]> git.sesse.net Git - stockfish/blobdiff - src/search.cpp
Simplify wait_for_stop_or_ponderhit()
[stockfish] / src / search.cpp
index 19e6c14b78e33ff34df72386999b92da27ff7a54..061bbafca0cd1a4b7e0885407ce76a68938c1b23 100644 (file)
@@ -129,7 +129,7 @@ namespace {
 
     void extract_pv_from_tt(Position& pos);
     void insert_pv_in_tt(Position& pos);
-    std::string pv_info_to_uci(Position& pos, Depth depth, Value alpha, Value beta, int pvLine = 0);
+    std::string pv_info_to_uci(Position& pos, int depth, Value alpha, Value beta, int pvLine);
 
     int64_t nodes;
     Value pv_score;
@@ -209,10 +209,6 @@ namespace {
   // Minimum depth for use of singular extension
   const Depth SingularExtensionDepth[2] = { 8 * ONE_PLY /* non-PV */, 6 * ONE_PLY /* PV */};
 
-  // If the TT move is at least SingularExtensionMargin better then the
-  // remaining ones we will extend it.
-  const Value SingularExtensionMargin = Value(0x20);
-
   // Step 12. Futility pruning
 
   // Futility margin for quiescence search
@@ -247,9 +243,9 @@ namespace {
   RootMoveList Rml;
 
   // MultiPV mode
-  int MultiPV;
+  int MultiPV, UCIMultiPV;
 
-  // Time managment variables
+  // Time management variables
   int SearchStartTime, MaxNodes, MaxDepth, ExactMaxTime;
   bool UseTimeManagement, InfiniteSearch, Pondering, StopOnPonderhit;
   bool FirstRootMove, StopRequest, QuitRequest, AspirationFailLow;
@@ -259,6 +255,10 @@ namespace {
   bool UseLogFile;
   std::ofstream LogFile;
 
+  // Skill level adjustment
+  int SkillLevel;
+  RKISS RK;
+
   // Multi-threads manager object
   ThreadsManager ThreadsMgr;
 
@@ -300,13 +300,11 @@ namespace {
   bool connected_threat(const Position& pos, Move m, Move threat);
   Value refine_eval(const TTEntry* tte, Value defaultEval, int ply);
   void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount);
-  void update_killers(Move m, Move killers[]);
   void update_gains(const Position& pos, Move move, Value before, Value after);
-  void qsearch_scoring(Position& pos, MoveStack* mlist, MoveStack* last);
 
   int current_search_time();
   std::string value_to_uci(Value v);
-  int nps(const Position& pos);
+  std::string speed_to_uci(int64_t nodes);
   void poll(const Position& pos);
   void wait_for_stop_or_ponderhit();
 
@@ -331,7 +329,7 @@ namespace {
       Value score = VALUE_ZERO;
 
       // Score root moves using the standard way used in main search, the moves
-      // are scored according to the order in which are returned by MovePicker.
+      // are scored according to the order in which they are returned by MovePicker.
       // This is the second order score that is used to compare the moves when
       // the first order pv scores of both moves are equal.
       while ((move = MovePicker::get_next_move()) != MOVE_NONE)
@@ -508,11 +506,16 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[
   PawnEndgameExtension[0]   = Options["Pawn Endgame Extension (non-PV nodes)"].value<Depth>();
   MateThreatExtension[1]    = Options["Mate Threat Extension (PV nodes)"].value<Depth>();
   MateThreatExtension[0]    = Options["Mate Threat Extension (non-PV nodes)"].value<Depth>();
-  MultiPV                   = Options["MultiPV"].value<int>();
+  UCIMultiPV                = Options["MultiPV"].value<int>();
+  SkillLevel                = Options["Skill level"].value<int>();
   UseLogFile                = Options["Use Search Log"].value<bool>();
 
   read_evaluation_uci_options(pos.side_to_move());
 
+  // Do we have to play with skill handicap? In this case enable MultiPV that
+  // we will use behind the scenes to retrieve a set of possible moves.
+  MultiPV = (SkillLevel < 20 ? Max(UCIMultiPV, 4) : UCIMultiPV);
+
   // Set the number of active threads
   ThreadsMgr.read_uci_options();
   init_eval(ThreadsMgr.active_threads());
@@ -544,12 +547,13 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[
       std::string name = Options["Search Log Filename"].value<std::string>();
       LogFile.open(name.c_str(), std::ios::out | std::ios::app);
 
