]> git.sesse.net Git - stockfish/blobdiff - src/search.cpp
Relax constrain in prevents_threat()
[stockfish] / src / search.cpp
index 76cc8e8d37d1caefdf0995955d6035e058932349..03d05796ae69bd2df092183764604e9ac7f1d85d 100644 (file)
@@ -62,10 +62,6 @@ namespace {
   // Different node types, used as template parameter
   enum NodeType { Root, PV, NonPV, SplitPointRoot, SplitPointPV, SplitPointNonPV };
 
-  // Lookup table to check if a Piece is a slider and its access function
-  const bool Slidings[18] = { 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 };
-  inline bool piece_is_slider(Piece p) { return Slidings[p]; }
-
   // Dynamic razoring margin based on depth
   inline Value razor_margin(Depth d) { return Value(512 + 16 * int(d)); }
 
@@ -100,11 +96,11 @@ namespace {
   Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
 
   void id_loop(Position& pos);
-  bool check_is_dangerous(Position& pos, Move move, Value futilityBase, Value beta);
-  bool connected_moves(const Position& pos, Move m1, Move m2);
   Value value_to_tt(Value v, int ply);
   Value value_from_tt(Value v, int ply);
-  bool connected_threat(const Position& pos, Move m, Move threat);
+  bool check_is_dangerous(Position& pos, Move move, Value futilityBase, Value beta);
+  bool yields_to_threat(const Position& pos, Move move, Move threat);
+  bool prevents_threat(const Position& pos, Move move, Move threat);
   string uci_pv(const Position& pos, int depth, Value alpha, Value beta);
 
   struct Skill {
@@ -394,7 +390,7 @@ namespace {
             }
 
             // Sort the PV lines searched so far and update the GUI
-            sort<RootMove>(RootMoves.begin(), RootMoves.begin() + PVIdx);
+            sort<RootMove>(RootMoves.begin(), RootMoves.begin() + PVIdx + 1);
             sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
         }
 
@@ -700,7 +696,7 @@ namespace {
             if (   depth < 5 * ONE_PLY
                 && (ss-1)->reduction
                 && threatMove != MOVE_NONE
-                && connected_moves(pos, (ss-1)->currentMove, threatMove))
+                && yields_to_threat(pos, (ss-1)->currentMove, threatMove))
                 return beta - 1;
         }
     }
@@ -861,7 +857,7 @@ split_point_start: // At split points actual search starts from here
           // Move count based pruning
           if (   depth < 16 * ONE_PLY
               && moveCount >= FutilityMoveCounts[depth]
-              && (!threatMove || !connected_threat(pos, move, threatMove)))
+              && (!threatMove || !prevents_threat(pos, move, threatMove)))
           {
               if (SpNode)
                   sp->mutex.lock();
@@ -1020,11 +1016,8 @@ split_point_start: // At split points actual search starts from here
           &&  depth >= Threads.min_split_depth()
           &&  bestValue < beta
           &&  Threads.available_slave_exists(thisThread))
-      {
           bestValue = Threads.split<FakeSplit>(pos, ss, alpha, beta, bestValue, &bestMove,
                                                depth, threatMove, moveCount, mp, NT);
-          break;
-      }
     }
 
     if (SpNode)
@@ -1357,75 +1350,68 @@ split_point_start: // At split points actual search starts from here
   }
 
 
-  // connected_moves() tests whether two moves are 'connected' in the sense
-  // that the first move somehow made the second move possible (for instance
-  // if the moving piece is the same in both moves). The first move is assumed
-  // to be the move that was made to reach the current position, while the
-  // second move is assumed to be a move from the current position.
-
-  bool connected_moves(const Position& pos, Move m1, Move m2) {
+  // yields_to_threat() tests whether the move at previous ply yields to the so
+  // called threat move (the best move returned from a null search that fails
+  // low). Here 'yields to' means that the move somehow made the threat possible
+  // for instance if the moving piece is the same in both moves.
 
