.str();
+  return ss.str();
 }
 
 
-/// Position::print() prints an ASCII representation of the position to
-/// the standard output. If a move is given then also the san is printed.
+/// Position::pretty() returns an ASCII representation of the position to be
+/// printed to the standard output together with the move's san notation.
 
-void Position::print(Move move) const {
+const string Position::pretty(Move move) const {
 
-  const char* dottedLine = "\n+---+---+---+---+---+---+---+---+\n";
+  const string dottedLine =            "\n+---+---+---+---+---+---+---+---+";
+  const string twoRows =  dottedLine + "\n|   | . |   | . |   | . |   | . |"
+                        + dottedLine + "\n| . |   | . |   | . |   | . |   |";
 
-  if (move)
+  string brd = twoRows + twoRows + twoRows + twoRows + dottedLine;
+
+  for (Bitboard b = pieces(); b; )
   {
-      Position p(*this);
-      cout << "\nMove is: " << (sideToMove == BLACK ? ".." : "") << move_to_san(p, move);
+      Square s = pop_lsb(&b);
+      brd[513 - 68 * rank_of(s) + 4 * file_of(s)] = PieceToChar[piece_on(s)];
   }
 
-  for (Rank rank = RANK_8; rank >= RANK_1; rank--)
-  {
-      cout << dottedLine << '|';
-      for (File file = FILE_A; file <= FILE_H; file++)
-      {
-          Square sq = make_square(file, rank);
-          Piece piece = piece_on(sq);
-          char c = (color_of(piece) == BLACK ? '=' : ' ');
+  std::ostringstream ss;
 
-          if (piece == NO_PIECE && !opposite_colors(sq, SQ_A1))
-              piece++; // Index the dot
+  if (move)
+      ss << "\nMove: " << (sideToMove == BLACK ? ".." : "")
+         << move_to_san(*const_cast<Position*>(this), move);
 
-          cout << c << PieceToChar[piece] << c << '|';
-      }
-  }
-  cout << dottedLine << "Fen is: " << to_fen() << "\nKey is: " << st->key << endl;
+  ss << brd << "\nFen: " << fen() << "\nKey: " << std::hex << std::uppercase
+     << std::setfill('0') << std::setw(16) << st->key << "\nCheckers: ";
+
+  for (Bitboard b = checkers(); b; )
+      ss << square_to_string(pop_lsb(&b)) << " ";
+
+  ss << "\nLegal moves: ";
+  for (MoveList<LEGAL> it(*this); *it; ++it)
+      ss << move_to_san(*const_cast<Position*>(this), *it) << " ";
+
+  return ss.str();
 }
 
 
-/// Position:hidden_checkers<>() returns a bitboard of all pinned (against the
-/// king) pieces for the given color. Or, when template parameter FindPinned is
-/// false, the function return the pieces of the given color candidate for a
-/// discovery check against the enemy king.
-template<bool FindPinned>
-Bitboard Position::hidden_checkers() const {
+/// Position:hidden_checkers() returns a bitboard of all pinned / discovery check
+/// pieces, according to the call parameters. Pinned pieces protect our king,
+/// discovery check pieces attack the enemy king.
+
+Bitboard Position::hidden_checkers(Square ksq, Color c) const {
 
-  // Pinned pieces protect our king, dicovery checks attack the enemy king
-  Bitboard b, result = 0;
-  Bitboard pinners = pieces(FindPinned ? ~sideToMove : sideToMove);
-  Square ksq = king_square(FindPinned ? sideToMove : ~sideToMove);
+  Bitboard b, pinners, result = 0;
 
-  // Pinners are sliders, that give check when candidate pinned is removed
-  pinners &=  (pieces(ROOK, QUEEN) & PseudoAttacks[ROOK][ksq])
-            | (pieces(BISHOP, QUEEN) & PseudoAttacks[BISHOP][ksq]);
+  // Pinners are sliders that give check when pinned piece is removed
+  pinners = (  (pieces(  ROOK, QUEEN) & PseudoAttacks[ROOK  ][ksq])
+             | (pieces(BISHOP, QUEEN) & PseudoAttacks[BISHOP][ksq])) & pieces(c);
 
   while (pinners)
   {
-      b = squares_between(ksq, pop_1st_bit(&pinners)) & pieces();
+      b = between_bb(ksq, pop_lsb(&pinners)) & pieces();
 
-      if (b && single_bit(b) && (b & pieces(sideToMove)))
-          result |= b;
+      if (!more_than_one(b))
+          result |= b & pieces(sideToMove);
   }
   return result;
 }
 
-// Explicit template instantiations
-template Bitboard Position::hidden_checkers<true>() const;
-template Bitboard Position::hidden_checkers<false>() const;
-
 
 /// Position::attackers_to() computes a bitboard of all pieces which attack a
 /// given square. Slider attacks use occ bitboard as occupancy.
 
 Bitboard Position::attackers_to(Square s, Bitboard occ) const {
 
-  return  (attacks_from<PAWN>(s, BLACK) & pieces(PAWN, WHITE))
-        | (attacks_from<PAWN>(s, WHITE) & pieces(PAWN, BLACK))
+  return  (attacks_from<PAWN>(s, BLACK) & pieces(WHITE, PAWN))
+        | (attacks_from<PAWN>(s, WHITE) & pieces(BLACK, PAWN))
         | (attacks_from<KNIGHT>(s)      & pieces(KNIGHT))
         | (attacks_bb<ROOK>(s, occ)     & pieces(ROOK, QUEEN))
         | (attacks_bb<BISHOP>(s, occ)   & pieces(BISHOP, QUEEN))
@@ -415,37 +472,6 @@ Bitboard Position::attacks_from(Piece p, Square s, Bitboard occ) {
 }
 
 
-/// Position::move_attacks_square() tests whether a move from the current
-/// position attacks a given square.
-
-bool Position::move_attacks_square(Move m, Square s) const {
-
-  assert(is_ok(m));
-  assert(is_ok(s));
-
-  Bitboard occ, xray;
-  Square from = from_sq(m);
-  Square to = to_sq(m);
-  Piece piece = piece_moved(m);
-
-  assert(!square_empty(from));
-
-  // Update occupancy as if the piece is moving
-  occ = pieces() ^ from ^ to;
-
-  // The piece moved in 'to' attacks the square 's' ?
-  if (attacks_from(piece, to, occ) & s)
-      return true;
-
-  // Scan for possible X-ray attackers behind the moved piece
-  xray = (attacks_bb<ROOK>(s, occ)   & pieces(ROOK, QUEEN, color_of(piece)))
-        |(attacks_bb<BISHOP>(s, occ) & pieces(BISHOP, QUEEN, color_of(piece)));
-
-  // Verify attackers are triggered by our move and not already existing
-  return xray && (xray ^ (xray & attacks_from<QUEEN>(s)));
-}
-
-
 /// Position::pl_move_is_legal() tests whether a pseudo-legal move is legal
 
 bool Position::pl_move_is_legal(Move m, Bitboard pinned) const {
@@ -462,7 +488,7 @@ bool Position::pl_move_is_legal(Move m, Bitboard pinned) const {
   // En passant captures are a tricky special case. Because they are rather
   // uncommon, we do it simply by testing whether the king is attacked after
   // the move is made.
-  if (is_enpassant(m))
+  if (type_of(m) == ENPASSANT)
   {
       Color them = ~us;
       Square to = to_sq(m);
@@ -475,15 +501,15 @@ bool Position::pl_move_is_legal(Move m, Bitboard pinned) const {
       assert(piece_on(capsq) == make_piece(them, PAWN));
       assert(piece_on(to) == NO_PIECE);
 
-      return   !(attacks_bb<ROOK>(ksq, b) & pieces(ROOK, QUEEN, them))
-            && !(attacks_bb<BISHOP>(ksq, b) & pieces(BISHOP, QUEEN, them));
+      return   !(attacks_bb<  ROOK>(ksq, b) & pieces(them, QUEEN, ROOK))
+            && !(attacks_bb<BISHOP>(ksq, b) & pieces(them, QUEEN, BISHOP));
   }
 