-      LogFile << "Searching: "  << pos.to_fen()
-              << "\ninfinite: " << infinite
-              << " ponder: "    << ponder
-              << " time: "      << myTime
-              << " increment: " << myIncrement
-              << " moves to go: " << movesToGo << endl;
+      LogFile << "\nSearching: "  << pos.to_fen()
+              << "\ninfinite: "   << infinite
+              << " ponder: "      << ponder
+              << " time: "        << myTime
+              << " increment: "   << myIncrement
+              << " moves to go: " << movesToGo
+              << endl;
   }
 
   // We're ready to start thinking. Call the iterative deepening loop function
@@ -557,25 +561,20 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[
   Move bestMove = id_loop(pos, searchMoves, &ponderMove);
 
   // Print final search statistics
-  cout << "info nodes " << pos.nodes_searched()
-       << " nps " << nps(pos)
-       << " time " << current_search_time() << endl;
+  cout << "info" << speed_to_uci(pos.nodes_searched()) << endl;
 
   if (UseLogFile)
   {
-      LogFile << "\nNodes: " << pos.nodes_searched()
-              << "\nNodes/second: " << nps(pos)
-              << "\nBest move: " << move_to_san(pos, bestMove);
+      int t = current_search_time();
+
+      LogFile << "Nodes: "          << pos.nodes_searched()
+              << "\nNodes/second: " << (t > 0 ? int(pos.nodes_searched() * 1000 / t) : 0)
+              << "\nBest move: "    << move_to_san(pos, bestMove);
 
       StateInfo st;
       pos.do_move(bestMove, st);
-      LogFile << "\nPonder move: "
-              << move_to_san(pos, ponderMove) // Works also with MOVE_NONE
-              << endl;
-
-      // Return from think() with unchanged position
-      pos.undo_move(bestMove);
-
+      LogFile << "\nPonder move: " << move_to_san(pos, ponderMove) << endl;
+      pos.undo_move(bestMove); // Return from think() with unchanged position
       LogFile.close();
   }
 
@@ -587,8 +586,15 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[
   if (!StopRequest && (Pondering || InfiniteSearch))
       wait_for_stop_or_ponderhit();
 
-  // Could be both MOVE_NONE when searching on a stalemate position
-  cout << "bestmove " << bestMove << " ponder " << ponderMove << endl;
+  // Could be MOVE_NONE when searching on a stalemate position
+  cout << "bestmove " << bestMove;
+
+  // UCI protol is not clear on allowing sending an empty ponder move, instead
+  // it is clear that ponder move is optional. So skip it if empty.
+  if (ponderMove != MOVE_NONE)
+      cout << " ponder " << ponderMove;
+
+  cout << endl;
 
   return !QuitRequest;
 }
@@ -605,73 +611,58 @@ namespace {
     SearchStack ss[PLY_MAX_PLUS_2];
     Value bestValues[PLY_MAX_PLUS_2];
     int bestMoveChanges[PLY_MAX_PLUS_2];
-    int iteration, researchCountFL, researchCountFH, aspirationDelta;
+    int depth, aspirationDelta;
     Value value, alpha, beta;
-    Depth depth;
     Move bestMove, easyMove;
 
-    // Moves to search are verified, scored and sorted
-    Rml.init(pos, searchMoves);
-
-    // Initialize FIXME move before Rml.init()
+    // Initialize stuff before a new search
+    memset(ss, 0, 4 * sizeof(SearchStack));
     TT.new_search();
     H.clear();
-    memset(ss, 0, PLY_MAX_PLUS_2 * sizeof(SearchStack));
-    alpha = -VALUE_INFINITE, beta = VALUE_INFINITE;
     *ponderMove = bestMove = easyMove = MOVE_NONE;
-    aspirationDelta = 0;
-    iteration = 1;
+    depth = aspirationDelta = 0;
+    alpha = -VALUE_INFINITE, beta = VALUE_INFINITE;
     ss->currentMove = MOVE_NULL; // Hack to skip update_gains()
 
