]> git.sesse.net Git - stockfish/blobdiff - src/position.cpp
Checking for rook color when setting castling
[stockfish] / src / position.cpp
index 72681e8d694e68d4c2f709dccf9a54b560aafa06..9306965c45a625a4a76f39ead713a0cc6696899b 100644 (file)
@@ -1,7 +1,7 @@
 /*
   Stockfish, a UCI chess playing engine derived from Glaurung 2.1
   Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
-  Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad
+  Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
 
   Stockfish is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
 
 #include <algorithm>
 #include <cassert>
-#include <cstring>
+#include <cstring>   // For std::memset, std::memcmp
 #include <iomanip>
 #include <sstream>
 
 #include "bitcount.h"
+#include "misc.h"
 #include "movegen.h"
-#include "notation.h"
 #include "position.h"
-#include "psqtab.h"
-#include "rkiss.h"
 #include "thread.h"
 #include "tt.h"
+#include "uci.h"
 
 using std::string;
 
-static const string PieceToChar(" PNBRQK  pnbrqk");
-
-CACHE_LINE_ALIGNMENT
-
-Score psq[COLOR_NB][PIECE_TYPE_NB][SQUARE_NB];
 Value PieceValue[PHASE_NB][PIECE_NB] = {
 { VALUE_ZERO, PawnValueMg, KnightValueMg, BishopValueMg, RookValueMg, QueenValueMg },
 { VALUE_ZERO, PawnValueEg, KnightValueEg, BishopValueEg, RookValueEg, QueenValueEg } };
@@ -47,20 +41,22 @@ namespace Zobrist {
 
   Key psq[COLOR_NB][PIECE_TYPE_NB][SQUARE_NB];
   Key enpassant[FILE_NB];
-  Key castling[CASTLING_FLAG_NB];
+  Key castling[CASTLING_RIGHT_NB];
   Key side;
   Key exclusion;
 }
 
-Key Position::exclusion_key() const { return st->key ^ Zobrist::exclusion;}
+Key Position::exclusion_key() const { return st->key ^ Zobrist::exclusion; }
 
 namespace {
 
+const string PieceToChar(" PNBRQK  pnbrqk");
+
 // min_attacker() is a helper function used by see() to locate the least
 // valuable attacker for the side to move, remove the attacker we just found
 // from the bitboards and scan for new X-ray attacks behind it.
 
-template<int Pt> FORCE_INLINE
+template<int Pt>
 PieceType min_attacker(const Bitboard* bb, const Square& to, const Bitboard& stmAttackers,
                        Bitboard& occupied, Bitboard& attackers) {
 
@@ -80,7 +76,7 @@ PieceType min_attacker(const Bitboard* bb, const Square& to, const Bitboard& stm
   return (PieceType)Pt;
 }
 
-template<> FORCE_INLINE
+template<>
 PieceType min_attacker<KING>(const Bitboard*, const Square&, const Bitboard&, Bitboard&, Bitboard&) {
   return KING; // No need to update bitboards: it is the last cycle
 }
@@ -98,70 +94,77 @@ CheckInfo::CheckInfo(const Position& pos) {
   pinned = pos.pinned_pieces(pos.side_to_move());
   dcCandidates = pos.discovered_check_candidates();
 
-  checkSq[PAWN]   = pos.attacks_from<PAWN>(ksq, them);
-  checkSq[KNIGHT] = pos.attacks_from<KNIGHT>(ksq);
-  checkSq[BISHOP] = pos.attacks_from<BISHOP>(ksq);
-  checkSq[ROOK]   = pos.attacks_from<ROOK>(ksq);
-  checkSq[QUEEN]  = checkSq[BISHOP] | checkSq[ROOK];
-  checkSq[KING]   = 0;
+  checkSquares[PAWN]   = pos.attacks_from<PAWN>(ksq, them);
+  checkSquares[KNIGHT] = pos.attacks_from<KNIGHT>(ksq);
+  checkSquares[BISHOP] = pos.attacks_from<BISHOP>(ksq);
+  checkSquares[ROOK]   = pos.attacks_from<ROOK>(ksq);
+  checkSquares[QUEEN]  = checkSquares[BISHOP] | checkSquares[ROOK];
+  checkSquares[KING]   = 0;
+}
+
+
+/// operator<<(Position) returns an ASCII representation of the position
+
+std::ostream& operator<<(std::ostream& os, const Position& pos) {
+
+  os << "\n +---+---+---+---+---+---+---+---+\n";
+
+  for (Rank r = RANK_8; r >= RANK_1; --r)
+  {
+      for (File f = FILE_A; f <= FILE_H; ++f)
+          os << " | " << PieceToChar[pos.piece_on(make_square(f, r))];
+
+      os << " |\n +---+---+---+---+---+---+---+---+\n";
+  }
+
+  os << "\nFen: " << pos.fen() << "\nKey: " << std::hex << std::uppercase
+     << std::setfill('0') << std::setw(16) << pos.st->key << std::dec << "\nCheckers: ";
+
+  for (Bitboard b = pos.checkers(); b; )
+      os << UCI::square(pop_lsb(&b)) << " ";
+
+  return os;
 }
 
 
 /// Position::init() initializes at startup the various arrays used to compute
-/// hash keys and the piece square tables. The latter is a two-step operation:
-/// Firstly, the white halves of the tables are copied from PSQT[] tables.
-/// Secondly, the black halves of the tables are initialized by flipping and
-/// changing the sign of the white scores.
+/// hash keys.
 
 void Position::init() {
 
-  RKISS rk;
+  PRNG rng(1070372);
 
   for (Color c = WHITE; c <= BLACK; ++c)
       for (PieceType pt = PAWN; pt <= KING; ++pt)
           for (Square s = SQ_A1; s <= SQ_H8; ++s)
-              Zobrist::psq[c][pt][s] = rk.rand<Key>();
+              Zobrist::psq[c][pt][s] = rng.rand<Key>();
 
   for (File f = FILE_A; f <= FILE_H; ++f)
-      Zobrist::enpassant[f] = rk.rand<Key>();
+      Zobrist::enpassant[f] = rng.rand<Key>();
 
-  for (int cf = NO_CASTLING; cf <= ANY_CASTLING; ++cf)
+  for (int cr = NO_CASTLING; cr <= ANY_CASTLING; ++cr)
   {
-      Bitboard b = cf;
+      Zobrist::castling[cr] = 0;
+      Bitboard b = cr;
       while (b)
       {
           Key k = Zobrist::castling[1ULL << pop_lsb(&b)];
-          Zobrist::castling[cf] ^= k ? k : rk.rand<Key>();
+          Zobrist::castling[cr] ^= k ? k : rng.rand<Key>();
       }
   }
 
-  Zobrist::side = rk.rand<Key>();
-  Zobrist::exclusion  = rk.rand<Key>();
-
-  for (PieceType pt = PAWN; pt <= KING; ++pt)
-  {
-      PieceValue[MG][make_piece(BLACK, pt)] = PieceValue[MG][pt];
-      PieceValue[EG][make_piece(BLACK, pt)] = PieceValue[EG][pt];
-
-      Score v = make_score(PieceValue[MG][pt], PieceValue[EG][pt]);
-
-      for (Square s = SQ_A1; s <= SQ_H8; ++s)
-      {
-         psq[WHITE][pt][ s] =  (v + PSQT[pt][s]);
-         psq[BLACK][pt][~s] = -(v + PSQT[pt][s]);
-      }
-  }
+  Zobrist::side = rng.rand<Key>();
+  Zobrist::exclusion  = rng.rand<Key>();
 }
 
 
-/// Position::operator=() creates a copy of 'pos'. We want the new born Position
-/// object to not depend on any external data so we detach state pointer from
-/// the source one.
+/// Position::operator=() creates a copy of 'pos' but detaching the state pointer
+/// from the source to be self-consistent and not depending on any external data.
 
