]> git.sesse.net Git - stockfish/blobdiff - src/search.cpp
Unify best move update logic
[stockfish] / src / search.cpp
index fba9e53559f5b883f0cd479923ac2abe7a88ab78..0f937ed029d1fd749378c64e7326dc4edb4e44cc 100644 (file)
@@ -129,7 +129,7 @@ namespace {
 
     void extract_pv_from_tt(Position& pos);
     void insert_pv_in_tt(Position& pos);
-    std::string pv_info_to_uci(Position& pos, Depth depth, Value alpha, Value beta, int pvLine = 0);
+    std::string pv_info_to_uci(Position& pos, int depth, Value alpha, Value beta, int pvLine);
 
     int64_t nodes;
     Value pv_score;
@@ -209,7 +209,7 @@ namespace {
   // Minimum depth for use of singular extension
   const Depth SingularExtensionDepth[2] = { 8 * ONE_PLY /* non-PV */, 6 * ONE_PLY /* PV */};
 
-  // If the TT move is at least SingularExtensionMargin better then the
+  // If the TT move is at least SingularExtensionMargin better than the
   // remaining ones we will extend it.
   const Value SingularExtensionMargin = Value(0x20);
 
@@ -249,7 +249,7 @@ namespace {
   // MultiPV mode
   int MultiPV;
 
-  // Time managment variables
+  // Time management variables
   int SearchStartTime, MaxNodes, MaxDepth, ExactMaxTime;
   bool UseTimeManagement, InfiniteSearch, Pondering, StopOnPonderhit;
   bool FirstRootMove, StopRequest, QuitRequest, AspirationFailLow;
@@ -331,7 +331,7 @@ namespace {
       Value score = VALUE_ZERO;
 
       // Score root moves using the standard way used in main search, the moves
-      // are scored according to the order in which are returned by MovePicker.
+      // are scored according to the order in which they are returned by MovePicker.
       // This is the second order score that is used to compare the moves when
       // the first order pv scores of both moves are equal.
       while ((move = MovePicker::get_next_move()) != MOVE_NONE)
@@ -544,12 +544,13 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[
       std::string name = Options["Search Log Filename"].value<std::string>();
       LogFile.open(name.c_str(), std::ios::out | std::ios::app);
 
-      LogFile << "Searching: "  << pos.to_fen()
-              << "\ninfinite: " << infinite
-              << " ponder: "    << ponder
-              << " time: "      << myTime
-              << " increment: " << myIncrement
-              << " moves to go: " << movesToGo << endl;
+      LogFile << "\nSearching: "  << pos.to_fen()
+              << "\ninfinite: "   << infinite
+              << " ponder: "      << ponder
+              << " time: "        << myTime
+              << " increment: "   << myIncrement
+              << " moves to go: " << movesToGo
+              << endl;
   }
 
   // We're ready to start thinking. Call the iterative deepening loop function
@@ -563,19 +564,14 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[
 
   if (UseLogFile)
   {
-      LogFile << "\nNodes: " << pos.nodes_searched()
+      LogFile << "Nodes: "          << pos.nodes_searched()
               << "\nNodes/second: " << nps(pos)
-              << "\nBest move: " << move_to_san(pos, bestMove);
+              << "\nBest move: "    << move_to_san(pos, bestMove);
 
       StateInfo st;
       pos.do_move(bestMove, st);
-      LogFile << "\nPonder move: "
-              << move_to_san(pos, ponderMove) // Works also with MOVE_NONE
-              << endl;
-
-      // Return from think() with unchanged position
-      pos.undo_move(bestMove);
-
+      LogFile << "\nPonder move: " << move_to_san(pos, ponderMove) << endl;
+      pos.undo_move(bestMove); // Return from think() with unchanged position
       LogFile.close();
   }
 
@@ -605,9 +601,8 @@ namespace {
     SearchStack ss[PLY_MAX_PLUS_2];
     Value bestValues[PLY_MAX_PLUS_2];
     int bestMoveChanges[PLY_MAX_PLUS_2];
-    int iteration, researchCountFL, researchCountFH, aspirationDelta;
+    int depth, researchCountFL, researchCountFH, aspirationDelta;
     Value value, alpha, beta;
-    Depth depth;
     Move bestMove, easyMove;
 