-    // Handle special case of searching on a mate/stale position
+    // Moves to search are verified and copied
+    Rml.init(pos, searchMoves);
+
+    // Handle special case of searching on a mate/stalemate position
     if (Rml.size() == 0)
     {
-        cout << "info depth " << iteration << " score "
+        cout << "info depth 0 score "
              << value_to_uci(pos.is_check() ? -VALUE_MATE : VALUE_DRAW)
              << endl;
 
         return MOVE_NONE;
     }
 
-    // Send initial scoring (iteration 1)
-    cout << set960(pos.is_chess960()) // Is enough to set once at the beginning
-         << "info depth " << iteration
-         << "\n" << Rml[0].pv_info_to_uci(pos, ONE_PLY, alpha, beta) << endl;
-
-    // Is one move significantly better than others after initial scoring ?
-    if (   Rml.size() == 1
-        || Rml[0].pv_score > Rml[1].pv_score + EasyMoveMargin)
-        easyMove = Rml[0].pv[0];
-
     // Iterative deepening loop
-    while (++iteration <= PLY_MAX && (!MaxDepth || iteration <= MaxDepth) && !StopRequest)
+    while (++depth <= PLY_MAX && (!MaxDepth || depth <= MaxDepth) && !StopRequest)
     {
-        cout << "info depth " << iteration << endl;
-
-        Rml.bestMoveChanges = researchCountFL = researchCountFH = 0;
-        depth = (iteration - 1) * ONE_PLY;
+        Rml.bestMoveChanges = 0;
+        cout << set960(pos.is_chess960()) << "info depth " << depth << endl;
 
         // Calculate dynamic aspiration window based on previous iterations
-        if (MultiPV == 1 && iteration >= 6 && abs(bestValues[iteration - 1]) < VALUE_KNOWN_WIN)
+        if (MultiPV == 1 && depth >= 5 && abs(bestValues[depth - 1]) < VALUE_KNOWN_WIN)
         {
-            int prevDelta1 = bestValues[iteration - 1] - bestValues[iteration - 2];
-            int prevDelta2 = bestValues[iteration - 2] - bestValues[iteration - 3];
+            int prevDelta1 = bestValues[depth - 1] - bestValues[depth - 2];
+            int prevDelta2 = bestValues[depth - 2] - bestValues[depth - 3];
 
-            aspirationDelta = Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16);
+            aspirationDelta = Min(Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16), 24);
             aspirationDelta = (aspirationDelta + 7) / 8 * 8; // Round to match grainSize
 
-            alpha = Max(bestValues[iteration - 1] - aspirationDelta, -VALUE_INFINITE);
-            beta  = Min(bestValues[iteration - 1] + aspirationDelta,  VALUE_INFINITE);
+            alpha = Max(bestValues[depth - 1] - aspirationDelta, -VALUE_INFINITE);
+            beta  = Min(bestValues[depth - 1] + aspirationDelta,  VALUE_INFINITE);
         }
 
         // Start with a small aspiration window and, in case of fail high/low,
         // research with bigger window until not failing high/low anymore.
-        while (true)
-        {
+        do {
             // Search starting from ss+1 to allow calling update_gains()
-            value = search<PV, false, true>(pos, ss+1, alpha, beta, depth, 0);
+            value = search<PV, false, true>(pos, ss+1, alpha, beta, depth * ONE_PLY, 0);
 
-            // Write PV lines to transposition table, in case the relevant entries
+            // Write PV back to transposition table in case the relevant entries
             // have been overwritten during the search.
             for (int i = 0; i < Min(MultiPV, (int)Rml.size()); i++)
                 Rml[i].insert_pv_in_tt(pos);
@@ -686,28 +677,39 @@ namespace {
             // otherwise exit the fail high/low loop.
             if (value >= beta)
             {
-                beta = Min(beta + aspirationDelta * (1 << researchCountFH), VALUE_INFINITE);
-                researchCountFH++;
+                beta = Min(beta + aspirationDelta, VALUE_INFINITE);
+                aspirationDelta += aspirationDelta / 2;
             }
             else if (value <= alpha)
             {
                 AspirationFailLow = true;
                 StopOnPonderhit = false;
 
-                alpha = Max(alpha - aspirationDelta * (1 << researchCountFL), -VALUE_INFINITE);
-                researchCountFL++;
+                alpha = Max(alpha - aspirationDelta, -VALUE_INFINITE);
+                aspirationDelta += aspirationDelta / 2;
             }
             else
                 break;
-        }
+
+        } while (abs(value) < VALUE_KNOWN_WIN);
 
         // Collect info about search result
         bestMove = Rml[0].pv[0];
-        bestValues[iteration] = value;
-        bestMoveChanges[iteration] = Rml.bestMoveChanges;
+        *ponderMove = Rml[0].pv[1];
+        bestValues[depth] = value;
+        bestMoveChanges[depth] = Rml.bestMoveChanges;
 