 Position& Position::operator=(const Position& pos) {
 
   std::memcpy(this, &pos, sizeof(Position));
-  startState = *st;
+  std::memcpy(&startState, st, sizeof(StateInfo));
   st = &startState;
   nodes = 0;
 
@@ -171,6 +174,21 @@ Position& Position::operator=(const Position& pos) {
 }
 
 
+/// Position::clear() erases the position object to a pristine state, with an
+/// empty board, white to move, and no castling rights.
+
+void Position::clear() {
+
+  std::memset(this, 0, sizeof(Position));
+  startState.epSquare = SQ_NONE;
+  st = &startState;
+
+  for (int i = 0; i < PIECE_TYPE_NB; ++i)
+      for (int j = 0; j < 16; ++j)
+          pieceList[WHITE][i][j] = pieceList[BLACK][i][j] = SQ_NONE;
+}
+
+
 /// Position::set() initializes the position object with the given FEN string.
 /// This function is not very robust - make sure that input FENs are correct,
 /// this is assumed to be the responsibility of the GUI.
@@ -210,7 +228,7 @@ void Position::set(const string& fenStr, bool isChess960, Thread* th) {
       incremented after Black's move.
 */
 
-  char col, row, token;
+  unsigned char col, row, token;
   size_t idx;
   Square sq = SQ_A8;
   std::istringstream ss(fenStr);
@@ -229,7 +247,7 @@ void Position::set(const string& fenStr, bool isChess960, Thread* th) {
 
       else if ((idx = PieceToChar.find(token)) != string::npos)
       {
-          put_piece(sq, color_of(Piece(idx)), type_of(Piece(idx)));
+          put_piece(color_of(Piece(idx)), type_of(Piece(idx)), sq);
           ++sq;
       }
   }
@@ -248,29 +266,30 @@ void Position::set(const string& fenStr, bool isChess960, Thread* th) {
   {
       Square rsq;
       Color c = islower(token) ? BLACK : WHITE;
+      Piece rook = make_piece(c, ROOK);
 
       token = char(toupper(token));
 
       if (token == 'K')
-          for (rsq = relative_square(c, SQ_H1); type_of(piece_on(rsq)) != ROOK; --rsq) {}
+          for (rsq = relative_square(c, SQ_H1); piece_on(rsq) != rook; --rsq) {}
 
       else if (token == 'Q')
-          for (rsq = relative_square(c, SQ_A1); type_of(piece_on(rsq)) != ROOK; ++rsq) {}
+          for (rsq = relative_square(c, SQ_A1); piece_on(rsq) != rook; ++rsq) {}
 
       else if (token >= 'A' && token <= 'H')
-          rsq = File(token - 'A') | relative_rank(c, RANK_1);
+          rsq = make_square(File(token - 'A'), relative_rank(c, RANK_1));
 
       else
           continue;
 
-      set_castling_flag(c, rsq);
+      set_castling_right(c, rsq);
   }
 
   // 4. En passant square. Ignore if no pawn capture is possible
   if (   ((ss >> col) && (col >= 'a' && col <= 'h'))
       && ((ss >> row) && (row == '3' || row == '6')))
   {
-      st->epSquare = File(col - 'a') | Rank(row - '1');
+      st->epSquare = make_square(File(col - 'a'), Rank(row - '1'));
 
       if (!(attackers_to(st->epSquare) & pieces(sideToMove, PAWN)))
           st->epSquare = SQ_NONE;
@@ -281,46 +300,86 @@ void Position::set(const string& fenStr, bool isChess960, Thread* th) {
 
   // Convert from fullmove starting from 1 to ply starting from 0,
   // handle also common incorrect FEN with fullmove = 0.
-  gamePly = std::max(2 * (gamePly - 1), 0) + int(sideToMove == BLACK);
-
-  st->key = compute_key();
-  st->pawnKey = compute_pawn_key();
-  st->materialKey = compute_material_key();
-  st->psq = compute_psq_score();
-  st->npMaterial[WHITE] = compute_non_pawn_material(WHITE);
-  st->npMaterial[BLACK] = compute_non_pawn_material(BLACK);
-  st->checkersBB = attackers_to(king_square(sideToMove)) & pieces(~sideToMove);
+  gamePly = std::max(2 * (gamePly - 1), 0) + (sideToMove == BLACK);
+
   chess960 = isChess960;
   thisThread = th;
+  set_state(st);
 
   assert(pos_is_ok());
 }
 
 
-/// Position::set_castling_flag() is a helper function used to set castling
-/// flags given the corresponding color and the rook starting square.
+/// Position::set_castling_right() is a helper function used to set castling
+/// rights given the corresponding color and the rook starting square.
 
-void Position::set_castling_flag(Color c, Square rfrom) {
+void Position::set_castling_right(Color c, Square rfrom) {
 
   Square kfrom = king_square(c);
   CastlingSide cs = kfrom < rfrom ? KING_SIDE : QUEEN_SIDE;
-  CastlingFlag cf = make_castling_flag(c, cs);
+  CastlingRight cr = (c | cs);
 
-  st->castlingFlags |= cf;
-  castlingFlagsMask[kfrom] |= cf;
-  castlingFlagsMask[rfrom] |= cf;
-  castlingRookSquare[c][cs] = rfrom;
+  st->castlingRights |= cr;
+  castlingRightsMask[kfrom] |= cr;
+  castlingRightsMask[rfrom] |= cr;
+  castlingRookSquare[cr] = rfrom;
 
   Square kto = relative_square(c, cs == KING_SIDE ? SQ_G1 : SQ_C1);
   Square rto = relative_square(c, cs == KING_SIDE ? SQ_F1 : SQ_D1);
 
   for (Square s = std::min(rfrom, rto); s <= std::max(rfrom, rto); ++s)
       if (s != kfrom && s != rfrom)
-          castlingPath[c][cs] |= s;
+          castlingPath[cr] |= s;
 