   // If the moving piece is a king, check whether the destination
   // square is attacked by the opponent. Castling moves are checked
   // for legality during move generation.
   if (type_of(piece_on(from)) == KING)
-      return is_castle(m) || !(attackers_to(to_sq(m)) & pieces(~us));
+      return type_of(m) == CASTLE || !(attackers_to(to_sq(m)) & pieces(~us));
 
   // A non-king move is legal if and only if it is not pinned or it
   // is moving along the ray towards or away from the king.
@@ -493,20 +519,6 @@ bool Position::pl_move_is_legal(Move m, Bitboard pinned) const {
 }
 
 
-/// Position::move_is_legal() takes a random move and tests whether the move
-/// is legal. This version is not very fast and should be used only in non
-/// time-critical paths.
-
-bool Position::move_is_legal(const Move m) const {
-
-  for (MoveList<MV_LEGAL> ml(*this); !ml.end(); ++ml)
-      if (ml.move() == m)
-          return true;
-
-  return false;
-}
-
-
 /// Position::is_pseudo_legal() takes a random move and tests whether the move
 /// is pseudo legal. It is used to validate moves from TT that can be corrupted
 /// due to SMP concurrent access or hash position key aliasing.
@@ -514,14 +526,13 @@ bool Position::move_is_legal(const Move m) const {
 bool Position::is_pseudo_legal(const Move m) const {
 
   Color us = sideToMove;
-  Color them = ~sideToMove;
   Square from = from_sq(m);
   Square to = to_sq(m);
   Piece pc = piece_moved(m);
 
   // Use a slower but simpler function for uncommon cases
-  if (is_special(m))
-      return move_is_legal(m);
+  if (type_of(m) != NORMAL)
+      return MoveList<LEGAL>(*this).contains(m);
 
   // Is not a promotion, so promotion piece must be empty
   if (promotion_type(m) - 2 != NO_PIECE_TYPE)
@@ -533,7 +544,7 @@ bool Position::is_pseudo_legal(const Move m) const {
       return false;
 
   // The destination square cannot be occupied by a friendly piece
-  if (color_of(piece_on(to)) == us)
+  if (pieces(us) & to)
       return false;
 
   // Handle the special case of a pawn move
@@ -559,7 +570,7 @@ bool Position::is_pseudo_legal(const Move m) const {
       case DELTA_SE:
       // Capture. The destination square must be occupied by an enemy
       // piece (en passant captures was handled earlier).
-      if (color_of(piece_on(to)) != them)
+      if (piece_on(to) == NO_PIECE || color_of(piece_on(to)) != ~us)
           return false;
 
       // From and to files must be one file apart, avoids a7h5
@@ -570,7 +581,7 @@ bool Position::is_pseudo_legal(const Move m) const {
       case DELTA_N:
       case DELTA_S:
       // Pawn push. The destination square must be empty.
-      if (!square_empty(to))
+      if (!is_empty(to))
           return false;
       break;
 
@@ -578,9 +589,9 @@ bool Position::is_pseudo_legal(const Move m) const {
       // Double white pawn push. The destination square must be on the fourth
       // rank, and both the destination square and the square between the
       // source and destination squares must be empty.
-      if (   rank_of(to) != RANK_4
-          || !square_empty(to)
-          || !square_empty(from + DELTA_N))
+      if (    rank_of(to) != RANK_4
+          || !is_empty(to)
+          || !is_empty(from + DELTA_N))
           return false;
       break;
 
@@ -588,9 +599,9 @@ bool Position::is_pseudo_legal(const Move m) const {
       // Double black pawn push. The destination square must be on the fifth
       // rank, and both the destination square and the square between the
       // source and destination squares must be empty.
-      if (   rank_of(to) != RANK_5
-          || !square_empty(to)
-          || !square_empty(from + DELTA_S))
+      if (    rank_of(to) != RANK_5
+          || !is_empty(to)
+          || !is_empty(from + DELTA_S))
           return false;
       break;
 
@@ -604,18 +615,16 @@ bool Position::is_pseudo_legal(const Move m) const {
   // Evasions generator already takes care to avoid some kind of illegal moves
   // and pl_move_is_legal() relies on this. So we have to take care that the
   // same kind of moves are filtered out here.
-  if (in_check())
+  if (checkers())
   {
       if (type_of(pc) != KING)
       {
-          Bitboard b = checkers();
-          Square checksq = pop_1st_bit(&b);
-
-          if (b) // double check ? In this case a king move is required
+          // Double check? In this case a king move is required
+          if (more_than_one(checkers()))
               return false;
 
           // Our move must be a blocking evasion or a capture of the checking piece
-          if (!((squares_between(checksq, king_square(us)) | checkers()) & to))
+          if (!((between_bb(lsb(checkers()), king_square(us)) | checkers()) & to))
               return false;
       }
       // In case of king moves under check we have to remove king so to catch
@@ -645,51 +654,52 @@ bool Position::move_gives_check(Move m, const CheckInfo& ci) const {
       return true;
 
   // Discovery check ?
-  if (ci.dcCandidates && (ci.dcCandidates & from))
+  if (unlikely(ci.dcCandidates) && (ci.dcCandidates & from))
   {
       // For pawn and king moves we need to verify also direction
-      if (  (pt != PAWN && pt != KING)
+      if (   (pt != PAWN && pt != KING)
           || !squares_aligned(from, to, king_square(~sideToMove)))
           return true;
   }
 
   // Can we skip the ugly special cases ?
-  if (!is_special(m))
+  if (type_of(m) == NORMAL)
       return false;
 
   Color us = sideToMove;
   Square ksq = king_square(~us);
 
-  // Promotion with check ?
-  if (is_promotion(m))
+  switch (type_of(m))
+  {
+  case PROMOTION:
       return attacks_from(Piece(promotion_type(m)), to, pieces() ^ from) & ksq;
 
   // En passant capture with check ? We have already handled the case
   // of direct checks and ordinary discovered check, the only case we
   // need to handle is the unusual case of a discovered check through
   // the captured pawn.
-  if (is_enpassant(m))
+  case ENPASSANT:
   {
-      Square capsq = make_square(file_of(to), rank_of(from));
+      Square capsq = file_of(to) | rank_of(from);
       Bitboard b = (pieces() ^ from ^ capsq) | to;
 
-      return  (attacks_bb<  ROOK>(ksq, b) & pieces(  ROOK, QUEEN, us))
-            | (attacks_bb<BISHOP>(ksq, b) & pieces(BISHOP, QUEEN, us));
+      return  (attacks_bb<  ROOK>(ksq, b) & pieces(us, QUEEN, ROOK))
+            | (attacks_bb<BISHOP>(ksq, b) & pieces(us, QUEEN, BISHOP));
   }
-
-  // Castling with check ?
-  if (is_castle(m))
+  case CASTLE:
   {
       Square kfrom = from;
       Square rfrom = to; // 'King captures the rook' notation
       Square kto = relative_square(us, rfrom > kfrom ? SQ_G1 : SQ_C1);
       Square rto = relative_square(us, rfrom > kfrom ? SQ_F1 : SQ_D1);
-      Bitboard b = (pieces() ^ kfrom ^ rfrom) | rto | kto;
 
-      return attacks_bb<ROOK>(rto, b) & ksq;
+      return   (PseudoAttacks[ROOK][rto] & ksq)
+            && (attacks_bb<ROOK>(rto, (pieces() ^ kfrom ^ rfrom) | rto | kto) & ksq);
+  }
+  default:
+      assert(false);
+      return false;
   }
-
-  return false;
 }
 
 
@@ -712,48 +722,50 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
   Key k = st->key;
 
