]> git.sesse.net Git - stockfish/blobdiff - src/search.cpp
Assorted code style and comments in search.cpp
[stockfish] / src / search.cpp
index 6aef6179d28737398587acae1fe08d46c6f8d217..27a67a639401e3d18e48a3416a1ea4592ce1f072 100644 (file)
   along with this program.  If not, see <http://www.gnu.org/licenses/>.
 */
 
-
-////
-//// Includes
-////
-
 #include <cassert>
 #include <cmath>
 #include <cstring>
 #include "evaluate.h"
 #include "history.h"
 #include "misc.h"
+#include "move.h"
 #include "movegen.h"
 #include "movepick.h"
 #include "lock.h"
-#include "san.h"
 #include "search.h"
 #include "timeman.h"
 #include "thread.h"
 using std::cout;
 using std::endl;
 
-////
-//// Local definitions
-////
-
 namespace {
 
-  // Types
+  // Different node types, used as template parameter
   enum NodeType { NonPV, PV };
 
-  // Set to true to force running with one thread.
-  // Used for debugging SMP code.
+  // Set to true to force running with one thread. Used for debugging.
   const bool FakeSplit = false;
 
-  // Fast lookup table of sliding pieces indexed by Piece
+  // Lookup table to check if a Piece is a slider and its access function
   const bool Slidings[18] = { 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 };
   inline bool piece_is_slider(Piece p) { return Slidings[p]; }
 
-  // ThreadsManager class is used to handle all the threads related stuff in search,
-  // init, starting, parking and, the most important, launching a slave thread at a
-  // split point are what this class does. All the access to shared thread data is
-  // done through this class, so that we avoid using global variables instead.
+  // ThreadsManager class is used to handle all the threads related stuff like init,
+  // starting, parking and, the most important, launching a slave thread at a split
+  // point. All the access to shared thread data is done through this class.
 
   class ThreadsManager {
     /* As long as the single ThreadsManager object is defined as a global we don't
@@ -105,7 +94,7 @@ namespace {
   };
 
 
-  // RootMove struct is used for moves at the root at the tree. For each root
+  // RootMove struct is used for moves at the root of the tree. For each root
   // move, we store two scores, a node count, and a PV (really a refutation
   // in the case of moves which fail low). Value pv_score is normally set at
   // -VALUE_INFINITE for all non-pv moves, while non_pv_score is computed
@@ -120,8 +109,8 @@ namespace {
     // RootMove::operator<() is the comparison function used when
     // sorting the moves. A move m1 is considered to be better
     // than a move m2 if it has an higher pv_score, or if it has
-    // equal pv_score but m1 has the higher non_pv_score. In this
-    // way we are guaranteed that PV moves are always sorted as first.
+    // equal pv_score but m1 has the higher non_pv_score. In this way
+    // we are guaranteed that PV moves are always sorted as first.
     bool operator<(const RootMove& m) const {
       return pv_score != m.pv_score ? pv_score < m.pv_score
                                     : non_pv_score < m.non_pv_score;
@@ -129,7 +118,7 @@ namespace {
 
     void extract_pv_from_tt(Position& pos);
     void insert_pv_in_tt(Position& pos);
-    std::string pv_info_to_uci(const Position& pos, Value alpha, Value beta, int pvLine = 0);
+    std::string pv_info_to_uci(Position& pos, int depth, Value alpha, Value beta, int pvIdx);
 
     int64_t nodes;
     Value pv_score;
@@ -138,32 +127,41 @@ namespace {
   };
 
 
-  // RootMoveList struct is essentially a std::vector<> of RootMove objects,
+  // RootMoveList struct is just a std::vector<> of RootMove objects,
   // with an handful of methods above the standard ones.
 
   struct RootMoveList : public std::vector<RootMove> {
 
     typedef std::vector<RootMove> Base;
 
-    RootMoveList(Position& pos, Move searchMoves[]);
-    void set_non_pv_scores(const Position& pos);
-
+    void init(Position& pos, Move searchMoves[]);
     void sort() { insertion_sort<RootMove, Base::iterator>(begin(), end()); }
     void sort_multipv(int n) { insertion_sort<RootMove, Base::iterator>(begin(), begin() + n); }
+
+    int bestMoveChanges;
   };
 