   for (Square s = std::min(kfrom, kto); s <= std::max(kfrom, kto); ++s)
       if (s != kfrom && s != rfrom)
-          castlingPath[c][cs] |= s;
+          castlingPath[cr] |= s;
+}
+
+
+/// Position::set_state() computes the hash keys of the position, and other
+/// data that once computed is updated incrementally as moves are made.
+/// The function is only used when a new position is set up, and to verify
+/// the correctness of the StateInfo data when running in debug mode.
+
+void Position::set_state(StateInfo* si) const {
+
+  si->key = si->pawnKey = si->materialKey = 0;
+  si->nonPawnMaterial[WHITE] = si->nonPawnMaterial[BLACK] = VALUE_ZERO;
+  si->psq = SCORE_ZERO;
+
+  si->checkersBB = attackers_to(king_square(sideToMove)) & pieces(~sideToMove);
+
+  for (Bitboard b = pieces(); b; )
+  {
+      Square s = pop_lsb(&b);
+      Piece pc = piece_on(s);
+      si->key ^= Zobrist::psq[color_of(pc)][type_of(pc)][s];
+      si->psq += PSQT::psq[color_of(pc)][type_of(pc)][s];
+  }
+
+  if (si->epSquare != SQ_NONE)
+      si->key ^= Zobrist::enpassant[file_of(si->epSquare)];
+
+  if (sideToMove == BLACK)
+      si->key ^= Zobrist::side;
+
+  si->key ^= Zobrist::castling[si->castlingRights];
+
+  for (Bitboard b = pieces(PAWN); b; )
+  {
+      Square s = pop_lsb(&b);
+      si->pawnKey ^= Zobrist::psq[color_of(piece_on(s))][PAWN][s];
+  }
+
+  for (Color c = WHITE; c <= BLACK; ++c)
+      for (PieceType pt = PAWN; pt <= KING; ++pt)
+          for (int cnt = 0; cnt < pieceCount[c][pt]; ++cnt)
+              si->materialKey ^= Zobrist::psq[c][pt][cnt];
+
+  for (Color c = WHITE; c <= BLACK; ++c)
+      for (PieceType pt = KNIGHT; pt <= QUEEN; ++pt)
+          si->nonPawnMaterial[c] += pieceCount[c][pt] * PieceValue[MG][pt];
 }
 
 
@@ -332,82 +391,58 @@ const string Position::fen() const {
   int emptyCnt;
   std::ostringstream ss;
 
-  for (Rank rank = RANK_8; rank >= RANK_1; --rank)
+  for (Rank r = RANK_8; r >= RANK_1; --r)
   {
-      for (File file = FILE_A; file <= FILE_H; ++file)
+      for (File f = FILE_A; f <= FILE_H; ++f)
       {
-          for (emptyCnt = 0; file <= FILE_H && empty(file | rank); ++file)
+          for (emptyCnt = 0; f <= FILE_H && empty(make_square(f, r)); ++f)
               ++emptyCnt;
 
           if (emptyCnt)
               ss << emptyCnt;
 
-          if (file <= FILE_H)
-              ss << PieceToChar[piece_on(file | rank)];
+          if (f <= FILE_H)
+              ss << PieceToChar[piece_on(make_square(f, r))];
       }
 
-      if (rank > RANK_1)
+      if (r > RANK_1)
           ss << '/';
   }
 
   ss << (sideToMove == WHITE ? " w " : " b ");
 
   if (can_castle(WHITE_OO))
-      ss << (chess960 ? file_to_char(file_of(castling_rook_square(WHITE,  KING_SIDE)), false) : 'K');
+      ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE |  KING_SIDE))) : 'K');
 
   if (can_castle(WHITE_OOO))
-      ss << (chess960 ? file_to_char(file_of(castling_rook_square(WHITE, QUEEN_SIDE)), false) : 'Q');
+      ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | QUEEN_SIDE))) : 'Q');
 
   if (can_castle(BLACK_OO))
-      ss << (chess960 ? file_to_char(file_of(castling_rook_square(BLACK,  KING_SIDE)),  true) : 'k');
+      ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK |  KING_SIDE))) : 'k');
 
   if (can_castle(BLACK_OOO))
-      ss << (chess960 ? file_to_char(file_of(castling_rook_square(BLACK, QUEEN_SIDE)),  true) : 'q');
+      ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | QUEEN_SIDE))) : 'q');
 
   if (!can_castle(WHITE) && !can_castle(BLACK))
       ss << '-';
 
-  ss << (ep_square() == SQ_NONE ? " - " : " " + square_to_string(ep_square()) + " ")
-     << st->rule50 << " " << 1 + (gamePly - int(sideToMove == BLACK)) / 2;
+  ss << (ep_square() == SQ_NONE ? " - " : " " + UCI::square(ep_square()) + " ")
+     << st->rule50 << " " << 1 + (gamePly - (sideToMove == BLACK)) / 2;
 
   return ss.str();
 }
 
 
-/// Position::pretty() returns an ASCII representation of the position to be
-/// printed to the standard output together with the move's san notation.
+/// Position::game_phase() calculates the game phase interpolating total non-pawn
+/// material between endgame and midgame limits.
 
-const string Position::pretty(Move move) const {
+Phase Position::game_phase() const {
 
-  const string dottedLine =            "\n+---+---+---+---+---+---+---+---+";
-  const string twoRows =  dottedLine + "\n|   | . |   | . |   | . |   | . |"
-                        + dottedLine + "\n| . |   | . |   | . |   | . |   |";
+  Value npm = st->nonPawnMaterial[WHITE] + st->nonPawnMaterial[BLACK];
 
-  string brd = twoRows + twoRows + twoRows + twoRows + dottedLine;
+  npm = std::max(EndgameLimit, std::min(npm, MidgameLimit));
 
-  for (Bitboard b = pieces(); b; )
-  {
-      Square s = pop_lsb(&b);
-      brd[513 - 68 * rank_of(s) + 4 * file_of(s)] = PieceToChar[piece_on(s)];
-  }
-
-  std::ostringstream ss;
-
-  if (move)
-      ss << "\nMove: " << (sideToMove == BLACK ? ".." : "")
-         << move_to_san(*const_cast<Position*>(this), move);
-
-  ss << brd << "\nFen: " << fen() << "\nKey: " << std::hex << std::uppercase
-     << std::setfill('0') << std::setw(16) << st->key << "\nCheckers: ";
-
-  for (Bitboard b = checkers(); b; )
-      ss << square_to_string(pop_lsb(&b)) << " ";
-
-  ss << "\nLegal moves: ";
-  for (MoveList<LEGAL> it(*this); *it; ++it)
-      ss << move_to_san(*const_cast<Position*>(this), *it) << " ";
-
-  return ss.str();
+  return Phase(((npm - EndgameLimit) * PHASE_MIDGAME) / (MidgameLimit - EndgameLimit));
 }
 
 
@@ -439,16 +474,16 @@ Bitboard Position::check_blockers(Color c, Color kingColor) const {
 
 
 /// Position::attackers_to() computes a bitboard of all pieces which attack a
-/// given square. Slider attacks use the occ bitboard to indicate occupancy.
+/// given square. Slider attacks use the occupied bitboard to indicate occupancy.
 