     // Moves to search are verified, scored and sorted
@@ -617,51 +612,43 @@ namespace {
     TT.new_search();
     H.clear();
     memset(ss, 0, PLY_MAX_PLUS_2 * sizeof(SearchStack));
-    alpha = -VALUE_INFINITE, beta = VALUE_INFINITE;
     *ponderMove = bestMove = easyMove = MOVE_NONE;
-    aspirationDelta = 0;
-    iteration = 1;
+    depth = aspirationDelta = 0;
     ss->currentMove = MOVE_NULL; // Hack to skip update_gains()
+    alpha = -VALUE_INFINITE, beta = VALUE_INFINITE;
 
-    // Handle special case of searching on a mate/stale position
+    // Handle special case of searching on a mate/stalemate position
     if (Rml.size() == 0)
     {
-        cout << "info depth " << iteration << " score "
+        cout << "info depth 0 score "
              << value_to_uci(pos.is_check() ? -VALUE_MATE : VALUE_DRAW)
              << endl;
 
         return MOVE_NONE;
     }
 
-    // Send initial scoring (iteration 1)
-    cout << set960(pos.is_chess960()) // Is enough to set once at the beginning
-         << "info depth " << iteration
-         << "\n" << Rml[0].pv_info_to_uci(pos, ONE_PLY, alpha, beta) << endl;
-
     // Is one move significantly better than others after initial scoring ?
     if (   Rml.size() == 1
         || Rml[0].pv_score > Rml[1].pv_score + EasyMoveMargin)
         easyMove = Rml[0].pv[0];
 
     // Iterative deepening loop
-    while (++iteration <= PLY_MAX && (!MaxDepth || iteration <= MaxDepth) && !StopRequest)
+    while (++depth <= PLY_MAX && (!MaxDepth || depth <= MaxDepth) && !StopRequest)
     {
-        cout << "info depth " << iteration << endl;
-
         Rml.bestMoveChanges = researchCountFL = researchCountFH = 0;
-        depth = (iteration - 1) * ONE_PLY;
+        cout << "info depth " << depth << endl;
 
         // Calculate dynamic aspiration window based on previous iterations
-        if (MultiPV == 1 && iteration >= 6 && abs(bestValues[iteration - 1]) < VALUE_KNOWN_WIN)
+        if (MultiPV == 1 && depth >= 5 && abs(bestValues[depth - 1]) < VALUE_KNOWN_WIN)
         {
-            int prevDelta1 = bestValues[iteration - 1] - bestValues[iteration - 2];
-            int prevDelta2 = bestValues[iteration - 2] - bestValues[iteration - 3];
+            int prevDelta1 = bestValues[depth - 1] - bestValues[depth - 2];
+            int prevDelta2 = bestValues[depth - 2] - bestValues[depth - 3];
 
             aspirationDelta = Min(Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16), 24);
             aspirationDelta = (aspirationDelta + 7) / 8 * 8; // Round to match grainSize
 
-            alpha = Max(bestValues[iteration - 1] - aspirationDelta, -VALUE_INFINITE);
-            beta  = Min(bestValues[iteration - 1] + aspirationDelta,  VALUE_INFINITE);
+            alpha = Max(bestValues[depth - 1] - aspirationDelta, -VALUE_INFINITE);
+            beta  = Min(bestValues[depth - 1] + aspirationDelta,  VALUE_INFINITE);
         }
 
         // Start with a small aspiration window and, in case of fail high/low,
@@ -669,12 +656,16 @@ namespace {
         while (true)
         {
             // Search starting from ss+1 to allow calling update_gains()
-            value = search<PV, false, true>(pos, ss+1, alpha, beta, depth, 0);
+            value = search<PV, false, true>(pos, ss+1, alpha, beta, depth * ONE_PLY, 0);
 
-            // Write PV lines to transposition table, in case the relevant entries
-            // have been overwritten during the search.
+            // Send PV line to GUI and write to transposition table in case the
+            // relevant entries have been overwritten during the search.
             for (int i = 0; i < Min(MultiPV, (int)Rml.size()); i++)
+            {
                 Rml[i].insert_pv_in_tt(pos);
+                cout << set960(pos.is_chess960())
+                     << Rml[i].pv_info_to_uci(pos, depth, alpha, beta, i) << endl;
+            }
 
             // Value cannot be trusted. Break out immediately!
             if (StopRequest)
@@ -703,8 +694,11 @@ namespace {
 
         // Collect info about search result
         bestMove = Rml[0].pv[0];
-        bestValues[iteration] = value;
-        bestMoveChanges[iteration] = Rml.bestMoveChanges;
+        bestValues[depth] = value;
+        bestMoveChanges[depth] = Rml.bestMoveChanges;
+
+        if (UseLogFile)
+            LogFile << pretty_pv(pos, depth, value, current_search_time(), Rml[0].pv) << endl;
 