-    Square f1, t1, f2, t2;
-    Piece p1, p2;
-    Square ksq;
+  bool yields_to_threat(const Position& pos, Move move, Move threat) {
 
-    assert(is_ok(m1));
-    assert(is_ok(m2));
+    assert(is_ok(move));
+    assert(is_ok(threat));
+    assert(color_of(pos.piece_on(from_sq(threat))) == ~pos.side_to_move());
 
-    // Case 1: The moving piece is the same in both moves
-    f2 = from_sq(m2);
-    t1 = to_sq(m1);
-    if (f2 == t1)
-        return true;
+    Square mfrom = from_sq(move);
+    Square mto = to_sq(move);
+    Square tfrom = from_sq(threat);
+    Square tto = to_sq(threat);
 
-    // Case 2: The destination square for m2 was vacated by m1
-    t2 = to_sq(m2);
-    f1 = from_sq(m1);
-    if (t2 == f1)
+    // The piece is the same or threat's destination was vacated by the move
+    if (mto == tfrom || tto == mfrom)
         return true;
 
-    // Case 3: Moving through the vacated square
-    p2 = pos.piece_on(f2);
-    if (piece_is_slider(p2) && (between_bb(f2, t2) & f1))
+    // Threat moves through the vacated square
+    if (between_bb(tfrom, tto) & mfrom)
       return true;
 
-    // Case 4: The destination square for m2 is defended by the moving piece in m1
-    p1 = pos.piece_on(t1);
-    if (pos.attacks_from(p1, t1) & t2)
+    // Threat's destination is defended by the move's piece
+    Bitboard matt = pos.attacks_from(pos.piece_on(mto), mto, pos.pieces() ^ tfrom);
+    if (matt & tto)
         return true;
 
-    // Case 5: Discovered check, checking piece is the piece moved in m1
-    ksq = pos.king_square(pos.side_to_move());
-    if (    piece_is_slider(p1)
-        && (between_bb(t1, ksq) & f2)
-        && (pos.attacks_from(p1, t1, pos.pieces() ^ f2) & ksq))
+    // Threat gives a discovered check through the move's checking piece
+    if (matt & pos.king_square(pos.side_to_move()))
+    {
+        assert(between_bb(mto, pos.king_square(pos.side_to_move())) & tfrom);
         return true;
+    }
 
     return false;
   }
 
 
-  // connected_threat() tests whether it is safe to forward prune a move or if
-  // is somehow connected to the threat move returned by null search.
+  // prevents_threat() tests whether a move is able to defend against the so
+  // called threat move (the best move returned from a null search that fails
+  // low). In this case will not be pruned.
 
-  bool connected_threat(const Position& pos, Move m, Move threat) {
+  bool prevents_threat(const Position& pos, Move move, Move threat) {
 
-    assert(is_ok(m));
+    assert(is_ok(move));
     assert(is_ok(threat));
-    assert(!pos.is_capture_or_promotion(m));
-    assert(!pos.is_passed_pawn_push(m));
+    assert(!pos.is_capture_or_promotion(move));
+    assert(!pos.is_passed_pawn_push(move));
 
-    Square mfrom = from_sq(m);
-    Square mto = to_sq(m);
+    Square mfrom = from_sq(move);
+    Square mto = to_sq(move);
     Square tfrom = from_sq(threat);
     Square tto = to_sq(threat);
 
-    // Case 1: Don't prune moves which move the threatened piece
+    // Don't prune moves of the threatened piece
     if (mfrom == tto)
         return true;
 
-    // Case 2: If the threatened piece has value less than or equal to the
-    // value of the threatening piece, don't prune moves which defend it.
+    // If the threatened piece has value less than or equal to the value of the
+    // threat piece, don't prune moves which defend it.
     if (    pos.is_capture(threat)
         && (   PieceValue[MG][pos.piece_on(tfrom)] >= PieceValue[MG][pos.piece_on(tto)]
             || type_of(pos.piece_on(tfrom)) == KING))
@@ -1447,11 +1433,8 @@ split_point_start: // At split points actual search starts from here
             return true;
     }
 
-    // Case 3: If the moving piece in the threatened move is a slider, don't
-    // prune safe moves which block its ray.
-    if (    piece_is_slider(pos.piece_on(tfrom))
-        && (between_bb(tfrom, tto) & mto)
-        &&  pos.see_sign(m) >= 0)
+    // Don't prune safe moves which block the threat path
+    if ((between_bb(tfrom, tto) & mto) && pos.see_sign(move) >= 0)
         return true;
 
     return false;