-Bitboard Position::attackers_to(Square s, Bitboard occ) const {
+Bitboard Position::attackers_to(Square s, Bitboard occupied) const {
 
-  return  (attacks_from<PAWN>(s, BLACK) & pieces(WHITE, PAWN))
-        | (attacks_from<PAWN>(s, WHITE) & pieces(BLACK, PAWN))
-        | (attacks_from<KNIGHT>(s)      & pieces(KNIGHT))
-        | (attacks_bb<ROOK>(s, occ)     & pieces(ROOK, QUEEN))
-        | (attacks_bb<BISHOP>(s, occ)   & pieces(BISHOP, QUEEN))
-        | (attacks_from<KING>(s)        & pieces(KING));
+  return  (attacks_from<PAWN>(s, BLACK)    & pieces(WHITE, PAWN))
+        | (attacks_from<PAWN>(s, WHITE)    & pieces(BLACK, PAWN))
+        | (attacks_from<KNIGHT>(s)         & pieces(KNIGHT))
+        | (attacks_bb<ROOK  >(s, occupied) & pieces(ROOK,   QUEEN))
+        | (attacks_bb<BISHOP>(s, occupied) & pieces(BISHOP, QUEEN))
+        | (attacks_from<KING>(s)           & pieces(KING));
 }
 
 
@@ -470,19 +505,18 @@ bool Position::legal(Move m, Bitboard pinned) const {
   // the move is made.
   if (type_of(m) == ENPASSANT)
   {
-      Color them = ~us;
-      Square to = to_sq(m);
-      Square capsq = to + pawn_push(them);
       Square ksq = king_square(us);
-      Bitboard b = (pieces() ^ from ^ capsq) | to;
+      Square to = to_sq(m);
+      Square capsq = to - pawn_push(us);
+      Bitboard occupied = (pieces() ^ from ^ capsq) | to;
 
       assert(to == ep_square());
       assert(moved_piece(m) == make_piece(us, PAWN));
-      assert(piece_on(capsq) == make_piece(them, PAWN));
+      assert(piece_on(capsq) == make_piece(~us, PAWN));
       assert(piece_on(to) == NO_PIECE);
 
-      return   !(attacks_bb<  ROOK>(ksq, b) & pieces(them, QUEEN, ROOK))
-            && !(attacks_bb<BISHOP>(ksq, b) & pieces(them, QUEEN, BISHOP));
+      return   !(attacks_bb<  ROOK>(ksq, occupied) & pieces(~us, QUEEN, ROOK))
+            && !(attacks_bb<BISHOP>(ksq, occupied) & pieces(~us, QUEEN, BISHOP));
   }
 
   // If the moving piece is a king, check whether the destination
@@ -515,7 +549,7 @@ bool Position::pseudo_legal(const Move m) const {
       return MoveList<LEGAL>(*this).contains(m);
 
   // Is not a promotion, so promotion piece must be empty
-  if (promotion_type(m) - 2 != NO_PIECE_TYPE)
+  if (promotion_type(m) - KNIGHT != NO_PIECE_TYPE)
       return false;
 
   // If the 'from' square is not occupied by a piece belonging to the side to
@@ -530,71 +564,25 @@ bool Position::pseudo_legal(const Move m) const {
   // Handle the special case of a pawn move
   if (type_of(pc) == PAWN)
   {
-      // Move direction must be compatible with pawn color
-      int direction = to - from;
-      if ((us == WHITE) != (direction > 0))
-          return false;
-
       // We have already handled promotion moves, so destination
       // cannot be on the 8th/1st rank.
-      if (rank_of(to) == RANK_8 || rank_of(to) == RANK_1)
-          return false;
-
-      // Proceed according to the square delta between the origin and
-      // destination squares.
-      switch (direction)
-      {
-      case DELTA_NW:
-      case DELTA_NE:
-      case DELTA_SW:
-      case DELTA_SE:
-      // Capture. The destination square must be occupied by an enemy
-      // piece (en passant captures was handled earlier).
-      if (piece_on(to) == NO_PIECE || color_of(piece_on(to)) != ~us)
+      if (rank_of(to) == relative_rank(us, RANK_8))
           return false;
 
-      // From and to files must be one file apart, avoids a7h5
-      if (abs(file_of(from) - file_of(to)) != 1)
+      if (   !(attacks_from<PAWN>(from, us) & pieces(~us) & to) // Not a capture
+          && !((from + pawn_push(us) == to) && empty(to))       // Not a single push
+          && !(   (from + 2 * pawn_push(us) == to)              // Not a double push
+               && (rank_of(from) == relative_rank(us, RANK_2))
+               && empty(to)
+               && empty(to - pawn_push(us))))
           return false;
-      break;
-
-      case DELTA_N:
-      case DELTA_S:
-      // Pawn push. The destination square must be empty.
-      if (!empty(to))
-          return false;
-      break;
-
-      case DELTA_NN:
-      // Double white pawn push. The destination square must be on the fourth
-      // rank, and both the destination square and the square between the
-      // source and destination squares must be empty.
-      if (    rank_of(to) != RANK_4
-          || !empty(to)
-          || !empty(from + DELTA_N))
-          return false;
-      break;
-
-      case DELTA_SS:
-      // Double black pawn push. The destination square must be on the fifth
-      // rank, and both the destination square and the square between the
-      // source and destination squares must be empty.
-      if (    rank_of(to) != RANK_5
-          || !empty(to)
-          || !empty(from + DELTA_S))
-          return false;
-      break;
-
-      default:
-          return false;
-      }
   }
   else if (!(attacks_from(pc, from) & to))
       return false;
 
   // Evasions generator already takes care to avoid some kind of illegal moves
-  // and pl_move_is_legal() relies on this. We therefore have to take care that
-  // the same kind of moves are filtered out here.
+  // and legal() relies on this. We therefore have to take care that the same
+  // kind of moves are filtered out here.
   if (checkers())
   {
       if (type_of(pc) != KING)
@@ -627,24 +615,22 @@ bool Position::gives_check(Move m, const CheckInfo& ci) const {
 
   Square from = from_sq(m);
   Square to = to_sq(m);
-  PieceType pt = type_of(piece_on(from));
 
   // Is there a direct check?
-  if (ci.checkSq[pt] & to)
+  if (ci.checkSquares[type_of(piece_on(from))] & to)
       return true;
 
   // Is there a discovered check?
-  if (   unlikely(ci.dcCandidates)
+  if (    ci.dcCandidates
       && (ci.dcCandidates & from)
       && !aligned(from, to, ci.ksq))
       return true;
 
-  // Can we skip the ugly special cases?
-  if (type_of(m) == NORMAL)
-      return false;
-
   switch (type_of(m))
   {
+  case NORMAL:
+      return false;
+
   case PROMOTION:
       return attacks_bb(Piece(promotion_type(m)), to, pieces() ^ from) & ci.ksq;
 
@@ -654,7 +640,7 @@ bool Position::gives_check(Move m, const CheckInfo& ci) const {
   // the captured pawn.
   case ENPASSANT:
   {
-      Square capsq = file_of(to) | rank_of(from);
+      Square capsq = make_square(file_of(to), rank_of(from));
       Bitboard b = (pieces() ^ from ^ capsq) | to;
 
       return  (attacks_bb<  ROOK>(ci.ksq, b) & pieces(sideToMove, QUEEN, ROOK))
@@ -681,31 +667,21 @@ bool Position::gives_check(Move m, const CheckInfo& ci) const {
 /// to a StateInfo object. The move is assumed to be legal. Pseudo-legal
 /// moves should be filtered out before this function is called.
 