-        // Drop the easy move if differs from the new best move
-        if (bestMove != easyMove)
+        // Send PV line to GUI and to log file
+        for (int i = 0; i < Min(UCIMultiPV, (int)Rml.size()); i++)
+            cout << Rml[i].pv_info_to_uci(pos, depth, alpha, beta, i) << endl;
+
+        if (UseLogFile)
+            LogFile << pretty_pv(pos, depth, value, current_search_time(), Rml[0].pv) << endl;
+
+        // Init easyMove after first iteration or drop if differs from the best move
+        if (depth == 1 && (Rml.size() == 1 || Rml[0].pv_score > Rml[1].pv_score + EasyMoveMargin))
+            easyMove = bestMove;
+        else if (bestMove != easyMove)
             easyMove = MOVE_NONE;
 
         if (UseTimeManagement && !StopRequest)
@@ -716,15 +718,15 @@ namespace {
             bool noMoreTime = false;
 
             // Stop search early when the last two iterations returned a mate score
-            if (   iteration >= 6
-                && abs(bestValues[iteration])   >= abs(VALUE_MATE) - 100
-                && abs(bestValues[iteration-1]) >= abs(VALUE_MATE) - 100)
+            if (   depth >= 5
+                && abs(bestValues[depth])     >= abs(VALUE_MATE) - 100
+                && abs(bestValues[depth - 1]) >= abs(VALUE_MATE) - 100)
                 noMoreTime = true;
 
             // Stop search early if one move seems to be much better than the
             // others or if there is only a single legal move. In this latter
             // case we search up to Iteration 8 anyway to get a proper score.
-            if (   iteration >= 8
+            if (   depth >= 7
                 && easyMove == bestMove
                 && (   Rml.size() == 1
                     ||(   Rml[0].nodes > (pos.nodes_searched() * 85) / 100
@@ -734,8 +736,8 @@ namespace {
                 noMoreTime = true;
 
             // Add some extra time if the best move has changed during the last two iterations
-            if (iteration > 5 && iteration <= 50)
-                TimeMgr.pv_instability(bestMoveChanges[iteration], bestMoveChanges[iteration-1]);
+            if (depth > 4 && depth < 50)
+                TimeMgr.pv_instability(bestMoveChanges[depth], bestMoveChanges[depth-1]);
 
             // Stop search if most of MaxSearchTime is consumed at the end of the
             // iteration. We probably don't have enough time to search the first
@@ -753,7 +755,47 @@ namespace {
         }
     }
 
-    *ponderMove = Rml[0].pv[1];
+    // When playing with strength handicap choose best move among the MultiPV set
+    // using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen.
+    if (SkillLevel < 20)
+    {
+        assert(MultiPV > 1);
+
+        // Rml list is already sorted by pv_score in descending order
+        int s;
+        int max_s = -VALUE_INFINITE;
+        int size = Min(MultiPV, (int)Rml.size());
+        int max = Rml[0].pv_score;
+        int var = Min(max - Rml[size - 1].pv_score, PawnValueMidgame);
+        int wk = 120 - 2 * SkillLevel;
+
+        // PRNG sequence should be non deterministic
+        for (int i = abs(get_system_time() % 50); i > 0; i--)
+            RK.rand<unsigned>();
+
+        // Choose best move. For each move's score we add two terms both dependent
+        // on wk, one deterministic and bigger for weaker moves, and one random,
+        // then we choose the move with the resulting highest score.
+        for (int i = 0; i < size; i++)
+        {
+            s = Rml[i].pv_score;
+
+            // Don't allow crazy blunders even at very low skills
+            if (i > 0 && Rml[i-1].pv_score > s + EasyMoveMargin)
+                break;
+
+            // This is our magical formula
+            s += ((max - s) * wk + var * (RK.rand<unsigned>() % wk)) / 128;
+
+            if (s > max_s)
+            {
+                max_s = s;
+                bestMove = Rml[i].pv[0];
+                *ponderMove = Rml[i].pv[1];
+            }
+        }
+    }
+
     return bestMove;
   }
 
@@ -807,7 +849,8 @@ namespace {
         bestValue = alpha;
 
     // Step 1. Initialize node and poll. Polling can abort search
-    ss->currentMove = ss->bestMove = threatMove = MOVE_NONE;
+    ss->currentMove = ss->bestMove = threatMove = (ss+1)->excludedMove = MOVE_NONE;
+    (ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO;
     (ss+2)->killers[0] = (ss+2)->killers[1] = (ss+2)->mateKiller = MOVE_NONE;
 
     if (threadID == 0 && ++NodesSincePoll > NodesBetweenPolls)
@@ -831,7 +874,7 @@ namespace {
 