   // Copy some fields of old state to our new StateInfo object except the ones
-  // which are recalculated from scratch anyway, then switch our state pointer
-  // to point to the new, ready to be updated, state.
-  struct ReducedStateInfo {
-    Key pawnKey, materialKey;
-    Value npMaterial[2];
-    int castleRights, rule50, pliesFromNull;
-    Score psq_score;
-    Square epSquare;
-  };
-
-  memcpy(&newSt, st, sizeof(ReducedStateInfo));
+  // which are going to be recalculated from scratch anyway, then switch our state
+  // pointer to point to the new, ready to be updated, state.
+  std::memcpy(&newSt, st, StateCopySize64 * sizeof(uint64_t));
 
   newSt.previous = st;
   st = &newSt;
 
   // Update side to move
-  k ^= zobSideToMove;
+  k ^= Zobrist::side;
 
-  // Increment the 50 moves rule draw counter. Resetting it to zero in the
-  // case of a capture or a pawn move is taken care of later.
+  // Increment ply counters.In particular rule50 will be later reset it to zero
+  // in case of a capture or a pawn move.
+  gamePly++;
   st->rule50++;
   st->pliesFromNull++;
 
-  if (is_castle(m))
-  {
-      st->key = k;
-      do_castle_move<true>(m);
-      return;
-  }
-
   Color us = sideToMove;
   Color them = ~us;
   Square from = from_sq(m);
   Square to = to_sq(m);
-  Piece piece = piece_on(from);
-  PieceType pt = type_of(piece);
-  PieceType capture = is_enpassant(m) ? PAWN : type_of(piece_on(to));
+  Piece pc = piece_on(from);
+  PieceType pt = type_of(pc);
+  PieceType capture = type_of(m) == ENPASSANT ? PAWN : type_of(piece_on(to));
 
-  assert(color_of(piece) == us);
-  assert(color_of(piece_on(to)) != us);
+  assert(color_of(pc) == us);
+  assert(piece_on(to) == NO_PIECE || color_of(piece_on(to)) == them || type_of(m) == CASTLE);
   assert(capture != KING);
 
+  if (type_of(m) == CASTLE)
+  {
+      assert(pc == make_piece(us, KING));
+
+      bool kingSide = to > from;
+      Square rfrom = to; // Castle is encoded as "king captures friendly rook"
+      Square rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1);
+      to = relative_square(us, kingSide ? SQ_G1 : SQ_C1);
+      capture = NO_PIECE_TYPE;
+
+      do_castle(from, to, rfrom, rto);
+
+      st->psq += psq[us][ROOK][rto] - psq[us][ROOK][rfrom];
+      k ^= Zobrist::psq[us][ROOK][rfrom] ^ Zobrist::psq[us][ROOK][rto];
+  }
+
   if (capture)
   {
       Square capsq = to;
@@ -762,7 +774,7 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
       // update non-pawn material.
       if (capture == PAWN)
       {
-          if (is_enpassant(m))
+          if (type_of(m) == ENPASSANT)
           {
               capsq += pawn_push(them);
 
@@ -775,46 +787,33 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
               board[capsq] = NO_PIECE;
           }
 
-          st->pawnKey ^= zobrist[them][PAWN][capsq];
+          st->pawnKey ^= Zobrist::psq[them][PAWN][capsq];
       }
       else
-          st->npMaterial[them] -= PieceValueMidgame[capture];
-
-      // Remove the captured piece
-      byTypeBB[ALL_PIECES] ^= capsq;
-      byTypeBB[capture] ^= capsq;
-      byColorBB[them] ^= capsq;
-
-      // Update piece list, move the last piece at index[capsq] position and
-      // shrink the list.
-      //
-      // WARNING: This is a not revresible operation. When we will reinsert the
-      // captured piece in undo_move() we will put it at the end of the list and
-      // not in its original place, it means index[] and pieceList[] are not
-      // guaranteed to be invariant to a do_move() + undo_move() sequence.
-      Square lastSquare = pieceList[them][capture][--pieceCount[them][capture]];
-      index[lastSquare] = index[capsq];
-      pieceList[them][capture][index[lastSquare]] = lastSquare;
-      pieceList[them][capture][pieceCount[them][capture]] = SQ_NONE;
-
-      // Update hash keys
-      k ^= zobrist[them][capture][capsq];
-      st->materialKey ^= zobrist[them][capture][pieceCount[them][capture]];
+          st->npMaterial[them] -= PieceValue[MG][capture];
+
+      // Update board and piece lists
+      remove_piece(capsq, them, capture);
+
+      // Update material hash key and prefetch access to materialTable
+      k ^= Zobrist::psq[them][capture][capsq];
+      st->materialKey ^= Zobrist::psq[them][capture][pieceCount[them][capture]];
+      prefetch((char*)thisThread->materialTable[st->materialKey]);
 
       // Update incremental scores
-      st->psqScore -= pieceSquareTable[make_piece(them, capture)][capsq];
+      st->psq -= psq[them][capture][capsq];
 
       // Reset rule 50 counter
       st->rule50 = 0;
   }
 
   // Update hash key
-  k ^= zobrist[us][pt][from] ^ zobrist[us][pt][to];
+  k ^= Zobrist::psq[us][pt][from] ^ Zobrist::psq[us][pt][to];
 
   // Reset en passant square
   if (st->epSquare != SQ_NONE)
   {
-      k ^= zobEp[file_of(st->epSquare)];
+      k ^= Zobrist::enpassant[file_of(st->epSquare)];
       st->epSquare = SQ_NONE;
   }
 
@@ -822,86 +821,61 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
   if (st->castleRights && (castleRightsMask[from] | castleRightsMask[to]))
   {
       int cr = castleRightsMask[from] | castleRightsMask[to];
-      k ^= zobCastle[st->castleRights & cr];
+      k ^= Zobrist::castle[st->castleRights & cr];
       st->castleRights &= ~cr;
   }
 
-  // Prefetch TT access as soon as we know key is updated
+  // Prefetch TT access as soon as we know the new hash key
   prefetch((char*)TT.first_entry(k));
 
-  // Move the piece
-  Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to];
-  byTypeBB[ALL_PIECES] ^= from_to_bb;
-  byTypeBB[pt] ^= from_to_bb;
-  byColorBB[us] ^= from_to_bb;
-
-  board[to] = board[from];
-  board[from] = NO_PIECE;
-
-  // Update piece lists, index[from] is not updated and becomes stale. This
-  // works as long as index[] is accessed just by known occupied squares.
-  index[to] = index[from];
-  pieceList[us][pt][index[to]] = to;
+  // Move the piece. The tricky Chess960 castle is handled earlier
+  if (type_of(m) != CASTLE)
+      move_piece(from, to, us, pt);
 
   // If the moving piece is a pawn do some special extra work
   if (pt == PAWN)
   {
       // Set en-passant square, only if moved pawn can be captured
       if (   (int(to) ^ int(from)) == 16
-          && (attacks_from<PAWN>(from + pawn_push(us), us) & pieces(PAWN, them)))
+          && (attacks_from<PAWN>(from + pawn_push(us), us) & pieces(them, PAWN)))
       {
           st->epSquare = Square((from + to) / 2);
-          k ^= zobEp[file_of(st->epSquare)];
+          k ^= Zobrist::enpassant[file_of(st->epSquare)];
       }
 
-      if (is_promotion(m))
+      if (type_of(m) == PROMOTION)
       {
           PieceType promotion = promotion_type(m);
 
           assert(relative_rank(us, to) == RANK_8);
           assert(promotion >= KNIGHT && promotion <= QUEEN);
 
-          // Replace the pawn with the promoted piece
-          byTypeBB[PAWN] ^= to;
-          byTypeBB[promotion] |= to;
-          board[to] = make_piece(us, promotion);
-
-          // Update piece lists, move the last pawn at index[to] position
-          // and shrink the list. Add a new promotion piece to the list.
-          Square lastSquare = pieceList[us][PAWN][--pieceCount[us][PAWN]];
-          index[lastSquare] = index[to];
-          pieceList[us][PAWN][index[lastSquare]] = lastSquare;
-          pieceList[us][PAWN][pieceCount[us][PAWN]] = SQ_NONE;
-          index[to] = pieceCount[us][promotion];
-          pieceList[us][promotion][index[to]] = to;
+          remove_piece(to, us, PAWN);
+          put_piece(to, us, promotion);
 