-void Position::do_move(Move m, StateInfo& newSt) {
-
-  CheckInfo ci(*this);
-  do_move(m, newSt, ci, gives_check(m, ci));
-}
-
-void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveIsCheck) {
+void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
 
   assert(is_ok(m));
   assert(&newSt != st);
 
   ++nodes;
-  Key k = st->key;
+  Key k = st->key ^ Zobrist::side;
 
   // Copy some fields of the old state to our new StateInfo object except the
   // ones which are going to be recalculated from scratch anyway and then switch
   // our state pointer to point to the new (ready to be updated) state.
-  std::memcpy(&newSt, st, StateCopySize64 * sizeof(uint64_t));
-
+  std::memcpy(&newSt, st, offsetof(StateInfo, key));
   newSt.previous = st;
   st = &newSt;
 
-  // Update side to move
-  k ^= Zobrist::side;
-
   // Increment ply counters. In particular, rule50 will be reset to zero later on
   // in case of a capture or a pawn move.
   ++gamePly;
@@ -716,27 +692,22 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
   Color them = ~us;
   Square from = from_sq(m);
   Square to = to_sq(m);
-  Piece pc = piece_on(from);
-  PieceType pt = type_of(pc);
+  PieceType pt = type_of(piece_on(from));
   PieceType captured = type_of(m) == ENPASSANT ? PAWN : type_of(piece_on(to));
 
-  assert(color_of(pc) == us);
-  assert(piece_on(to) == NO_PIECE || color_of(piece_on(to)) == them || type_of(m) == CASTLING);
+  assert(color_of(piece_on(from)) == us);
+  assert(piece_on(to) == NO_PIECE || color_of(piece_on(to)) == (type_of(m) != CASTLING ? them : us));
   assert(captured != KING);
 
   if (type_of(m) == CASTLING)
   {
-      assert(pc == make_piece(us, KING));
-
-      bool kingSide = to > from;
-      Square rfrom = to; // Castling is encoded as "king captures friendly rook"
-      Square rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1);
-      to = relative_square(us, kingSide ? SQ_G1 : SQ_C1);
-      captured = NO_PIECE_TYPE;
+      assert(pt == KING);
 
-      do_castling(from, to, rfrom, rto);
+      Square rfrom, rto;
+      do_castling<true>(us, from, to, rfrom, rto);
 
-      st->psq += psq[us][ROOK][rto] - psq[us][ROOK][rfrom];
+      captured = NO_PIECE_TYPE;
+      st->psq += PSQT::psq[us][ROOK][rto] - PSQT::psq[us][ROOK][rfrom];
       k ^= Zobrist::psq[us][ROOK][rfrom] ^ Zobrist::psq[us][ROOK][rto];
   }
 
@@ -750,7 +721,7 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
       {
           if (type_of(m) == ENPASSANT)
           {
-              capsq += pawn_push(them);
+              capsq -= pawn_push(us);
 
               assert(pt == PAWN);
               assert(to == st->epSquare);
@@ -758,24 +729,24 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
               assert(piece_on(to) == NO_PIECE);
               assert(piece_on(capsq) == make_piece(them, PAWN));
 
-              board[capsq] = NO_PIECE;
+              board[capsq] = NO_PIECE; // Not done by remove_piece()
           }
 
           st->pawnKey ^= Zobrist::psq[them][PAWN][capsq];
       }
       else
-          st->npMaterial[them] -= PieceValue[MG][captured];
+          st->nonPawnMaterial[them] -= PieceValue[MG][captured];
 
       // Update board and piece lists
-      remove_piece(capsq, them, captured);
+      remove_piece(them, captured, capsq);
 
       // Update material hash key and prefetch access to materialTable
       k ^= Zobrist::psq[them][captured][capsq];
       st->materialKey ^= Zobrist::psq[them][captured][pieceCount[them][captured]];
-      prefetch((char*)thisThread->materialTable[st->materialKey]);
+      prefetch(thisThread->materialTable[st->materialKey]);
 
       // Update incremental scores
-      st->psq -= psq[them][captured][capsq];
+      st->psq -= PSQT::psq[them][captured][capsq];
 
       // Reset rule 50 counter
       st->rule50 = 0;
@@ -791,41 +762,38 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
       st->epSquare = SQ_NONE;
   }
 
-  // Update castling flags if needed
-  if (st->castlingFlags && (castlingFlagsMask[from] | castlingFlagsMask[to]))
+  // Update castling rights if needed
+  if (st->castlingRights && (castlingRightsMask[from] | castlingRightsMask[to]))
   {
-      int cf = castlingFlagsMask[from] | castlingFlagsMask[to];
-      k ^= Zobrist::castling[st->castlingFlags & cf];
-      st->castlingFlags &= ~cf;
+      int cr = castlingRightsMask[from] | castlingRightsMask[to];
+      k ^= Zobrist::castling[st->castlingRights & cr];
+      st->castlingRights &= ~cr;
   }
 
-  // Prefetch TT access as soon as we know the new hash key
-  prefetch((char*)TT.first_entry(k));
-
   // Move the piece. The tricky Chess960 castling is handled earlier
   if (type_of(m) != CASTLING)
-      move_piece(from, to, us, pt);
+      move_piece(us, pt, from, to);
 
   // If the moving piece is a pawn do some special extra work
   if (pt == PAWN)
   {
       // Set en-passant square if the moved pawn can be captured
       if (   (int(to) ^ int(from)) == 16
-          && (attacks_from<PAWN>(from + pawn_push(us), us) & pieces(them, PAWN)))
+          && (attacks_from<PAWN>(to - pawn_push(us), us) & pieces(them, PAWN)))
       {
-          st->epSquare = Square((from + to) / 2);
+          st->epSquare = (from + to) / 2;
           k ^= Zobrist::enpassant[file_of(st->epSquare)];
       }
 
-      if (type_of(m) == PROMOTION)
+      else if (type_of(m) == PROMOTION)
       {
           PieceType promotion = promotion_type(m);
 
           assert(relative_rank(us, to) == RANK_8);
           assert(promotion >= KNIGHT && promotion <= QUEEN);
 
-          remove_piece(to, us, PAWN);
-          put_piece(to, us, promotion);
+          remove_piece(us, PAWN, to);
+          put_piece(us, promotion, to);
 
           // Update hash keys
           k ^= Zobrist::psq[us][PAWN][to] ^ Zobrist::psq[us][promotion][to];
@@ -834,22 +802,22 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
                             ^ Zobrist::psq[us][PAWN][pieceCount[us][PAWN]];
 
           // Update incremental score
-          st->psq += psq[us][promotion][to] - psq[us][PAWN][to];
+          st->psq += PSQT::psq[us][promotion][to] - PSQT::psq[us][PAWN][to];
 
           // Update material
-          st->npMaterial[us] += PieceValue[MG][promotion];
+          st->nonPawnMaterial[us] += PieceValue[MG][promotion];
       }
 
       // Update pawn hash key and prefetch access to pawnsTable
       st->pawnKey ^= Zobrist::psq[us][PAWN][from] ^ Zobrist::psq[us][PAWN][to];
-      prefetch((char*)thisThread->pawnsTable[st->pawnKey]);
+      prefetch(thisThread->pawnsTable[st->pawnKey]);
 
       // Reset rule 50 draw counter
       st->rule50 = 0;
   }
 
   // Update incremental scores
-  st->psq += psq[us][pt][to] - psq[us][pt][from];
+  st->psq += PSQT::psq[us][pt][to] - PSQT::psq[us][pt][from];
 
   // Set capture piece
   st->capturedType = captured;
@@ -857,30 +825,8 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
   // Update the key with the final value
   st->key = k;
 