     // Step 4. Transposition table lookup
     // We don't want the score of a partial search to overwrite a previous full search
-    // TT value, so we use a different position key in case of an excluded move exists.
+    // TT value, so we use a different position key in case of an excluded move.
     excludedMove = ss->excludedMove;
     posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key();
 
@@ -1033,9 +1076,7 @@ split_point_start: // At split points actual search starts from here
           if (SendSearchedNodes)
           {
               SendSearchedNodes = false;
-              cout << "info nodes " << nodes
-                   << " nps " << nps(pos)
-                   << " time " << current_search_time() << endl;
+              cout << "info" << speed_to_uci(pos.nodes_searched()) << endl;
           }
 
           if (current_search_time() >= 1000)
@@ -1043,7 +1084,9 @@ split_point_start: // At split points actual search starts from here
                    << " currmovenumber " << moveCount << endl;
       }
 
-      isPvMove = (PvNode && moveCount <= (Root ? MultiPV : 1));
+      // At Root and at first iteration do a PV search on all the moves
+      // to score root moves. Otherwise only the first one is the PV.
+      isPvMove = (PvNode && moveCount <= (Root ? MultiPV + 1000 * (depth <= ONE_PLY) : 1));
       moveIsCheck = pos.move_is_check(move, ci);
       captureOrPromotion = pos.move_is_capture_or_promotion(move);
 
@@ -1053,7 +1096,7 @@ split_point_start: // At split points actual search starts from here
       // Singular extension search. If all moves but one fail low on a search of (alpha-s, beta-s),
       // and just one fails high on (alpha, beta), then that move is singular and should be extended.
       // To verify this we do a reduced search on all the other moves but the ttMove, if result is
-      // lower then ttValue minus a margin then we extend ttMove.
+      // lower than ttValue minus a margin then we extend ttMove.
       if (   singularExtensionNode
           && move == tte->move()
           && ext < ONE_PLY)
@@ -1062,7 +1105,7 @@ split_point_start: // At split points actual search starts from here
 
           if (abs(ttValue) < VALUE_KNOWN_WIN)
           {
-              Value b = ttValue - SingularExtensionMargin;
+              Value b = ttValue - int(depth);
               ss->excludedMove = move;
               ss->skipNullMove = true;
               Value v = search<NonPV>(pos, ss, b - 1, b, depth / 2, ply);
@@ -1076,7 +1119,7 @@ split_point_start: // At split points actual search starts from here
 
       // Update current move (this must be done after singular extension search)
       ss->currentMove = move;
-      newDepth = depth - (!Root ? ONE_PLY : DEPTH_ZERO) + ext;
+      newDepth = depth - ONE_PLY + ext;
 
       // Step 12. Futility pruning (is omitted in PV nodes)
       if (   !PvNode
@@ -1159,8 +1202,7 @@ split_point_start: // At split points actual search starts from here
               &&  ss->killers[0] != move
               &&  ss->killers[1] != move)
           {
-              ss->reduction = Root ? reduction<PvNode>(depth, moveCount - MultiPV + 1)
-                                   : reduction<PvNode>(depth, moveCount);
+              ss->reduction = reduction<PvNode>(depth, moveCount);
               if (ss->reduction)
               {
                   alpha = SpNode ? sp->alpha : alpha;
@@ -1199,14 +1241,14 @@ split_point_start: // At split points actual search starts from here
           alpha = sp->alpha;
       }
 
-      if (!Root && value > bestValue && !(SpNode && ThreadsMgr.cutoff_at_splitpoint(threadID)))
+      if (value > bestValue && !(SpNode && ThreadsMgr.cutoff_at_splitpoint(threadID)))
       {
           bestValue = value;
 
           if (SpNode)
               sp->bestValue = value;
 
-          if (value > alpha)
+          if (!Root && value > alpha)
           {
               if (PvNode && value < beta) // We want always alpha < beta
               {
@@ -1224,16 +1266,12 @@ split_point_start: // At split points actual search starts from here
               ss->bestMove = move;
 
               if (SpNode)
-                  sp->parentSstack->bestMove = move;
+                  sp->ss->bestMove = move;
           }
       }
 
       if (Root)
       {
-          // To avoid to exit with bestValue == -VALUE_INFINITE
-          if (value > bestValue)
-              bestValue = value;
-
           // Finished searching the move. If StopRequest is true, the search
           // was aborted because the user interrupted the search or because we
           // ran out of time. In this case, the return value of the search cannot
@@ -1245,40 +1283,33 @@ split_point_start: // At split points actual search starts from here
           // Remember searched nodes counts for this move
           mp.rm->nodes += pos.nodes_searched() - nodes;
 