           // Update hash keys
-          k ^= zobrist[us][PAWN][to] ^ zobrist[us][promotion][to];
-          st->pawnKey ^= zobrist[us][PAWN][to];
-          st->materialKey ^=  zobrist[us][promotion][pieceCount[us][promotion]++]
-                            ^ zobrist[us][PAWN][pieceCount[us][PAWN]];
+          k ^= Zobrist::psq[us][PAWN][to] ^ Zobrist::psq[us][promotion][to];
+          st->pawnKey ^= Zobrist::psq[us][PAWN][to];
+          st->materialKey ^=  Zobrist::psq[us][promotion][pieceCount[us][promotion]-1]
+                            ^ Zobrist::psq[us][PAWN][pieceCount[us][PAWN]];
 
           // Update incremental score
-          st->psqScore +=  pieceSquareTable[make_piece(us, promotion)][to]
-                         - pieceSquareTable[make_piece(us, PAWN)][to];
+          st->psq += psq[us][promotion][to] - psq[us][PAWN][to];
 
           // Update material
-          st->npMaterial[us] += PieceValueMidgame[promotion];
+          st->npMaterial[us] += PieceValue[MG][promotion];
       }
 
-      // Update pawn hash key
-      st->pawnKey ^= zobrist[us][PAWN][from] ^ zobrist[us][PAWN][to];
+      // Update pawn hash key and prefetch access to pawnsTable
+      st->pawnKey ^= Zobrist::psq[us][PAWN][from] ^ Zobrist::psq[us][PAWN][to];
+      prefetch((char*)thisThread->pawnsTable[st->pawnKey]);
 
       // Reset rule 50 draw counter
       st->rule50 = 0;
   }
 
-  // Prefetch pawn and material hash tables
-  prefetch((char*)thisThread->pawnTable.entries[st->pawnKey]);
-  prefetch((char*)thisThread->materialTable.entries[st->materialKey]);
-
   // Update incremental scores
-  st->psqScore += psq_delta(piece, from, to);
+  st->psq += psq[us][pt][to] - psq[us][pt][from];
 
   // Set capture piece
   st->capturedType = capture;
@@ -914,7 +888,7 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
 
   if (moveIsCheck)
   {
-      if (is_special(m))
+      if (type_of(m) != NORMAL)
           st->checkersBB = attackers_to(king_square(them)) & pieces(us);
       else
       {
@@ -926,17 +900,15 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
           if (ci.dcCandidates && (ci.dcCandidates & from))
           {
               if (pt != ROOK)
-                  st->checkersBB |= attacks_from<ROOK>(king_square(them)) & pieces(ROOK, QUEEN, us);
+                  st->checkersBB |= attacks_from<ROOK>(king_square(them)) & pieces(us, QUEEN, ROOK);
 
               if (pt != BISHOP)
-                  st->checkersBB |= attacks_from<BISHOP>(king_square(them)) & pieces(BISHOP, QUEEN, us);
+                  st->checkersBB |= attacks_from<BISHOP>(king_square(them)) & pieces(us, QUEEN, BISHOP);
           }
       }
   }
 
-  // Finish
   sideToMove = ~sideToMove;
-  st->psqScore += (sideToMove == WHITE ?  Tempo : -Tempo);
 
   assert(pos_is_ok());
 }
@@ -951,25 +923,17 @@ void Position::undo_move(Move m) {
 
   sideToMove = ~sideToMove;
 
-  if (is_castle(m))
-  {
-      do_castle_move<false>(m);
-      return;
-  }
-
   Color us = sideToMove;
   Color them = ~us;
   Square from = from_sq(m);
   Square to = to_sq(m);
-  Piece piece = piece_on(to);
-  PieceType pt = type_of(piece);
+  PieceType pt = type_of(piece_on(to));
   PieceType capture = st->capturedType;
 
-  assert(square_empty(from));
-  assert(color_of(piece) == us);
+  assert(is_empty(from) || type_of(m) == CASTLE);
   assert(capture != KING);
 
-  if (is_promotion(m))
+  if (type_of(m) == PROMOTION)
   {
       PieceType promotion = promotion_type(m);
 
@@ -977,42 +941,29 @@ void Position::undo_move(Move m) {
       assert(relative_rank(us, to) == RANK_8);
       assert(promotion >= KNIGHT && promotion <= QUEEN);
 
-      // Replace the promoted piece with the pawn
-      byTypeBB[promotion] ^= to;
-      byTypeBB[PAWN] |= to;
-      board[to] = make_piece(us, PAWN);
-
-      // Update piece lists, move the last promoted piece at index[to] position
-      // and shrink the list. Add a new pawn to the list.
-      Square lastSquare = pieceList[us][promotion][--pieceCount[us][promotion]];
-      index[lastSquare] = index[to];
-      pieceList[us][promotion][index[lastSquare]] = lastSquare;
-      pieceList[us][promotion][pieceCount[us][promotion]] = SQ_NONE;
-      index[to] = pieceCount[us][PAWN]++;
-      pieceList[us][PAWN][index[to]] = to;
-
+      remove_piece(to, us, promotion);
+      put_piece(to, us, PAWN);
       pt = PAWN;
   }
 
-  // Put the piece back at the source square
-  Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to];
-  byTypeBB[ALL_PIECES] ^= from_to_bb;
-  byTypeBB[pt] ^= from_to_bb;
-  byColorBB[us] ^= from_to_bb;
-
-  board[from] = board[to];
-  board[to] = NO_PIECE;
-
-  // Update piece lists, index[to] is not updated and becomes stale. This
-  // works as long as index[] is accessed just by known occupied squares.
-  index[from] = index[to];
-  pieceList[us][pt][index[from]] = from;
+  if (type_of(m) == CASTLE)
+  {
+      bool kingSide = to > from;
+      Square rfrom = to; // Castle is encoded as "king captures friendly rook"
+      Square rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1);
+      to = relative_square(us, kingSide ? SQ_G1 : SQ_C1);
+      capture = NO_PIECE_TYPE;
+      pt = KING;
+      do_castle(to, from, rto, rfrom);
+  }
+  else
+      move_piece(to, from, us, pt); // Put the piece back at the source square
 
   if (capture)
   {
       Square capsq = to;
 
-      if (is_enpassant(m))
+      if (type_of(m) == ENPASSANT)
       {
           capsq -= pawn_push(us);
 
@@ -1022,172 +973,74 @@ void Position::undo_move(Move m) {
           assert(piece_on(capsq) == NO_PIECE);
       }
 
-      // Restore the captured piece
-      byTypeBB[ALL_PIECES] |= capsq;
-      byTypeBB[capture] |= capsq;
-      byColorBB[them] |= capsq;
-
-      board[capsq] = make_piece(them, capture);
-
-      // Update piece list, add a new captured piece in capsq square
-      index[capsq] = pieceCount[them][capture]++;
-      pieceList[them][capture][index[capsq]] = capsq;
+      put_piece(capsq, them, capture); // Restore the captured piece
   }
 
   // Finally point our state pointer back to the previous state
   st = st->previous;
+  gamePly--;
 
   assert(pos_is_ok());
 }
 
 
-/// Position::do_castle_move() is a private method used to do/undo a castling
-/// move. Note that castling moves are encoded as "king captures friendly rook"
-/// moves, for instance white short castling in a non-Chess960 game is encoded
-/// as e1h1.
-template<bool Do>
-void Position::do_castle_move(Move m) {
-
-  assert(is_ok(m));
-  assert(is_castle(m));
-
-  Square kto, kfrom, rfrom, rto, kAfter, rAfter;
+/// Position::do_castle() is a helper used to do/undo a castling move. This
+/// is a bit tricky, especially in Chess960.
 