-  // Update checkers bitboard: piece must be already moved
-  st->checkersBB = 0;
-
-  if (moveIsCheck)
-  {
-      if (type_of(m) != NORMAL)
-          st->checkersBB = attackers_to(king_square(them)) & pieces(us);
-      else
-      {
-          // Direct checks
-          if (ci.checkSq[pt] & to)
-              st->checkersBB |= to;
-
-          // Discovered checks
-          if (ci.dcCandidates && (ci.dcCandidates & from))
-          {
-              if (pt != ROOK)
-                  st->checkersBB |= attacks_from<ROOK>(king_square(them)) & pieces(us, QUEEN, ROOK);
-
-              if (pt != BISHOP)
-                  st->checkersBB |= attacks_from<BISHOP>(king_square(them)) & pieces(us, QUEEN, BISHOP);
-          }
-      }
-  }
+  // Calculate checkers bitboard (if move gives check)
+  st->checkersBB = givesCheck ? attackers_to(king_square(them)) & pieces(us) : 0;
 
   sideToMove = ~sideToMove;
 
@@ -898,56 +844,50 @@ void Position::undo_move(Move m) {
   sideToMove = ~sideToMove;
 
   Color us = sideToMove;
-  Color them = ~us;
   Square from = from_sq(m);
   Square to = to_sq(m);
   PieceType pt = type_of(piece_on(to));
-  PieceType captured = st->capturedType;
 
   assert(empty(from) || type_of(m) == CASTLING);
-  assert(captured != KING);
+  assert(st->capturedType != KING);
 
   if (type_of(m) == PROMOTION)
   {
-      PieceType promotion = promotion_type(m);
-
-      assert(promotion == pt);
       assert(relative_rank(us, to) == RANK_8);
-      assert(promotion >= KNIGHT && promotion <= QUEEN);
+      assert(pt == promotion_type(m));
+      assert(pt >= KNIGHT && pt <= QUEEN);
 
-      remove_piece(to, us, promotion);
-      put_piece(to, us, PAWN);
+      remove_piece(us, pt, to);
+      put_piece(us, PAWN, to);
       pt = PAWN;
   }
 
   if (type_of(m) == CASTLING)
   {
-      bool kingSide = to > from;
-      Square rfrom = to; // Castling is encoded as "king captures friendly rook"
-      Square rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1);
-      to = relative_square(us, kingSide ? SQ_G1 : SQ_C1);
-      captured = NO_PIECE_TYPE;
-      pt = KING;
-      do_castling(to, from, rto, rfrom);
+      Square rfrom, rto;
+      do_castling<false>(us, from, to, rfrom, rto);
   }
   else
-      move_piece(to, from, us, pt); // Put the piece back at the source square
-
-  if (captured)
   {
-      Square capsq = to;
+      move_piece(us, pt, to, from); // Put the piece back at the source square
 
-      if (type_of(m) == ENPASSANT)
+      if (st->capturedType)
       {
-          capsq -= pawn_push(us);
+          Square capsq = to;
 
-          assert(pt == PAWN);
-          assert(to == st->previous->epSquare);
-          assert(relative_rank(us, to) == RANK_6);
-          assert(piece_on(capsq) == NO_PIECE);
-      }
+          if (type_of(m) == ENPASSANT)
+          {
+              capsq -= pawn_push(us);
 
-      put_piece(capsq, them, captured); // Restore the captured piece
+              assert(pt == PAWN);
+              assert(to == st->previous->epSquare);
+              assert(relative_rank(us, to) == RANK_6);
+              assert(piece_on(capsq) == NO_PIECE);
+              assert(st->capturedType == PAWN);
+          }
+
+          put_piece(~us, st->capturedType, capsq); // Restore the captured piece
+      }
   }
 
   // Finally point our state pointer back to the previous state
@@ -960,15 +900,20 @@ void Position::undo_move(Move m) {
 
 /// Position::do_castling() is a helper used to do/undo a castling move. This
 /// is a bit tricky, especially in Chess960.
+template<bool Do>
+void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Square& rto) {
 
-void Position::do_castling(Square kfrom, Square kto, Square rfrom, Square rto) {
+  bool kingSide = to > from;
+  rfrom = to; // Castling is encoded as "king captures friendly rook"
+  rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1);
+  to = relative_square(us, kingSide ? SQ_G1 : SQ_C1);
 
   // Remove both pieces first since squares could overlap in Chess960
-  remove_piece(kfrom, sideToMove, KING);
-  remove_piece(rfrom, sideToMove, ROOK);
-  board[kfrom] = board[rfrom] = NO_PIECE; // Since remove_piece doesn't do it for us
-  put_piece(kto, sideToMove, KING);
-  put_piece(rto, sideToMove, ROOK);
+  remove_piece(us, KING, Do ? from : to);
+  remove_piece(us, ROOK, Do ? rfrom : rto);
+  board[Do ? from : to] = board[Do ? rfrom : rto] = NO_PIECE; // Since remove_piece doesn't do it for us
+  put_piece(us, KING, Do ? to : from);
+  put_piece(us, ROOK, Do ? rto : rfrom);
 }
 
 
@@ -978,9 +923,9 @@ void Position::do_castling(Square kfrom, Square kto, Square rfrom, Square rto) {
 void Position::do_null_move(StateInfo& newSt) {
 
   assert(!checkers());
+  assert(&newSt != st);
 
-  std::memcpy(&newSt, st, sizeof(StateInfo)); // Fully copy here
-
+  std::memcpy(&newSt, st, sizeof(StateInfo));
   newSt.previous = st;
   st = &newSt;
 
@@ -991,7 +936,7 @@ void Position::do_null_move(StateInfo& newSt) {
   }
 
   st->key ^= Zobrist::side;
-  prefetch((char*)TT.first_entry(st->key));
+  prefetch(TT.first_entry(st->key));
 
   ++st->rule50;
   st->pliesFromNull = 0;
@@ -1010,10 +955,30 @@ void Position::undo_null_move() {
 }
 
 
+/// Position::key_after() computes the new hash key after the given move. Needed
+/// for speculative prefetch. It doesn't recognize special moves like castling,
+/// en-passant and promotions.
+
+Key Position::key_after(Move m) const {
+
+  Color us = sideToMove;
+  Square from = from_sq(m);
+  Square to = to_sq(m);
+  PieceType pt = type_of(piece_on(from));
+  PieceType captured = type_of(piece_on(to));
+  Key k = st->key ^ Zobrist::side;
+
+  if (captured)
+      k ^= Zobrist::psq[~us][captured][to];
+
+  return k ^ Zobrist::psq[us][pt][to] ^ Zobrist::psq[us][pt][from];
+}
+
+
 /// Position::see() is a static exchange evaluator: It tries to estimate the
 /// material gain or loss resulting from a move.
 