-          // Step 17. Check for new best move
-          if (!isPvMove && value <= alpha)
-              mp.rm->pv_score = -VALUE_INFINITE;
-          else
+          // PV move or new best move ?
+          if (isPvMove || value > alpha)
           {
-              // PV move or new best move!
-
               // Update PV
               ss->bestMove = move;
               mp.rm->pv_score = value;
               mp.rm->extract_pv_from_tt(pos);
 
               // We record how often the best move has been changed in each
-              // iteration. This information is used for time managment: When
+              // iteration. This information is used for time management: When
               // the best move changes frequently, we allocate some more time.
               if (!isPvMove && MultiPV == 1)
                   Rml.bestMoveChanges++;
 
-              // Inform GUI that PV has changed, in case of multi-pv UCI protocol
-              // requires we send all the PV lines properly sorted.
               Rml.sort_multipv(moveCount);
 
-              for (int j = 0; j < Min(MultiPV, (int)Rml.size()); j++)
-                  cout << Rml[j].pv_info_to_uci(pos, depth, alpha, beta, j) << endl;
-
               // Update alpha. In multi-pv we don't use aspiration window, so
               // set alpha equal to minimum score among the PV lines.
               if (MultiPV > 1)
                   alpha = Rml[Min(moveCount, MultiPV) - 1].pv_score; // FIXME why moveCount?
               else if (value > alpha)
                   alpha = value;
+          }
+          else
+              mp.rm->pv_score = -VALUE_INFINITE;
 
-          } // PV move or new best move
-      }
+      } // Root
 
       // Step 18. Check for split
       if (   !Root
@@ -1315,8 +1346,12 @@ split_point_start: // At split points actual search starts from here
         if (    bestValue >= beta
             && !pos.move_is_capture_or_promotion(move))
         {
+            if (move != ss->killers[0])
+            {
+                ss->killers[1] = ss->killers[0];
+                ss->killers[0] = move;
+            }
             update_history(pos, move, depth, movesSearched, playedMoveCount);
-            update_killers(move, ss->killers);
         }
     }
 
@@ -1450,6 +1485,12 @@ split_point_start: // At split points actual search starts from here
                   bestValue = futilityValue;
               continue;
           }
+
+          // Prune moves with negative or equal SEE
+          if (   futilityBase < beta
+              && depth < DEPTH_ZERO
+              && pos.see(move) <= 0)
+              continue;
       }
 
       // Detect non-capture evasions that are candidate to be pruned
@@ -1518,26 +1559,6 @@ split_point_start: // At split points actual search starts from here
   }
 
 
-  // qsearch_scoring() scores each move of a list using a qsearch() evaluation,
-  // it is used in RootMoveList to get an initial scoring.
-  void qsearch_scoring(Position& pos, MoveStack* mlist, MoveStack* last) {
-
-    SearchStack ss[PLY_MAX_PLUS_2];
-    StateInfo st;
-
-    memset(ss, 0, 4 * sizeof(SearchStack));
-    ss[0].eval = ss[0].evalMargin = VALUE_NONE;
-
-    for (MoveStack* cur = mlist; cur != last; cur++)
-    {
-        ss[0].currentMove = cur->move;
-        pos.do_move(cur->move, st);
-        cur->score = -qsearch<PV>(pos, ss+1, -VALUE_INFINITE, VALUE_INFINITE, DEPTH_ZERO, 1);
-        pos.undo_move(cur->move);
-    }
-  }
-
-
   // check_is_dangerous() tests if a checking move can be pruned in qsearch().
   // bestValue is updated only when returning false because in that case move
   // will be pruned.
@@ -1755,7 +1776,7 @@ split_point_start: // At split points actual search starts from here
 
 
   // connected_threat() tests whether it is safe to forward prune a move or if
-  // is somehow coonected to the threat move returned by null search.
+  // is somehow connected to the threat move returned by null search.
 
   bool connected_threat(const Position& pos, Move m, Move threat) {
 
@@ -1777,7 +1798,7 @@ split_point_start: // At split points actual search starts from here
         return true;
 