-  Color us = sideToMove;
-  Square kBefore = from_sq(m);
-  Square rBefore = to_sq(m);
+void Position::do_castle(Square kfrom, Square kto, Square rfrom, Square rto) {
 
-  // Find after-castle squares for king and rook
-  if (rBefore > kBefore) // O-O
-  {
-      kAfter = relative_square(us, SQ_G1);
-      rAfter = relative_square(us, SQ_F1);
-  }
-  else // O-O-O
-  {
-      kAfter = relative_square(us, SQ_C1);
-      rAfter = relative_square(us, SQ_D1);
-  }
+  // Remove both pieces first since squares could overlap in Chess960
+  remove_piece(kfrom, sideToMove, KING);
+  remove_piece(rfrom, sideToMove, ROOK);
+  board[kfrom] = board[rfrom] = NO_PIECE; // Since remove_piece doesn't do it for us
+  put_piece(kto, sideToMove, KING);
+  put_piece(rto, sideToMove, ROOK);
+}
 
-  kfrom = Do ? kBefore : kAfter;
-  rfrom = Do ? rBefore : rAfter;
-
-  kto = Do ? kAfter : kBefore;
-  rto = Do ? rAfter : rBefore;
-
-  assert(piece_on(kfrom) == make_piece(us, KING));
-  assert(piece_on(rfrom) == make_piece(us, ROOK));
-
-  // Move the pieces, with some care; in chess960 could be kto == rfrom
-  Bitboard k_from_to_bb = SquareBB[kfrom] ^ SquareBB[kto];
-  Bitboard r_from_to_bb = SquareBB[rfrom] ^ SquareBB[rto];
-  byTypeBB[KING] ^= k_from_to_bb;
-  byTypeBB[ROOK] ^= r_from_to_bb;
-  byTypeBB[ALL_PIECES] ^= k_from_to_bb ^ r_from_to_bb;
-  byColorBB[us] ^= k_from_to_bb ^ r_from_to_bb;
-
-  // Update board
-  Piece king = make_piece(us, KING);
-  Piece rook = make_piece(us, ROOK);
-  board[kfrom] = board[rfrom] = NO_PIECE;
-  board[kto] = king;
-  board[rto] = rook;
-
-  // Update piece lists
-  pieceList[us][KING][index[kfrom]] = kto;
-  pieceList[us][ROOK][index[rfrom]] = rto;
-  int tmp = index[rfrom]; // In Chess960 could be kto == rfrom
-  index[kto] = index[kfrom];
-  index[rto] = tmp;
-
-  if (Do)
-  {
-      // Reset capture field
-      st->capturedType = NO_PIECE_TYPE;
 
-      // Update incremental scores
-      st->psqScore += psq_delta(king, kfrom, kto);
-      st->psqScore += psq_delta(rook, rfrom, rto);
+/// Position::do(undo)_null_move() is used to do(undo) a "null move": It flips
+/// the side to move without executing any move on the board.
 
-      // Update hash key
-      st->key ^= zobrist[us][KING][kfrom] ^ zobrist[us][KING][kto];
-      st->key ^= zobrist[us][ROOK][rfrom] ^ zobrist[us][ROOK][rto];
+void Position::do_null_move(StateInfo& newSt) {
 
-      // Clear en passant square
-      if (st->epSquare != SQ_NONE)
-      {
-          st->key ^= zobEp[file_of(st->epSquare)];
-          st->epSquare = SQ_NONE;
-      }
+  assert(!checkers());
 
-      // Update castling rights
-      st->key ^= zobCastle[st->castleRights & castleRightsMask[kfrom]];
-      st->castleRights &= ~castleRightsMask[kfrom];
+  std::memcpy(&newSt, st, sizeof(StateInfo)); // Fully copy here
 
-      // Update checkers BB
-      st->checkersBB = attackers_to(king_square(~us)) & pieces(us);
+  newSt.previous = st;
+  st = &newSt;
 
-      // Finish
-      sideToMove = ~sideToMove;
-      st->psqScore += (sideToMove == WHITE ?  Tempo : -Tempo);
+  if (st->epSquare != SQ_NONE)
+  {
+      st->key ^= Zobrist::enpassant[file_of(st->epSquare)];
+      st->epSquare = SQ_NONE;
   }
-  else
-      // Undo: point our state pointer back to the previous state
-      st = st->previous;
-
-  assert(pos_is_ok());
-}
 
+  st->key ^= Zobrist::side;
+  prefetch((char*)TT.first_entry(st->key));
 
-/// Position::do_null_move() is used to do/undo a "null move": It flips the side
-/// to move and updates the hash key without executing any move on the board.
-template<bool Do>
-void Position::do_null_move(StateInfo& backupSt) {
-
-  assert(!in_check());
-
-  // Back up the information necessary to undo the null move to the supplied
-  // StateInfo object. Note that differently from normal case here backupSt
-  // is actually used as a backup storage not as the new state. This reduces
-  // the number of fields to be copied.
-  StateInfo* src = Do ? st : &backupSt;
-  StateInfo* dst = Do ? &backupSt : st;
-
-  dst->key      = src->key;
-  dst->epSquare = src->epSquare;
-  dst->psqScore = src->psqScore;
-  dst->rule50   = src->rule50;
-  dst->pliesFromNull = src->pliesFromNull;
+  st->rule50++;
+  st->pliesFromNull = 0;
 
   sideToMove = ~sideToMove;
 
-  if (Do)
-  {
-      if (st->epSquare != SQ_NONE)
-          st->key ^= zobEp[file_of(st->epSquare)];
+  assert(pos_is_ok());
+}
 
-      st->key ^= zobSideToMove;
-      prefetch((char*)TT.first_entry(st->key));
+void Position::undo_null_move() {
 
-      st->epSquare = SQ_NONE;
-      st->rule50++;
-      st->pliesFromNull = 0;
-      st->psqScore += (sideToMove == WHITE ?  Tempo : -Tempo);
-  }
+  assert(!checkers());
 
-  assert(pos_is_ok());
+  st = st->previous;
+  sideToMove = ~sideToMove;
 }
 
-// Explicit template instantiations
-template void Position::do_null_move<false>(StateInfo& backupSt);
-template void Position::do_null_move<true>(StateInfo& backupSt);
-
 
 /// Position::see() is a static exchange evaluator: It tries to estimate the
-/// material gain or loss resulting from a move. There are three versions of
-/// this function: One which takes a destination square as input, one takes a
-/// move, and one which takes a 'from' and a 'to' square. The function does
-/// not yet understand promotions captures.
+/// material gain or loss resulting from a move. Parameter 'asymmThreshold' takes
+/// tempi into account. If the side who initiated the capturing sequence does the
+/// last capture, he loses a tempo and if the result is below 'asymmThreshold'
+/// the capturing sequence is considered bad.
 
 int Position::see_sign(Move m) const {
 
@@ -1196,56 +1049,49 @@ int Position::see_sign(Move m) const {
   // Early return if SEE cannot be negative because captured piece value
   // is not less then capturing one. Note that king moves always return
   // here because king midgame value is set to 0.
-  if (PieceValueMidgame[piece_on(to_sq(m))] >= PieceValueMidgame[piece_moved(m)])
+  if (PieceValue[MG][piece_moved(m)] <= PieceValue[MG][piece_on(to_sq(m))])
       return 1;
 
   return see(m);
 }
 
-int Position::see(Move m) const {
+int Position::see(Move m, int asymmThreshold) const {
 
   Square from, to;
-  Bitboard occ, attackers, stmAttackers, b;
+  Bitboard occupied, attackers, stmAttackers;
   int swapList[32], slIndex = 1;
-  PieceType capturedType, pt;
+  PieceType captured;
   Color stm;
 
   assert(is_ok(m));
 