-int Position::see_sign(Move m) const {
+Value Position::see_sign(Move m) const {
 
   assert(is_ok(m));
 
@@ -1021,16 +986,17 @@ int Position::see_sign(Move m) const {
   // is not less then capturing one. Note that king moves always return
   // here because king midgame value is set to 0.
   if (PieceValue[MG][moved_piece(m)] <= PieceValue[MG][piece_on(to_sq(m))])
-      return 1;
+      return VALUE_KNOWN_WIN;
 
   return see(m);
 }
 
-int Position::see(Move m) const {
+Value Position::see(Move m) const {
 
   Square from, to;
   Bitboard occupied, attackers, stmAttackers;
-  int swapList[32], slIndex = 1;
+  Value swapList[32];
+  int slIndex = 1;
   PieceType captured;
   Color stm;
 
@@ -1042,11 +1008,11 @@ int Position::see(Move m) const {
   stm = color_of(piece_on(from));
   occupied = pieces() ^ from;
 
-  // Castling moves are implemented as king capturing the rook so cannot be
-  // handled correctly. Simply return 0 that is always the correct value
+  // Castling moves are implemented as king capturing the rook so cannot
+  // be handled correctly. Simply return VALUE_ZERO that is always correct
   // unless in the rare case the rook ends up under attack.
   if (type_of(m) == CASTLING)
-      return 0;
+      return VALUE_ZERO;
 
   if (type_of(m) == ENPASSANT)
   {
@@ -1080,21 +1046,11 @@ int Position::see(Move m) const {
 
       // Locate and remove the next least valuable attacker
       captured = min_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers);
-
-      // Stop before processing a king capture
-      if (captured == KING)
-      {
-          if (stmAttackers == attackers)
-              ++slIndex;
-
-          break;
-      }
-
       stm = ~stm;
       stmAttackers = attackers & pieces(stm);
       ++slIndex;
 
-  } while (stmAttackers);
+  } while (stmAttackers && (captured != KING || (--slIndex, false))); // Stop before a king capture
 
   // Having built the swap list, we negamax through it to find the best
   // achievable score from the point of view of the side to move.
@@ -1105,130 +1061,11 @@ int Position::see(Move m) const {
 }
 
 
-/// Position::clear() erases the position object to a pristine state, with an
-/// empty board, white to move, and no castling rights.
-
-void Position::clear() {
-
-  std::memset(this, 0, sizeof(Position));
-  startState.epSquare = SQ_NONE;
-  st = &startState;
-
-  for (int i = 0; i < PIECE_TYPE_NB; ++i)
-      for (int j = 0; j < 16; ++j)
-          pieceList[WHITE][i][j] = pieceList[BLACK][i][j] = SQ_NONE;
-}
-
-
-/// Position::compute_key() computes the hash key of the position. The hash
-/// key is usually updated incrementally as moves are made and unmade. The
-/// compute_key() function is only used when a new position is set up, and
-/// to verify the correctness of the hash key when running in debug mode.
-
-Key Position::compute_key() const {
-
-  Key k = Zobrist::castling[st->castlingFlags];
-
-  for (Bitboard b = pieces(); b; )
-  {
-      Square s = pop_lsb(&b);
-      k ^= Zobrist::psq[color_of(piece_on(s))][type_of(piece_on(s))][s];
-  }
-
-  if (ep_square() != SQ_NONE)
-      k ^= Zobrist::enpassant[file_of(ep_square())];
-
-  if (sideToMove == BLACK)
-      k ^= Zobrist::side;
-
-  return k;
-}
-
-
-/// Position::compute_pawn_key() computes the hash key of the position. The
-/// hash key is usually updated incrementally as moves are made and unmade.
-/// The compute_pawn_key() function is only used when a new position is set
-/// up, and to verify the correctness of the pawn hash key when running in
-/// debug mode.
-
-Key Position::compute_pawn_key() const {
-
-  Key k = 0;
-
-  for (Bitboard b = pieces(PAWN); b; )
-  {
-      Square s = pop_lsb(&b);
-      k ^= Zobrist::psq[color_of(piece_on(s))][PAWN][s];
-  }
-
-  return k;
-}
-
-
-/// Position::compute_material_key() computes the hash key of the position.
-/// The hash key is usually updated incrementally as moves are made and unmade.
-/// The compute_material_key() function is only used when a new position is set
-/// up, and to verify the correctness of the material hash key when running in
-/// debug mode.
-
-Key Position::compute_material_key() const {
-
-  Key k = 0;
-
-  for (Color c = WHITE; c <= BLACK; ++c)
-      for (PieceType pt = PAWN; pt <= KING; ++pt)
-          for (int cnt = 0; cnt < pieceCount[c][pt]; ++cnt)
-              k ^= Zobrist::psq[c][pt][cnt];
-
-  return k;
-}
-
-
-/// Position::compute_psq_score() computes the incremental scores for the middlegame
-/// and the endgame. These functions are used to initialize the incremental scores
-/// when a new position is set up, and to verify that the scores are correctly
-/// updated by do_move and undo_move when the program is running in debug mode.
-
-Score Position::compute_psq_score() const {
-
-  Score score = SCORE_ZERO;
-
-  for (Bitboard b = pieces(); b; )
-  {
-      Square s = pop_lsb(&b);
-      Piece pc = piece_on(s);
-      score += psq[color_of(pc)][type_of(pc)][s];
-  }
-
-  return score;
-}
-
-
-/// Position::compute_non_pawn_material() computes the total non-pawn middlegame
-/// material value for the given side. Material values are updated incrementally
-/// during the search. This function is only used when initializing a new Position
-/// object.
-
-Value Position::compute_non_pawn_material(Color c) const {
-
-  Value value = VALUE_ZERO;
-
-  for (PieceType pt = KNIGHT; pt <= QUEEN; ++pt)
-      value += pieceCount[c][pt] * PieceValue[MG][pt];
-
-  return value;
-}
-
-
-/// Position::is_draw() tests whether the position is drawn by material, 50 moves
-/// rule or repetition. It does not detect stalemates.
+/// Position::is_draw() tests whether the position is drawn by 50-move rule
+/// or by repetition. It does not detect stalemates.
 
 bool Position::is_draw() const {
 
-  if (   !pieces(PAWN)
-      && (non_pawn_material(WHITE) + non_pawn_material(BLACK) <= BishopValueMg))
-      return true;
-
   if (st->rule50 > 99 && (!checkers() || MoveList<LEGAL>(*this).size()))
       return true;
 
@@ -1248,18 +1085,14 @@ bool Position::is_draw() const {
 /// Position::flip() flips position with the white and black sides reversed. This
 /// is only useful for debugging e.g. for finding evaluation symmetry bugs.
 
-static char toggle_case(char c) {
-  return char(islower(c) ? toupper(c) : tolower(c));
-}
-
 void Position::flip() {
 
   string f, token;
   std::stringstream ss(fen());
 
-  for (Rank rank = RANK_8; rank >= RANK_1; --rank) // Piece placement
+  for (Rank r = RANK_8; r >= RANK_1; --r) // Piece placement
   {
-      std::getline(ss, token, rank > RANK_1 ? '/' : ' ');
+      std::getline(ss, token, r > RANK_1 ? '/' : ' ');
       f.insert(0, token + (f.empty() ? " " : "/"));
   }
 
@@ -1269,7 +1102,8 @@ void Position::flip() {
   ss >> token; // Castling availability
   f += token + " ";
 
-  std::transform(f.begin(), f.end(), f.begin(), toggle_case);
+  std::transform(f.begin(), f.end(), f.begin(),
+                 [](char c) { return char(islower(c) ? toupper(c) : tolower(c)); });
 
   ss >> token; // En passant square
   f += (token == "-" ? token : token.replace(1, 1, token[1] == '3' ? "6" : "3"));
@@ -1288,121 +1122,75 @@ void Position::flip() {
 
 bool Position::pos_is_ok(int* failedStep) const {
 
-  int dummy, *step = failedStep ? failedStep : &dummy;
-
-  // What features of the position should be verified?
-  const bool all = false;
+  const bool Fast = true; // Quick (default) or full check?
 