 
+  // Overload operator<<() to make it easier to print moves in a coordinate
+  // notation compatible with UCI protocol.
+  std::ostream& operator<<(std::ostream& os, Move m) {
+
+    bool chess960 = (os.iword(0) != 0); // See set960()
+    return os << move_to_uci(m, chess960);
+  }
+
+
   // When formatting a move for std::cout we must know if we are in Chess960
   // or not. To keep using the handy operator<<() on the move the trick is to
   // embed this flag in the stream itself. Function-like named enum set960 is
   // used as a custom manipulator and the stream internal general-purpose array,
   // accessed through ios_base::iword(), is used to pass the flag to the move's
-  // operator<<() that will use it to properly format castling moves.
+  // operator<<() that will read it to properly format castling moves.
   enum set960 {};
 
-  std::ostream& operator<< (std::ostream& os, const set960& m) {
+  std::ostream& operator<< (std::ostream& os, const set960& f) {
 
-    os.iword(0) = int(m);
+    os.iword(0) = int(f);
     return os;
   }
 
@@ -194,22 +192,18 @@ namespace {
 
   // Extensions. Configurable UCI options
   // Array index 0 is used at non-PV nodes, index 1 at PV nodes.
-  Depth CheckExtension[2], SingleEvasionExtension[2], PawnPushTo7thExtension[2];
-  Depth PassedPawnExtension[2], PawnEndgameExtension[2], MateThreatExtension[2];
+  Depth CheckExtension[2], PawnPushTo7thExtension[2], PassedPawnExtension[2];
+  Depth PawnEndgameExtension[2], MateThreatExtension[2];
 
   // Minimum depth for use of singular extension
   const Depth SingularExtensionDepth[2] = { 8 * ONE_PLY /* non-PV */, 6 * ONE_PLY /* PV */};
 
-  // If the TT move is at least SingularExtensionMargin better then the
-  // remaining ones we will extend it.
-  const Value SingularExtensionMargin = Value(0x20);
-
   // Step 12. Futility pruning
 
   // Futility margin for quiescence search
   const Value FutilityMarginQS = Value(0x80);
 
-  // Futility lookup tables (initialized at startup) and their getter functions
+  // Futility lookup tables (initialized at startup) and their access functions
   Value FutilityMarginsMatrix[16][64]; // [depth][moveNumber]
   int FutilityMoveCountArray[32]; // [depth]
 
@@ -224,11 +218,6 @@ namespace {
   template <NodeType PV>
   inline Depth reduction(Depth d, int mn) { return (Depth) ReductionMatrix[PV][Min(d / 2, 63)][Min(mn, 63)]; }
 
-  // Common adjustments
-
-  // Search depth at iteration 1
-  const Depth InitialDepth = ONE_PLY;
-
   // Easy move margin. An easy move candidate must be at least this much
   // better than the second best move.
   const Value EasyMoveMargin = Value(0x200);
@@ -236,49 +225,48 @@ namespace {
 
   /// Namespace variables
 
-  // Book object
+  // Book
   Book OpeningBook;
 
-  // Iteration counter
-  int Iteration;
-
-  // Scores and number of times the best move changed for each iteration
-  Value ValueByIteration[PLY_MAX_PLUS_2];
-  int BestMoveChangesByIteration[PLY_MAX_PLUS_2];
-
-  // Search window management
-  int AspirationDelta;
+  // Root move list
+  RootMoveList Rml;
 
   // MultiPV mode
-  int MultiPV;
+  int MultiPV, UCIMultiPV;
 
-  // Time managment variables
+  // Time management variables
   int SearchStartTime, MaxNodes, MaxDepth, ExactMaxTime;
-  bool UseTimeManagement, InfiniteSearch, PonderSearch, StopOnPonderhit;
-  bool FirstRootMove, AbortSearch, Quit, AspirationFailLow;
+  bool UseTimeManagement, InfiniteSearch, Pondering, StopOnPonderhit;
+  bool FirstRootMove, StopRequest, QuitRequest, AspirationFailLow;
   TimeManager TimeMgr;
 
   // Log file
   bool UseLogFile;
   std::ofstream LogFile;
 
-  // Multi-threads manager object
+  // Skill level adjustment
+  int SkillLevel;
+  bool SkillLevelEnabled;
+  RKISS RK;
+
+  // Multi-threads manager
   ThreadsManager ThreadsMgr;
 
   // Node counters, used only by thread[0] but try to keep in different cache
   // lines (64 bytes each) from the heavy multi-thread read accessed variables.
+  bool SendSearchedNodes;
   int NodesSincePoll;
   int NodesBetweenPolls = 30000;
 