-  // As castle moves are implemented as capturing the rook, they have
-  // SEE == RookValueMidgame most of the times (unless the rook is under
-  // attack).
-  if (is_castle(m))
-      return 0;
-
   from = from_sq(m);
   to = to_sq(m);
-  capturedType = type_of(piece_on(to));
-  occ = pieces();
+  swapList[0] = PieceValue[MG][type_of(piece_on(to))];
+  stm = color_of(piece_on(from));
+  occupied = pieces() ^ from;
+
+  // Castle moves are implemented as king capturing the rook so cannot be
+  // handled correctly. Simply return 0 that is always the correct value
+  // unless in the rare case the rook ends up under attack.
+  if (type_of(m) == CASTLE)
+      return 0;
 
-  // Handle en passant moves
-  if (is_enpassant(m))
+  if (type_of(m) == ENPASSANT)
   {
-      Square capQq = to - pawn_push(sideToMove);
-
-      assert(!capturedType);
-      assert(type_of(piece_on(capQq)) == PAWN);
-
-      // Remove the captured pawn
-      occ ^= capQq;
-      capturedType = PAWN;
+      occupied ^= to - pawn_push(stm); // Remove the captured pawn
+      swapList[0] = PieceValue[MG][PAWN];
   }
 
   // Find all attackers to the destination square, with the moving piece
   // removed, but possibly an X-ray attacker added behind it.
-  occ ^= from;
-  attackers = attackers_to(to, occ);
+  attackers = attackers_to(to, occupied) & occupied;
 
   // If the opponent has no attackers we are finished
-  stm = ~color_of(piece_on(from));
+  stm = ~stm;
   stmAttackers = attackers & pieces(stm);
   if (!stmAttackers)
-      return PieceValueMidgame[capturedType];
+      return swapList[0];
 
   // The destination square is defended, which makes things rather more
   // difficult to compute. We proceed by building up a "swap list" containing
@@ -1253,45 +1099,38 @@ int Position::see(Move m) const {
   // destination square, where the sides alternately capture, and always
   // capture with the least valuable piece. After each capture, we look for
   // new X-ray attacks from behind the capturing piece.
-  swapList[0] = PieceValueMidgame[capturedType];
-  capturedType = type_of(piece_on(from));
+  captured = type_of(piece_on(from));
 
   do {
-      // Locate the least valuable attacker for the side to move. The loop
-      // below looks like it is potentially infinite, but it isn't. We know
-      // that the side to move still has at least one attacker left.
-      for (pt = PAWN; !(stmAttackers & pieces(pt)); pt++)
-          assert(pt < KING);
-
-      // Remove the attacker we just found from the 'occupied' bitboard,
-      // and scan for new X-ray attacks behind the attacker.
-      b = stmAttackers & pieces(pt);
-      occ ^= (b & (~b + 1));
-      attackers |=  (attacks_bb<ROOK>(to, occ)   & pieces(ROOK, QUEEN))
-                  | (attacks_bb<BISHOP>(to, occ) & pieces(BISHOP, QUEEN));
-
-      attackers &= occ; // Cut out pieces we've already done
+      assert(slIndex < 32);
 
       // Add the new entry to the swap list
-      assert(slIndex < 32);
-      swapList[slIndex] = -swapList[slIndex - 1] + PieceValueMidgame[capturedType];
+      swapList[slIndex] = -swapList[slIndex - 1] + PieceValue[MG][captured];
       slIndex++;
 
-      // Remember the value of the capturing piece, and change the side to
-      // move before beginning the next iteration.
-      capturedType = pt;
+      // Locate and remove the next least valuable attacker
+      captured = min_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers);
       stm = ~stm;
       stmAttackers = attackers & pieces(stm);
 
       // Stop before processing a king capture
-      if (capturedType == KING && stmAttackers)
+      if (captured == KING && stmAttackers)
       {
-          assert(slIndex < 32);
-          swapList[slIndex++] = QueenValueMidgame*10;
+          swapList[slIndex++] = QueenValueMg * 16;
           break;
       }
+
   } while (stmAttackers);
 
+  // If we are doing asymmetric SEE evaluation and the same side does the first
+  // and the last capture, he loses a tempo and gain must be at least worth
+  // 'asymmThreshold', otherwise we replace the score with a very low value,
+  // before negamaxing.
+  if (asymmThreshold)
+      for (int i = 0; i < slIndex; i += 2)
+          if (swapList[i] < asymmThreshold)
+              swapList[i] = - QueenValueMg * 16;
+
   // Having built the swap list, we negamax through it to find the best
   // achievable score from the point of view of the side to move.
   while (--slIndex)
@@ -1306,34 +1145,13 @@ int Position::see(Move m) const {
 
 void Position::clear() {
 
-  memset(this, 0, sizeof(Position));
+  std::memset(this, 0, sizeof(Position));
   startState.epSquare = SQ_NONE;
   st = &startState;
 
-  for (int i = 0; i < 8; i++)
+  for (int i = 0; i < PIECE_TYPE_NB; i++)
       for (int j = 0; j < 16; j++)
-          pieceList[0][i][j] = pieceList[1][i][j] = SQ_NONE;
-
-  for (Square sq = SQ_A1; sq <= SQ_H8; sq++)
-      board[sq] = NO_PIECE;
-}
-
-
-/// Position::put_piece() puts a piece on the given square of the board,
-/// updating the board array, pieces list, bitboards, and piece counts.
-
-void Position::put_piece(Piece p, Square s) {
-
-  Color c = color_of(p);
-  PieceType pt = type_of(p);
-
-  board[s] = p;
-  index[s] = pieceCount[c][pt]++;
-  pieceList[c][pt][index[s]] = s;
-
-  byTypeBB[ALL_PIECES] |= s;
-  byTypeBB[pt] |= s;
-  byColorBB[c] |= s;
+          pieceList[WHITE][i][j] = pieceList[BLACK][i][j] = SQ_NONE;
 }
 
 
@@ -1344,19 +1162,21 @@ void Position::put_piece(Piece p, Square s) {
 
 Key Position::compute_key() const {
 
-  Key result = zobCastle[st->castleRights];
+  Key k = Zobrist::castle[st->castleRights];
 
-  for (Square s = SQ_A1; s <= SQ_H8; s++)
-      if (!square_empty(s))
-          result ^= zobrist[color_of(piece_on(s))][type_of(piece_on(s))][s];
+  for (Bitboard b = pieces(); b; )
+  {
+      Square s = pop_lsb(&b);
+      k ^= Zobrist::psq[color_of(piece_on(s))][type_of(piece_on(s))][s];
+  }
 
   if (ep_square() != SQ_NONE)
-      result ^= zobEp[file_of(ep_square())];
+      k ^= Zobrist::enpassant[file_of(ep_square())];
 
   if (sideToMove == BLACK)
-      result ^= zobSideToMove;
+      k ^= Zobrist::side;
 
-  return result;
+  return k;
 }
 
 
@@ -1368,16 +1188,15 @@ Key Position::compute_key() const {
 
 Key Position::compute_pawn_key() const {
 
-  Bitboard b;
-  Key result = 0;
+  Key k = 0;
 
-  for (Color c = WHITE; c <= BLACK; c++)
+  for (Bitboard b = pieces(PAWN); b; )
   {
-      b = pieces(PAWN, c);
-      while (b)
-          result ^= zobrist[c][PAWN][pop_1st_bit(&b)];
+      Square s = pop_lsb(&b);
+      k ^= Zobrist::psq[color_of(piece_on(s))][PAWN][s];
   }
-  return result;
+
+  return k;
 }
 
 
@@ -1389,14 +1208,14 @@ Key Position::compute_pawn_key() const {
 
 Key Position::compute_material_key() const {
 
-  Key result = 0;
+  Key k = 0;
 
   for (Color c = WHITE; c <= BLACK; c++)
       for (PieceType pt = PAWN; pt <= QUEEN; pt++)
-          for (int i = 0; i < piece_count(c, pt); i++)
-              result ^= zobrist[c][pt][i];
+          for (int cnt = 0; cnt < pieceCount[c][pt]; cnt++)
+              k ^= Zobrist::psq[c][pt][cnt];
 