-  const bool debugBitboards       = all || false;
-  const bool debugKingCount       = all || false;
-  const bool debugKingCapture     = all || false;
-  const bool debugCheckerCount    = all || false;
-  const bool debugKey             = all || false;
-  const bool debugMaterialKey     = all || false;
-  const bool debugPawnKey         = all || false;
-  const bool debugIncrementalEval = all || false;
-  const bool debugNonPawnMaterial = all || false;
-  const bool debugPieceCounts     = all || false;
-  const bool debugPieceList       = all || false;
-  const bool debugCastlingSquares = all || false;
+  enum { Default, King, Bitboards, State, Lists, Castling };
 
-  *step = 1;
-
-  if (sideToMove != WHITE && sideToMove != BLACK)
-      return false;
-
-  if ((*step)++, piece_on(king_square(WHITE)) != W_KING)
-      return false;
-
-  if ((*step)++, piece_on(king_square(BLACK)) != B_KING)
-      return false;
-
-  if ((*step)++, debugKingCount)
+  for (int step = Default; step <= (Fast ? Default : Castling); step++)
   {
-      int kingCount[COLOR_NB] = {};
-
-      for (Square s = SQ_A1; s <= SQ_H8; ++s)
-          if (type_of(piece_on(s)) == KING)
-              ++kingCount[color_of(piece_on(s))];
-
-      if (kingCount[0] != 1 || kingCount[1] != 1)
-          return false;
-  }
-
-  if ((*step)++, debugKingCapture)
-      if (attackers_to(king_square(~sideToMove)) & pieces(sideToMove))
-          return false;
-
-  if ((*step)++, debugCheckerCount && popcount<Full>(st->checkersBB) > 2)
-      return false;
-
-  if ((*step)++, debugBitboards)
-  {
-      // The intersection of the white and black pieces must be empty
-      if (pieces(WHITE) & pieces(BLACK))
-          return false;
-
-      // The union of the white and black pieces must be equal to all
-      // occupied squares
-      if ((pieces(WHITE) | pieces(BLACK)) != pieces())
-          return false;
-
-      // Separate piece type bitboards must have empty intersections
-      for (PieceType p1 = PAWN; p1 <= KING; ++p1)
-          for (PieceType p2 = PAWN; p2 <= KING; ++p2)
-              if (p1 != p2 && (pieces(p1) & pieces(p2)))
-                  return false;
-  }
-
-  if ((*step)++, ep_square() != SQ_NONE && relative_rank(sideToMove, ep_square()) != RANK_6)
-      return false;
-
-  if ((*step)++, debugKey && st->key != compute_key())
-      return false;
-
-  if ((*step)++, debugPawnKey && st->pawnKey != compute_pawn_key())
-      return false;
-
-  if ((*step)++, debugMaterialKey && st->materialKey != compute_material_key())
-      return false;
+      if (failedStep)
+          *failedStep = step;
+
+      if (step == Default)
+          if (   (sideToMove != WHITE && sideToMove != BLACK)
+              || piece_on(king_square(WHITE)) != W_KING
+              || piece_on(king_square(BLACK)) != B_KING
+              || (   ep_square() != SQ_NONE
+                  && relative_rank(sideToMove, ep_square()) != RANK_6))
+              return false;
 
-  if ((*step)++, debugIncrementalEval && st->psq != compute_psq_score())
-      return false;
+      if (step == King)
+          if (   std::count(board, board + SQUARE_NB, W_KING) != 1
+              || std::count(board, board + SQUARE_NB, B_KING) != 1
+              || attackers_to(king_square(~sideToMove)) & pieces(sideToMove))
+              return false;
 
-  if ((*step)++, debugNonPawnMaterial)
-      if (   st->npMaterial[WHITE] != compute_non_pawn_material(WHITE)
-          || st->npMaterial[BLACK] != compute_non_pawn_material(BLACK))
-          return false;
+      if (step == Bitboards)
+      {
+          if (  (pieces(WHITE) & pieces(BLACK))
+              ||(pieces(WHITE) | pieces(BLACK)) != pieces())
+              return false;
 
-  if ((*step)++, debugPieceCounts)
-      for (Color c = WHITE; c <= BLACK; ++c)
-          for (PieceType pt = PAWN; pt <= KING; ++pt)
-              if (pieceCount[c][pt] != popcount<Full>(pieces(c, pt)))
-                  return false;
-
-  if ((*step)++, debugPieceList)
-      for (Color c = WHITE; c <= BLACK; ++c)
-          for (PieceType pt = PAWN; pt <= KING; ++pt)
-              for (int i = 0; i < pieceCount[c][pt];  ++i)
-                  if (   board[pieceList[c][pt][i]] != make_piece(c, pt)
-                      || index[pieceList[c][pt][i]] != i)
+          for (PieceType p1 = PAWN; p1 <= KING; ++p1)
+              for (PieceType p2 = PAWN; p2 <= KING; ++p2)
+                  if (p1 != p2 && (pieces(p1) & pieces(p2)))
                       return false;
+      }
 
-  if ((*step)++, debugCastlingSquares)
-      for (Color c = WHITE; c <= BLACK; ++c)
-          for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1))
-          {
-              CastlingFlag cf = make_castling_flag(c, s);
+      if (step == State)
+      {
+          StateInfo si = *st;
+          set_state(&si);
+          if (std::memcmp(&si, st, sizeof(StateInfo)))
+              return false;
+      }
 
-              if (!can_castle(cf))
-                  continue;
+      if (step == Lists)
+          for (Color c = WHITE; c <= BLACK; ++c)
+              for (PieceType pt = PAWN; pt <= KING; ++pt)
+              {
+                  if (pieceCount[c][pt] != popcount<Full>(pieces(c, pt)))
+                      return false;
 
-              if (  (castlingFlagsMask[king_square(c)] & cf) != cf
-                  || piece_on(castlingRookSquare[c][s]) != make_piece(c, ROOK)
-                  || castlingFlagsMask[castlingRookSquare[c][s]] != cf)
-                  return false;
-          }
+                  for (int i = 0; i < pieceCount[c][pt];  ++i)
+                      if (   board[pieceList[c][pt][i]] != make_piece(c, pt)
+                          || index[pieceList[c][pt][i]] != i)
+                          return false;
+              }
+
+      if (step == Castling)
+          for (Color c = WHITE; c <= BLACK; ++c)
+              for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1))
+              {
+                  if (!can_castle(c | s))
+                      continue;
+
+                  if (   piece_on(castlingRookSquare[c | s]) != make_piece(c, ROOK)
+                      || castlingRightsMask[castlingRookSquare[c | s]] != (c | s)
+                      ||(castlingRightsMask[king_square(c)] & (c | s)) != (c | s))
+                      return false;
+              }
+  }
 
-  *step = 0;
   return true;
 }