   // History table
   History H;
 
+
   /// Local functions
 
   Move id_loop(Position& pos, Move searchMoves[], Move* ponderMove);
-  Value root_search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, RootMoveList& rml);
 
-  template <NodeType PvNode, bool SpNode>
+  template <NodeType PvNode, bool SpNode, bool Root>
   Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply);
 
   template <NodeType PvNode>
@@ -287,32 +275,29 @@ namespace {
   template <NodeType PvNode>
   inline Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply) {
 
-      return depth < ONE_PLY ? qsearch<PvNode>(pos, ss, alpha, beta, DEPTH_ZERO, ply)
-                             : search<PvNode, false>(pos, ss, alpha, beta, depth, ply);
+    return depth < ONE_PLY ? qsearch<PvNode>(pos, ss, alpha, beta, DEPTH_ZERO, ply)
+                           : search<PvNode, false, false>(pos, ss, alpha, beta, depth, ply);
   }
 
   template <NodeType PvNode>
-  Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck, bool singleEvasion, bool mateThreat, bool* dangerous);
+  Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck, bool mateThreat, bool* dangerous);
 
   bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta, Value *bValue);
   bool connected_moves(const Position& pos, Move m1, Move m2);
-  bool value_is_mate(Value value);
   Value value_to_tt(Value v, int ply);
   Value value_from_tt(Value v, int ply);
   bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply);
   bool connected_threat(const Position& pos, Move m, Move threat);
   Value refine_eval(const TTEntry* tte, Value defaultEval, int ply);
   void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount);
-  void update_killers(Move m, SearchStack* ss);
   void update_gains(const Position& pos, Move move, Value before, Value after);
+  void do_skill_level(Move* best, Move* ponder);
 
   int current_search_time();
   std::string value_to_uci(Value v);
-  int nps(const Position& pos);
+  std::string speed_to_uci(int64_t nodes);
   void poll(const Position& pos);
-  void ponderhit();
   void wait_for_stop_or_ponderhit();
-  void init_ss_array(SearchStack* ss, int size);
 
 #if !defined(_MSC_VER)
   void* init_thread(void* threadID);
@@ -320,23 +305,78 @@ namespace {
   DWORD WINAPI init_thread(LPVOID threadID);
 #endif
 
-}
 
+  // MovePickerExt is an extended MovePicker used to choose at compile time
+  // the proper move source according to the type of node.
+  template<bool SpNode, bool Root> struct MovePickerExt;
+
+  // In Root nodes use RootMoveList as source. Score and sort the root moves
+  // before to search them.
+  template<> struct MovePickerExt<false, true> : public MovePicker {
+
+    MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, SearchStack* ss, Value b)
+                 : MovePicker(p, ttm, d, h, ss, b), firstCall(true) {
+      Move move;
+      Value score = VALUE_ZERO;
 
-////
-//// Functions
-////
+      // Score root moves using standard ordering used in main search, the moves
+      // are scored according to the order in which they are returned by MovePicker.
+      // This is the second order score that is used to compare the moves when
+      // the first orders pv_score of both moves are equal.
+      while ((move = MovePicker::get_next_move()) != MOVE_NONE)
+          for (rm = Rml.begin(); rm != Rml.end(); ++rm)
+              if (rm->pv[0] == move)
+              {
+                  rm->non_pv_score = score--;
+                  break;
+              }
 
-/// init_threads(), exit_threads() and nodes_searched() are helpers to
-/// give accessibility to some TM methods from outside of current file.
+      Rml.sort();
+      rm = Rml.begin();
+    }
 
-void init_threads() { ThreadsMgr.init_threads(); }
-void exit_threads() { ThreadsMgr.exit_threads(); }
+    Move get_next_move() {
 
+      if (!firstCall)
+          ++rm;
+      else
+          firstCall = false;
 
-/// init_search() is called during startup. It initializes various lookup tables
+      return rm != Rml.end() ? rm->pv[0] : MOVE_NONE;
+    }
 