         // Drop the easy move if differs from the new best move
         if (bestMove != easyMove)
@@ -716,15 +710,15 @@ namespace {
             bool noMoreTime = false;
 
             // Stop search early when the last two iterations returned a mate score
-            if (   iteration >= 6
-                && abs(bestValues[iteration])   >= abs(VALUE_MATE) - 100
-                && abs(bestValues[iteration-1]) >= abs(VALUE_MATE) - 100)
+            if (   depth >= 5
+                && abs(bestValues[depth])     >= abs(VALUE_MATE) - 100
+                && abs(bestValues[depth - 1]) >= abs(VALUE_MATE) - 100)
                 noMoreTime = true;
 
             // Stop search early if one move seems to be much better than the
             // others or if there is only a single legal move. In this latter
             // case we search up to Iteration 8 anyway to get a proper score.
-            if (   iteration >= 8
+            if (   depth >= 7
                 && easyMove == bestMove
                 && (   Rml.size() == 1
                     ||(   Rml[0].nodes > (pos.nodes_searched() * 85) / 100
@@ -734,8 +728,8 @@ namespace {
                 noMoreTime = true;
 
             // Add some extra time if the best move has changed during the last two iterations
-            if (iteration > 5 && iteration <= 50)
-                TimeMgr.pv_instability(bestMoveChanges[iteration], bestMoveChanges[iteration-1]);
+            if (depth > 4 && depth < 50)
+                TimeMgr.pv_instability(bestMoveChanges[depth], bestMoveChanges[depth-1]);
 
             // Stop search if most of MaxSearchTime is consumed at the end of the
             // iteration. We probably don't have enough time to search the first
@@ -831,7 +825,7 @@ namespace {
 
     // Step 4. Transposition table lookup
     // We don't want the score of a partial search to overwrite a previous full search
-    // TT value, so we use a different position key in case of an excluded move exists.
+    // TT value, so we use a different position key in case of an excluded move.
     excludedMove = ss->excludedMove;
     posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key();
 
@@ -1053,7 +1047,7 @@ split_point_start: // At split points actual search starts from here
       // Singular extension search. If all moves but one fail low on a search of (alpha-s, beta-s),
       // and just one fails high on (alpha, beta), then that move is singular and should be extended.
       // To verify this we do a reduced search on all the other moves but the ttMove, if result is
-      // lower then ttValue minus a margin then we extend ttMove.
+      // lower than ttValue minus a margin then we extend ttMove.
       if (   singularExtensionNode
           && move == tte->move()
           && ext < ONE_PLY)
@@ -1159,8 +1153,7 @@ split_point_start: // At split points actual search starts from here
               &&  ss->killers[0] != move
               &&  ss->killers[1] != move)
           {
-              ss->reduction = Root ? reduction<PvNode>(depth, moveCount - MultiPV + 1)
-                                   : reduction<PvNode>(depth, moveCount);
+              ss->reduction = reduction<PvNode>(depth, moveCount);
               if (ss->reduction)
               {
                   alpha = SpNode ? sp->alpha : alpha;
@@ -1199,14 +1192,14 @@ split_point_start: // At split points actual search starts from here
           alpha = sp->alpha;
       }
 
-      if (!Root && value > bestValue && !(SpNode && ThreadsMgr.cutoff_at_splitpoint(threadID)))
+      if (value > bestValue && !(SpNode && ThreadsMgr.cutoff_at_splitpoint(threadID)))
       {
           bestValue = value;
 
           if (SpNode)
               sp->bestValue = value;
 
-          if (value > alpha)
+          if (!Root && value > alpha)
           {
               if (PvNode && value < beta) // We want always alpha < beta
               {
@@ -1230,10 +1223,6 @@ split_point_start: // At split points actual search starts from here
 
       if (Root)
       {
-          // To avoid to exit with bestValue == -VALUE_INFINITE
-          if (value > bestValue)
-              bestValue = value;
-
           // Finished searching the move. If StopRequest is true, the search
           // was aborted because the user interrupted the search or because we
           // ran out of time. In this case, the return value of the search cannot
@@ -1245,40 +1234,33 @@ split_point_start: // At split points actual search starts from here
           // Remember searched nodes counts for this move
           mp.rm->nodes += pos.nodes_searched() - nodes;
 
-          // Step 17. Check for new best move
-          if (!isPvMove && value <= alpha)
-              mp.rm->pv_score = -VALUE_INFINITE;
-          else
+          // PV move or new best move ?
+          if (isPvMove || value > alpha)
           {
-              // PV move or new best move!
-
               // Update PV
               ss->bestMove = move;
               mp.rm->pv_score = value;
               mp.rm->extract_pv_from_tt(pos);
 