     // Case 2: If the threatened piece has value less than or equal to the
-    // value of the threatening piece, don't prune move which defend it.
+    // value of the threatening piece, don't prune moves which defend it.
     if (   pos.move_is_capture(threat)
         && (   pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto)
             || pos.type_of_piece_on(tfrom) == KING)
@@ -1849,19 +1870,6 @@ split_point_start: // At split points actual search starts from here
   }
 
 
-  // update_killers() add a good move that produced a beta-cutoff
-  // among the killer moves of that ply.
-
-  void update_killers(Move m, Move killers[]) {
-
-    if (m != killers[0])
-    {
-        killers[1] = killers[0];
-        killers[0] = m;
-    }
-  }
-
-
   // update_gains() updates the gains table of a non-capture move given
   // the static position evaluation before and after the move.
 
@@ -1876,6 +1884,15 @@ split_point_start: // At split points actual search starts from here
   }
 
 
+  // current_search_time() returns the number of milliseconds which have passed
+  // since the beginning of the current search.
+
+  int current_search_time() {
+
+    return get_system_time() - SearchStartTime;
+  }
+
+
   // value_to_uci() converts a value to a string suitable for use with the UCI
   // protocol specifications:
   //
@@ -1890,27 +1907,25 @@ split_point_start: // At split points actual search starts from here
     if (abs(v) < VALUE_MATE - PLY_MAX * ONE_PLY)
       s << "cp " << int(v) * 100 / int(PawnValueMidgame); // Scale to centipawns
     else
-      s << "mate " << (v > 0 ? (VALUE_MATE - v + 1) / 2 : -(VALUE_MATE + v) / 2 );
+      s << "mate " << (v > 0 ? (VALUE_MATE - v + 1) / 2 : -(VALUE_MATE + v) / 2);
 
     return s.str();
   }
 
 
-  // current_search_time() returns the number of milliseconds which have passed
-  // since the beginning of the current search.
+  // speed_to_uci() returns a string with time stats of current search suitable
+  // to be sent to UCI gui.
 
-  int current_search_time() {
+  std::string speed_to_uci(int64_t nodes) {
 
-    return get_system_time() - SearchStartTime;
-  }
-
-
-  // nps() computes the current nodes/second count
+    std::stringstream s;
+    int t = current_search_time();
 
-  int nps(const Position& pos) {
+    s << " nodes " << nodes
+      << " nps "   << (t > 0 ? int(nodes * 1000 / t) : 0)
+      << " time "  << t;
 
-    int t = current_search_time();
-    return (t > 0 ? int((pos.nodes_searched() * 1000) / t) : 0);
+    return s.str();
   }
 
 
@@ -1929,10 +1944,7 @@ split_point_start: // At split points actual search starts from here
         // We are line oriented, don't read single chars
         std::string command;
 
-        if (!std::getline(std::cin, command))
-            command = "quit";
-
-        if (command == "quit")
+        if (!std::getline(std::cin, command) || command == "quit")
         {
             // Quit the program as soon as possible
             Pondering = false;
@@ -2010,20 +2022,12 @@ split_point_start: // At split points actual search starts from here
 
     std::string command;
 
-    while (true)
-    {
-        // Wait for a command from stdin
-        if (!std::getline(std::cin, command))
-            command = "quit";
+    // Wait for a command from stdin
+    while (   std::getline(std::cin, command)
+           && command != "ponderhit" && command != "stop" && command != "quit") {};
 
-        if (command == "quit")
-        {
-            QuitRequest = true;
-            break;
-        }
-        else if (command == "ponderhit" || command == "stop")
-            break;
-    }
+    if (command != "ponderhit" && command != "stop")
+        QuitRequest = true; // Must be "quit" or getline() returned false
   }
 
 
@@ -2127,16 +2131,19 @@ split_point_start: // At split points actual search starts from here
 
             threads[threadID].state = THREAD_SEARCHING;
 
-            // Here we call search() with SplitPoint template parameter set to true
+            // Copy SplitPoint position and search stack and call search()
+            // with SplitPoint template parameter set to true.
+            SearchStack ss[PLY_MAX_PLUS_2];
             SplitPoint* tsp = threads[threadID].splitPoint;
             Position pos(*tsp->pos, threadID);
-            SearchStack* ss = tsp->sstack[threadID] + 1;
-            ss->sp = tsp;
+
+            memcpy(ss, tsp->ss - 1, 4 * sizeof(SearchStack));
+            (ss+1)->sp = tsp;
 
             if (tsp->pvNode)
-                search<PV, true, false>(pos, ss, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
+                search<PV, true, false>(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
             else
-                search<NonPV, true, false>(pos, ss, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
+                search<NonPV, true, false>(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
 
             assert(threads[threadID].state == THREAD_SEARCHING);
 