-void init_search() {
+    RootMoveList::iterator rm;
+    bool firstCall;
+  };
+
+  // In SpNodes use split point's shared MovePicker object as move source
+  template<> struct MovePickerExt<true, false> : public MovePicker {
+
+    MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, SearchStack* ss, Value b)
+                  : MovePicker(p, ttm, d, h, ss, b), mp(ss->sp->mp) {}
+
+    Move get_next_move() { return mp->get_next_move(); }
+
+    RootMoveList::iterator rm; // Dummy, needed to compile
+    MovePicker* mp;
+  };
+
+  // Default case, create and use a MovePicker object as source
+  template<> struct MovePickerExt<false, false> : public MovePicker {
+
+    MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, SearchStack* ss, Value b)
+                  : MovePicker(p, ttm, d, h, ss, b) {}
+
+    RootMoveList::iterator rm; // Dummy, needed to compile
+  };
+
+} // namespace
+
+
+/// init_threads() is called during startup. It initializes various lookup tables
+/// and creates and launches search threads.
+
+void init_threads() {
 
   int d;  // depth (ONE_PLY == 2)
   int hd; // half depth (ONE_PLY == 1)
@@ -358,88 +398,86 @@ void init_search() {
   // Init futility move count array
   for (d = 0; d < 32; d++)
       FutilityMoveCountArray[d] = int(3.001 + 0.25 * pow(d, 2.0));
+
+  // Create and startup threads
+  ThreadsMgr.init_threads();
 }
 
 
-/// perft() is our utility to verify move generation is bug free. All the legal
-/// moves up to given depth are generated and counted and the sum returned.
+/// exit_threads() is a trampoline to access ThreadsMgr from outside of current file
+void exit_threads() { ThreadsMgr.exit_threads(); }
 
-int perft(Position& pos, Depth depth)
-{
-    MoveStack mlist[MOVES_MAX];
-    StateInfo st;
-    Move m;
-    int sum = 0;
 
-    // Generate all legal moves
-    MoveStack* last = generate_moves(pos, mlist);
+/// perft() is our utility to verify move generation. All the legal moves up to
+/// given depth are generated and counted and the sum returned.
 
-    // If we are at the last ply we don't need to do and undo
-    // the moves, just to count them.
-    if (depth <= ONE_PLY)
-        return int(last - mlist);
+int64_t perft(Position& pos, Depth depth) {
 
-    // Loop through all legal moves
-    CheckInfo ci(pos);
-    for (MoveStack* cur = mlist; cur != last; cur++)
-    {
-        m = cur->move;
-        pos.do_move(m, st, ci, pos.move_is_check(m, ci));
-        sum += perft(pos, depth - ONE_PLY);
-        pos.undo_move(m);
-    }
-    return sum;
+  MoveStack mlist[MOVES_MAX];
+  StateInfo st;
+  Move m;
+  int64_t sum = 0;
+
+  // Generate all legal moves
+  MoveStack* last = generate<MV_LEGAL>(pos, mlist);
+
+  // If we are at the last ply we don't need to do and undo
+  // the moves, just to count them.
+  if (depth <= ONE_PLY)
+      return int(last - mlist);
+
+  // Loop through all legal moves
+  CheckInfo ci(pos);
+  for (MoveStack* cur = mlist; cur != last; cur++)
+  {
+      m = cur->move;
+      pos.do_move(m, st, ci, pos.move_is_check(m, ci));
+      sum += perft(pos, depth - ONE_PLY);
+      pos.undo_move(m);
+  }
+  return sum;
 }
 
 
 /// think() is the external interface to Stockfish's search, and is called when
-/// the program receives the UCI 'go' command. It initializes various
-/// search-related global variables, and calls root_search(). It returns false
-/// when a quit command is received during the search.
+/// the program receives the UCI 'go' command. It initializes various global
+/// variables, and calls id_loop(). It returns false when a quit command is
+/// received during the search.
 
 bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[],
            int movesToGo, int maxDepth, int maxNodes, int maxTime, Move searchMoves[]) {
 
-  // Initialize global search variables
-  StopOnPonderhit = AbortSearch = Quit = AspirationFailLow = false;
+  // Initialize global search-related variables
+  StopOnPonderhit = StopRequest = QuitRequest = AspirationFailLow = SendSearchedNodes = false;
   NodesSincePoll = 0;
   SearchStartTime = get_system_time();
   ExactMaxTime = maxTime;
   MaxDepth = maxDepth;
   MaxNodes = maxNodes;
   InfiniteSearch = infinite;
-  PonderSearch = ponder;
+  Pondering = ponder;
   UseTimeManagement = !ExactMaxTime && !MaxDepth && !MaxNodes && !InfiniteSearch;
 
   // Look for a book move, only during games, not tests
   if (UseTimeManagement && Options["OwnBook"].value<bool>())
   {
-      if (Options["Book File"].value<std::string>() != OpeningBook.file_name())
+      if (Options["Book File"].value<std::string>() != OpeningBook.name())
           OpeningBook.open(Options["Book File"].value<std::string>());
 