-  return result;
+  return k;
 }
 
 
@@ -1404,21 +1223,19 @@ Key Position::compute_material_key() const {
 /// game and the endgame. These functions are used to initialize the incremental
 /// scores when a new position is set up, and to verify that the scores are correctly
 /// updated by do_move and undo_move when the program is running in debug mode.
+
 Score Position::compute_psq_score() const {
 
-  Bitboard b;
-  Score result = SCORE_ZERO;
+  Score score = SCORE_ZERO;
 
-  for (Color c = WHITE; c <= BLACK; c++)
-      for (PieceType pt = PAWN; pt <= KING; pt++)
-      {
-          b = pieces(pt, c);
-          while (b)
-              result += pieceSquareTable[make_piece(c, pt)][pop_1st_bit(&b)];
-      }
+  for (Bitboard b = pieces(); b; )
+  {
+      Square s = pop_lsb(&b);
+      Piece pc = piece_on(s);
+      score += psq[color_of(pc)][type_of(pc)][s];
+  }
 
-  result += (sideToMove == WHITE ? Tempo / 2 : -Tempo / 2);
-  return result;
+  return score;
 }
 
 
@@ -1429,141 +1246,77 @@ Score Position::compute_psq_score() const {
 
 Value Position::compute_non_pawn_material(Color c) const {
 
-  Value result = VALUE_ZERO;
+  Value value = VALUE_ZERO;
 
   for (PieceType pt = KNIGHT; pt <= QUEEN; pt++)
-      result += piece_count(c, pt) * PieceValueMidgame[pt];
+      value += pieceCount[c][pt] * PieceValue[MG][pt];
 
-  return result;
+  return value;
 }
 
 
-/// Position::is_draw() tests whether the position is drawn by material,
-/// repetition, or the 50 moves rule. It does not detect stalemates, this
-/// must be done by the search.
-template<bool SkipRepetition>
+/// Position::is_draw() tests whether the position is drawn by 50 moves rule
+/// or by repetition. It does not detect stalemates.
+
 bool Position::is_draw() const {
 
-  // Draw by material?
-  if (   !pieces(PAWN)
-      && (non_pawn_material(WHITE) + non_pawn_material(BLACK) <= BishopValueMidgame))
+  if (st->rule50 > 99 && (!checkers() || MoveList<LEGAL>(*this).size()))
       return true;
 
-  // Draw by the 50 moves rule?
-  if (st->rule50 > 99 && (!in_check() || MoveList<MV_LEGAL>(*this).size()))
-      return true;
+  int i = 4, e = std::min(st->rule50, st->pliesFromNull);
 
-  // Draw by repetition?
-  if (!SkipRepetition)
+  if (i <= e)
   {
-      int i = 4, e = std::min(st->rule50, st->pliesFromNull);
-
-      if (i <= e)
-      {
-          StateInfo* stp = st->previous->previous;
+      StateInfo* stp = st->previous->previous;
 
-          do {
-              stp = stp->previous->previous;
+      do {
+          stp = stp->previous->previous;
 
-              if (stp->key == st->key)
-                  return true;
+          if (stp->key == st->key)
+              return true; // Draw after first repetition
 
-              i +=2;
+          i += 2;
 
-          } while (i <= e);
-      }
+      } while (i <= e);
   }
 
   return false;
 }
 
-// Explicit template instantiations
-template bool Position::is_draw<false>() const;
-template bool Position::is_draw<true>() const;
-
-
-/// Position::init() is a static member function which initializes at startup
-/// the various arrays used to compute hash keys and the piece square tables.
-/// The latter is a two-step operation: First, the white halves of the tables
-/// are copied from PSQT[] tables. Second, the black halves of the tables are
-/// initialized by flipping and changing the sign of the white scores.
 
-void Position::init() {
-
-  RKISS rk;
-
-  for (Color c = WHITE; c <= BLACK; c++)
-      for (PieceType pt = PAWN; pt <= KING; pt++)
-          for (Square s = SQ_A1; s <= SQ_H8; s++)
-              zobrist[c][pt][s] = rk.rand<Key>();
+/// Position::flip() flips position with the white and black sides reversed. This
+/// is only useful for debugging especially for finding evaluation symmetry bugs.
 
-  for (File f = FILE_A; f <= FILE_H; f++)
-      zobEp[f] = rk.rand<Key>();
+static char toggle_case(char c) {
+  return char(islower(c) ? toupper(c) : tolower(c));
+}
 
-  for (int cr = CASTLES_NONE; cr <= ALL_CASTLES; cr++)
-  {
-      Bitboard b = cr;
-      while (b)
-      {
-          Key k = zobCastle[1ULL << pop_1st_bit(&b)];
-          zobCastle[cr] ^= k ? k : rk.rand<Key>();
-      }
-  }
+void Position::flip() {
 
-  zobSideToMove = rk.rand<Key>();
-  zobExclusion  = rk.rand<Key>();
+  string f, token;
+  std::stringstream ss(fen());
 
-  for (Piece p = W_PAWN; p <= W_KING; p++)
+  for (Rank rank = RANK_8; rank >= RANK_1; rank--) // Piece placement
   {
-      Score ps = make_score(PieceValueMidgame[p], PieceValueEndgame[p]);
-
-      for (Square s = SQ_A1; s <= SQ_H8; s++)
-      {
-          pieceSquareTable[p][s] = ps + PSQT[p][s];
-          pieceSquareTable[p+8][~s] = -pieceSquareTable[p][s];
-      }
+      std::getline(ss, token, rank > RANK_1 ? '/' : ' ');
+      f.insert(0, token + (f.empty() ? " " : "/"));
   }
-}
 
+  ss >> token; // Active color
+  f += (token == "w" ? "B " : "W "); // Will be lowercased later
 
-/// Position::flip() flips position with the white and black sides reversed. This
-/// is only useful for debugging especially for finding evaluation symmetry bugs.
-
-void Position::flip() {
-
-  const Position pos(*this);
-
-  clear();
-
-  sideToMove = ~pos.side_to_move();
-  thisThread = pos.this_thread();
-  nodes = pos.nodes_searched();
-  chess960 = pos.is_chess960();
-  startPosPly = pos.startpos_ply_counter();
+  ss >> token; // Castling availability
+  f += token + " ";
 
-  for (Square s = SQ_A1; s <= SQ_H8; s++)
-      if (!pos.square_empty(s))
-          put_piece(Piece(pos.piece_on(s) ^ 8), ~s);
+  std::transform(f.begin(), f.end(), f.begin(), toggle_case);
 
-  if (pos.can_castle(WHITE_OO))
-      set_castle_right(BLACK, ~pos.castle_rook_square(WHITE, KING_SIDE));
-  if (pos.can_castle(WHITE_OOO))
-      set_castle_right(BLACK, ~pos.castle_rook_square(WHITE, QUEEN_SIDE));
-  if (pos.can_castle(BLACK_OO))
-      set_castle_right(WHITE, ~pos.castle_rook_square(BLACK, KING_SIDE));
-  if (pos.can_castle(BLACK_OOO))
-      set_castle_right(WHITE, ~pos.castle_rook_square(BLACK, QUEEN_SIDE));
+  ss >> token; // En passant square
+  f += (token == "-" ? token : token.replace(1, 1, token[1] == '3' ? "6" : "3"));
 
-  if (pos.st->epSquare != SQ_NONE)
-      st->epSquare = ~pos.st->epSquare;
+  std::getline(ss, token); // Half and full moves
+  f += token;
 