@@ -2381,7 +2388,7 @@ split_point_start: // At split points actual search starts from here
     splitPoint.moveCount = moveCount;
     splitPoint.pos = &pos;
     splitPoint.nodes = 0;
-    splitPoint.parentSstack = ss;
+    splitPoint.ss = ss;
     for (i = 0; i < activeThreads; i++)
         splitPoint.slaves[i] = 0;
 
@@ -2408,12 +2415,10 @@ split_point_start: // At split points actual search starts from here
     lock_release(&mpLock);
 
     // Tell the threads that they have work to do. This will make them leave
-    // their idle loop. But before copy search stack tail for each thread.
+    // their idle loop.
     for (i = 0; i < activeThreads; i++)
         if (i == master || splitPoint.slaves[i])
         {
-            memcpy(splitPoint.sstack[i], ss - 1, 4 * sizeof(SearchStack));
-
             assert(i == master || threads[i].state == THREAD_BOOKED);
 
             threads[i].state = THREAD_WORKISWAITING; // This makes the slave to exit from idle_loop()
@@ -2524,7 +2529,7 @@ split_point_start: // At split points actual search starts from here
         k = pos.get_key();
         tte = TT.retrieve(k);
 
-        // Don't overwrite exsisting correct entries
+        // Don't overwrite existing correct entries
         if (!tte || tte->move() != pv[ply])
         {
             v = (pos.is_check() ? VALUE_NONE : evaluate(pos, m));
@@ -2538,10 +2543,10 @@ split_point_start: // At split points actual search starts from here
   }
 
   // pv_info_to_uci() returns a string with information on the current PV line
-  // formatted according to UCI specification and eventually writes the info
-  // to a log file. It is called at each iteration or after a new pv is found.
+  // formatted according to UCI specification. It is called at each iteration
+  // or after a new pv is found.
 
-  std::string RootMove::pv_info_to_uci(Position& pos, Depth depth, Value alpha, Value beta, int pvLine) {
+  std::string RootMove::pv_info_to_uci(Position& pos, int depth, Value alpha, Value beta, int pvLine) {
 
     std::stringstream s, l;
     Move* m = pv;
@@ -2549,23 +2554,14 @@ split_point_start: // At split points actual search starts from here
     while (*m != MOVE_NONE)
         l << *m++ << " ";
 
-    s << "info depth " << depth / ONE_PLY
+    s << "info depth " << depth
       << " seldepth " << int(m - pv)
       << " multipv " << pvLine + 1
       << " score " << value_to_uci(pv_score)
       << (pv_score >= beta ? " lowerbound" : pv_score <= alpha ? " upperbound" : "")
-      << " time "  << current_search_time()
-      << " nodes " << pos.nodes_searched()
-      << " nps "   << nps(pos)
+      << speed_to_uci(pos.nodes_searched())
       << " pv "    << l.str();
 
-    if (UseLogFile && pvLine == 0)
-    {
-        ValueType t = pv_score >= beta  ? VALUE_TYPE_LOWER :
-                      pv_score <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT;
-
-        LogFile << pretty_pv(pos, current_search_time(), depth / ONE_PLY, pv_score, t, pv) << endl;
-    }
     return s.str();
   }
 
@@ -2578,11 +2574,8 @@ split_point_start: // At split points actual search starts from here
     clear();
     bestMoveChanges = 0;
 
-    // Generate all legal moves and score them
+    // Generate all legal moves and add them to RootMoveList
     MoveStack* last = generate<MV_LEGAL>(pos, mlist);
-    qsearch_scoring(pos, mlist, last);
-
-    // Add each move to the RootMoveList's vector
     for (MoveStack* cur = mlist; cur != last; cur++)
     {
         // If we have a searchMoves[] list then verify cur->move
@@ -2595,10 +2588,9 @@ split_point_start: // At split points actual search starts from here
         RootMove rm;
         rm.pv[0] = cur->move;
         rm.pv[1] = MOVE_NONE;
-        rm.pv_score = Value(cur->score);
+        rm.pv_score = -VALUE_INFINITE;
         push_back(rm);
     }
-    sort();
   }
 
 } // namespace