       Move bookMove = OpeningBook.get_move(pos, Options["Best Book Move"].value<bool>());
       if (bookMove != MOVE_NONE)
       {
-          if (PonderSearch)
+          if (Pondering)
               wait_for_stop_or_ponderhit();
 
           cout << "bestmove " << bookMove << endl;
-          return true;
+          return !QuitRequest;
       }
   }
 
-  // Read UCI option values
-  TT.set_size(Options["Hash"].value<int>());
-  if (Options["Clear Hash"].value<bool>())
-  {
-      Options["Clear Hash"].set_value("false");
-      TT.clear();
-  }
-
+  // Read UCI options
   CheckExtension[1]         = Options["Check Extension (PV nodes)"].value<Depth>();
   CheckExtension[0]         = Options["Check Extension (non-PV nodes)"].value<Depth>();
-  SingleEvasionExtension[1] = Options["Single Evasion Extension (PV nodes)"].value<Depth>();
-  SingleEvasionExtension[0] = Options["Single Evasion Extension (non-PV nodes)"].value<Depth>();
   PawnPushTo7thExtension[1] = Options["Pawn Push to 7th Extension (PV nodes)"].value<Depth>();
   PawnPushTo7thExtension[0] = Options["Pawn Push to 7th Extension (non-PV nodes)"].value<Depth>();
   PassedPawnExtension[1]    = Options["Passed Pawn Extension (PV nodes)"].value<Depth>();
@@ -448,19 +486,29 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[
   PawnEndgameExtension[0]   = Options["Pawn Endgame Extension (non-PV nodes)"].value<Depth>();
   MateThreatExtension[1]    = Options["Mate Threat Extension (PV nodes)"].value<Depth>();
   MateThreatExtension[0]    = Options["Mate Threat Extension (non-PV nodes)"].value<Depth>();
-  MultiPV                   = Options["MultiPV"].value<int>();
+  UCIMultiPV                = Options["MultiPV"].value<int>();
+  SkillLevel                = Options["Skill level"].value<int>();
   UseLogFile                = Options["Use Search Log"].value<bool>();
 
-  if (UseLogFile)
-      LogFile.open(Options["Search Log Filename"].value<std::string>().c_str(), std::ios::out | std::ios::app);
+  read_evaluation_uci_options(pos.side_to_move());
+
+  if (Options["Clear Hash"].value<bool>())
+  {
+      Options["Clear Hash"].set_value("false");
+      TT.clear();
+  }
+  TT.set_size(Options["Hash"].value<int>());
 
-  read_weights(pos.side_to_move());
+  // Do we have to play with skill handicap? In this case enable MultiPV that
+  // we will use behind the scenes to retrieve a set of possible moves.
+  SkillLevelEnabled = (SkillLevel < 20);
+  MultiPV = (SkillLevelEnabled ? Max(UCIMultiPV, 4) : UCIMultiPV);
 
   // Set the number of active threads
   ThreadsMgr.read_uci_options();
   init_eval(ThreadsMgr.active_threads());
 
-  // Wake up needed threads
+  // Wake up needed threads. Main thread, with threadID == 0, is always active
   for (int i = 1; i < ThreadsMgr.active_threads(); i++)
       ThreadsMgr.wake_sleeping_thread(i);
 
@@ -470,8 +518,7 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[
   if (UseTimeManagement)
       TimeMgr.init(myTime, myIncrement, movesToGo, pos.startpos_ply_counter());
 
-  // Set best NodesBetweenPolls interval to avoid lagging under
-  // heavy time pressure.
+  // Set best NodesBetweenPolls interval to avoid lagging under time pressure
   if (MaxNodes)
       NodesBetweenPolls = Min(MaxNodes, 30000);
   else if (myTime && myTime < 1000)
@@ -483,425 +530,238 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[
 
   // Write search information to log file
   if (UseLogFile)
-      LogFile << "Searching: " << pos.to_fen() << endl
-              << "infinite: "  << infinite
-              << " ponder: "   << ponder
-              << " time: "     << myTime
-              << " increment: " << myIncrement
-              << " moves to go: " << movesToGo << endl;
+  {
+      std::string name = Options["Search Log Filename"].value<std::string>();
+      LogFile.open(name.c_str(), std::ios::out | std::ios::app);
+
+      LogFile << "\nSearching: "  << pos.to_fen()
+              << "\ninfinite: "   << infinite
+              << " ponder: "      << ponder
+              << " time: "        << myTime
+              << " increment: "   << myIncrement
+              << " moves to go: " << movesToGo
+              << endl;
+  }
 