-  st->key = compute_key();
-  st->pawnKey = compute_pawn_key();
-  st->materialKey = compute_material_key();
-  st->psqScore = compute_psq_score();
-  st->checkersBB = attackers_to(king_square(sideToMove)) & pieces(~sideToMove);
-  st->npMaterial[WHITE] = compute_non_pawn_material(WHITE);
-  st->npMaterial[BLACK] = compute_non_pawn_material(BLACK);
+  set(f, is_chess960(), this_thread());
 
   assert(pos_is_ok());
 }
@@ -1574,42 +1327,39 @@ void Position::flip() {
 
 bool Position::pos_is_ok(int* failedStep) const {
 
+  int dummy, *step = failedStep ? failedStep : &dummy;
+
   // What features of the position should be verified?
-  const bool debugAll = false;
-
-  const bool debugBitboards       = debugAll || false;
-  const bool debugKingCount       = debugAll || false;
-  const bool debugKingCapture     = debugAll || false;
-  const bool debugCheckerCount    = debugAll || false;
-  const bool debugKey             = debugAll || false;
-  const bool debugMaterialKey     = debugAll || false;
-  const bool debugPawnKey         = debugAll || false;
-  const bool debugIncrementalEval = debugAll || false;
-  const bool debugNonPawnMaterial = debugAll || false;
-  const bool debugPieceCounts     = debugAll || false;
-  const bool debugPieceList       = debugAll || false;
-  const bool debugCastleSquares   = debugAll || false;
-
-  if (failedStep) *failedStep = 1;
-
-  // Side to move OK?
+  const bool all = false;
+
+  const bool debugBitboards       = all || false;
+  const bool debugKingCount       = all || false;
+  const bool debugKingCapture     = all || false;
+  const bool debugCheckerCount    = all || false;
+  const bool debugKey             = all || false;
+  const bool debugMaterialKey     = all || false;
+  const bool debugPawnKey         = all || false;
+  const bool debugIncrementalEval = all || false;
+  const bool debugNonPawnMaterial = all || false;
+  const bool debugPieceCounts     = all || false;
+  const bool debugPieceList       = all || false;
+  const bool debugCastleSquares   = all || false;
+
+  *step = 1;
+
   if (sideToMove != WHITE && sideToMove != BLACK)
       return false;
 
-  // Are the king squares in the position correct?
-  if (failedStep) (*failedStep)++;
-  if (piece_on(king_square(WHITE)) != W_KING)
+  if ((*step)++, piece_on(king_square(WHITE)) != W_KING)
       return false;
 
-  if (failedStep) (*failedStep)++;
-  if (piece_on(king_square(BLACK)) != B_KING)
+  if ((*step)++, piece_on(king_square(BLACK)) != B_KING)
       return false;
 
-  // Do both sides have exactly one king?
-  if (failedStep) (*failedStep)++;
-  if (debugKingCount)
+  if ((*step)++, debugKingCount)
   {
-      int kingCount[2] = {0, 0};
+      int kingCount[COLOR_NB] = {};
+
       for (Square s = SQ_A1; s <= SQ_H8; s++)
           if (type_of(piece_on(s)) == KING)
               kingCount[color_of(piece_on(s))]++;
@@ -1618,25 +1368,14 @@ bool Position::pos_is_ok(int* failedStep) const {
           return false;
   }
 
-  // Can the side to move capture the opponent's king?
-  if (failedStep) (*failedStep)++;
-  if (debugKingCapture)
-  {
-      Color us = sideToMove;
-      Color them = ~us;
-      Square ksq = king_square(them);
-      if (attackers_to(ksq) & pieces(us))
+  if ((*step)++, debugKingCapture)
+      if (attackers_to(king_square(~sideToMove)) & pieces(sideToMove))
           return false;
-  }
 
-  // Is there more than 2 checkers?
-  if (failedStep) (*failedStep)++;
-  if (debugCheckerCount && popcount<Full>(st->checkersBB) > 2)
+  if ((*step)++, debugCheckerCount && popcount<Full>(st->checkersBB) > 2)
       return false;
 
-  // Bitboards OK?
-  if (failedStep) (*failedStep)++;
-  if (debugBitboards)
+  if ((*step)++, debugBitboards)
   {
       // The intersection of the white and black pieces must be empty
       if (pieces(WHITE) & pieces(BLACK))
@@ -1654,81 +1393,55 @@ bool Position::pos_is_ok(int* failedStep) const {
                   return false;
   }
 
-  // En passant square OK?
-  if (failedStep) (*failedStep)++;
-  if (ep_square() != SQ_NONE)
-  {
-      // The en passant square must be on rank 6, from the point of view of the
-      // side to move.
-      if (relative_rank(sideToMove, ep_square()) != RANK_6)
-          return false;
-  }
-
-  // Hash key OK?
-  if (failedStep) (*failedStep)++;
-  if (debugKey && st->key != compute_key())
+  if ((*step)++, ep_square() != SQ_NONE && relative_rank(sideToMove, ep_square()) != RANK_6)
       return false;
 
-  // Pawn hash key OK?
-  if (failedStep) (*failedStep)++;
-  if (debugPawnKey && st->pawnKey != compute_pawn_key())
+  if ((*step)++, debugKey && st->key != compute_key())
       return false;
 
-  // Material hash key OK?
-  if (failedStep) (*failedStep)++;
-  if (debugMaterialKey && st->materialKey != compute_material_key())
+  if ((*step)++, debugPawnKey && st->pawnKey != compute_pawn_key())
       return false;
 
-  // Incremental eval OK?
-  if (failedStep) (*failedStep)++;
-  if (debugIncrementalEval && st->psqScore != compute_psq_score())
+  if ((*step)++, debugMaterialKey && st->materialKey != compute_material_key())
       return false;
 
-  // Non-pawn material OK?
-  if (failedStep) (*failedStep)++;
-  if (debugNonPawnMaterial)
-  {
-      if (st->npMaterial[WHITE] != compute_non_pawn_material(WHITE))
-          return false;
+  if ((*step)++, debugIncrementalEval && st->psq != compute_psq_score())
+      return false;
 
-      if (st->npMaterial[BLACK] != compute_non_pawn_material(BLACK))
+  if ((*step)++, debugNonPawnMaterial)
+      if (   st->npMaterial[WHITE] != compute_non_pawn_material(WHITE)
+          || st->npMaterial[BLACK] != compute_non_pawn_material(BLACK))
           return false;
-  }
 
-  // Piece counts OK?
-  if (failedStep) (*failedStep)++;
-  if (debugPieceCounts)
+  if ((*step)++, debugPieceCounts)
       for (Color c = WHITE; c <= BLACK; c++)
           for (PieceType pt = PAWN; pt <= KING; pt++)
-              if (pieceCount[c][pt] != popcount<Full>(pieces(pt, c)))
+              if (pieceCount[c][pt] != popcount<Full>(pieces(c, pt)))
                   return false;
 
-  if (failedStep) (*failedStep)++;
-  if (debugPieceList)
+  if ((*step)++, debugPieceList)
       for (Color c = WHITE; c <= BLACK; c++)
           for (PieceType pt = PAWN; pt <= KING; pt++)
               for (int i = 0; i < pieceCount[c][pt]; i++)
-              {
-                  if (piece_on(piece_list(c, pt)[i]) != make_piece(c, pt))
-                      return false;
-
-                  if (index[piece_list(c, pt)[i]] != i)
+                  if (   board[pieceList[c][pt][i]] != make_piece(c, pt)
+                      || index[pieceList[c][pt][i]] != i)
                       return false;
-              }
 
-  if (failedStep) (*failedStep)++;
-  if (debugCastleSquares)
+  if ((*step)++, debugCastleSquares)
       for (Color c = WHITE; c <= BLACK; c++)
           for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1))
           {
-              if (!can_castle(make_castle_right(c, s)))
+              CastleRight cr = make_castle_right(c, s);
+
+              if (!can_castle(cr))
                   continue;
 
-              if (   piece_on(castleRookSquare[c][s]) != make_piece(c, ROOK)
-                  || castleRightsMask[castleRookSquare[c][s]] != make_castle_right(c, s))
+              if (  (castleRightsMask[king_square(c)] & cr) != cr
+                  || piece_on(castleRookSquare[c][s]) != make_piece(c, ROOK)
+                  || castleRightsMask[castleRookSquare[c][s]] != cr)
                   return false;
           }
 
-  if (failedStep) *failedStep = 0;
+  *step = 0;
   return true;
 }