               // We record how often the best move has been changed in each
-              // iteration. This information is used for time managment: When
+              // iteration. This information is used for time management: When
               // the best move changes frequently, we allocate some more time.
               if (!isPvMove && MultiPV == 1)
                   Rml.bestMoveChanges++;
 
-              // Inform GUI that PV has changed, in case of multi-pv UCI protocol
-              // requires we send all the PV lines properly sorted.
               Rml.sort_multipv(moveCount);
 
-              for (int j = 0; j < Min(MultiPV, (int)Rml.size()); j++)
-                  cout << Rml[j].pv_info_to_uci(pos, depth, alpha, beta, j) << endl;
-
               // Update alpha. In multi-pv we don't use aspiration window, so
               // set alpha equal to minimum score among the PV lines.
               if (MultiPV > 1)
                   alpha = Rml[Min(moveCount, MultiPV) - 1].pv_score; // FIXME why moveCount?
               else if (value > alpha)
                   alpha = value;
+          }
+          else
+              mp.rm->pv_score = -VALUE_INFINITE;
 
-          } // PV move or new best move
-      }
+      } // Root
 
       // Step 18. Check for split
       if (   !Root
@@ -1755,7 +1737,7 @@ split_point_start: // At split points actual search starts from here
 
 
   // connected_threat() tests whether it is safe to forward prune a move or if
-  // is somehow coonected to the threat move returned by null search.
+  // is somehow connected to the threat move returned by null search.
 
   bool connected_threat(const Position& pos, Move m, Move threat) {
 
@@ -1777,7 +1759,7 @@ split_point_start: // At split points actual search starts from here
         return true;
 
     // Case 2: If the threatened piece has value less than or equal to the
-    // value of the threatening piece, don't prune move which defend it.
+    // value of the threatening piece, don't prune moves which defend it.
     if (   pos.move_is_capture(threat)
         && (   pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto)
             || pos.type_of_piece_on(tfrom) == KING)
@@ -1890,7 +1872,7 @@ split_point_start: // At split points actual search starts from here
     if (abs(v) < VALUE_MATE - PLY_MAX * ONE_PLY)
       s << "cp " << int(v) * 100 / int(PawnValueMidgame); // Scale to centipawns
     else
-      s << "mate " << (v > 0 ? (VALUE_MATE - v + 1) / 2 : -(VALUE_MATE + v) / 2 );
+      s << "mate " << (v > 0 ? (VALUE_MATE - v + 1) / 2 : -(VALUE_MATE + v) / 2);
 
     return s.str();
   }
@@ -2524,7 +2506,7 @@ split_point_start: // At split points actual search starts from here
         k = pos.get_key();
         tte = TT.retrieve(k);
 
-        // Don't overwrite exsisting correct entries
+        // Don't overwrite existing correct entries
         if (!tte || tte->move() != pv[ply])
         {
             v = (pos.is_check() ? VALUE_NONE : evaluate(pos, m));
@@ -2538,10 +2520,10 @@ split_point_start: // At split points actual search starts from here
   }
 
   // pv_info_to_uci() returns a string with information on the current PV line
-  // formatted according to UCI specification and eventually writes the info
-  // to a log file. It is called at each iteration or after a new pv is found.
+  // formatted according to UCI specification. It is called at each iteration
+  // or after a new pv is found.
 
-  std::string RootMove::pv_info_to_uci(Position& pos, Depth depth, Value alpha, Value beta, int pvLine) {
+  std::string RootMove::pv_info_to_uci(Position& pos, int depth, Value alpha, Value beta, int pvLine) {
 
     std::stringstream s, l;
     Move* m = pv;
@@ -2549,7 +2531,7 @@ split_point_start: // At split points actual search starts from here
     while (*m != MOVE_NONE)
         l << *m++ << " ";
 
-    s << "info depth " << depth / ONE_PLY
+    s << "info depth " << depth
       << " seldepth " << int(m - pv)
       << " multipv " << pvLine + 1
       << " score " << value_to_uci(pv_score)
@@ -2559,13 +2541,6 @@ split_point_start: // At split points actual search starts from here
       << " nps "   << nps(pos)
       << " pv "    << l.str();
 
-    if (UseLogFile && pvLine == 0)
-    {
-        ValueType t = pv_score >= beta  ? VALUE_TYPE_LOWER :
-                      pv_score <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT;
-
-        LogFile << pretty_pv(pos, current_search_time(), depth / ONE_PLY, pv_score, t, pv) << endl;
-    }
     return s.str();
   }