   // We're ready to start thinking. Call the iterative deepening loop function
   Move ponderMove = MOVE_NONE;
   Move bestMove = id_loop(pos, searchMoves, &ponderMove);
 
   // Print final search statistics
-  cout << "info nodes " << pos.nodes_searched()
-       << " nps " << nps(pos)
-       << " time " << current_search_time() << endl;
-
-  // If we are pondering or in infinite search, we shouldn't print the
-  // best move before we are told to do so.
-  if (!AbortSearch && (PonderSearch || InfiniteSearch))
-      wait_for_stop_or_ponderhit();
-
-  // Could be both MOVE_NONE when searching on a stalemate position
-  cout << "bestmove " << bestMove << " ponder " << ponderMove << endl;
+  cout << "info" << speed_to_uci(pos.nodes_searched()) << endl;
 
   if (UseLogFile)
   {
-      if (dbg_show_mean)
-          dbg_print_mean(LogFile);
+      int t = current_search_time();
 
-      if (dbg_show_hit_rate)
-          dbg_print_hit_rate(LogFile);
-
-      LogFile << "\nNodes: " << pos.nodes_searched()
-              << "\nNodes/second: " << nps(pos)
-              << "\nBest move: " << move_to_san(pos, bestMove);
+      LogFile << "Nodes: "          << pos.nodes_searched()
+              << "\nNodes/second: " << (t > 0 ? int(pos.nodes_searched() * 1000 / t) : 0)
+              << "\nBest move: "    << move_to_san(pos, bestMove);
 
       StateInfo st;
       pos.do_move(bestMove, st);
-      LogFile << "\nPonder move: "
-              << move_to_san(pos, ponderMove) // Works also with MOVE_NONE
-              << endl;
-  }
-
-  if (UseLogFile)
+      LogFile << "\nPonder move: " << move_to_san(pos, ponderMove) << endl;
+      pos.undo_move(bestMove); // Return from think() with unchanged position
       LogFile.close();
+  }
 
   // This makes all the threads to go to sleep
   ThreadsMgr.set_active_threads(1);
 
-  return !Quit;
+  // If we are pondering or in infinite search, we shouldn't print the
+  // best move before we are told to do so.
+  if (!StopRequest && (Pondering || InfiniteSearch))
+      wait_for_stop_or_ponderhit();
+
+  // Could be MOVE_NONE when searching on a stalemate position
+  cout << "bestmove " << bestMove;
+
+  // UCI protol is not clear on allowing sending an empty ponder move, instead
+  // it is clear that ponder move is optional. So skip it if empty.
+  if (ponderMove != MOVE_NONE)
+      cout << " ponder " << ponderMove;
+
+  cout << endl;
+
+  return !QuitRequest;
 }
 
 
 namespace {
 
-  // id_loop() is the main iterative deepening loop. It calls root_search
-  // repeatedly with increasing depth until the allocated thinking time has
-  // been consumed, the user stops the search, or the maximum search depth is
-  // reached.
+  // id_loop() is the main iterative deepening loop. It calls search() repeatedly
+  // with increasing depth until the allocated thinking time has been consumed,
+  // user stops the search, or the maximum search depth is reached.
 
   Move id_loop(Position& pos, Move searchMoves[], Move* ponderMove) {
 
     SearchStack ss[PLY_MAX_PLUS_2];
-    Depth depth;
-    Move EasyMove = MOVE_NONE;
-    Value value, alpha = -VALUE_INFINITE, beta = VALUE_INFINITE;
+    Value bestValues[PLY_MAX_PLUS_2];
+    int bestMoveChanges[PLY_MAX_PLUS_2];
+    int depth, aspirationDelta, skillSamplingDepth;
+    Value value, alpha, beta;
+    Move bestMove, easyMove, skillBest, skillPonder;
+
+    // Initialize stuff before a new search
+    memset(ss, 0, 4 * sizeof(SearchStack));
+    TT.new_search();
+    H.clear();
+    *ponderMove = bestMove = easyMove = skillBest = skillPonder = MOVE_NONE;
+    depth = aspirationDelta = skillSamplingDepth = 0;
+    alpha = -VALUE_INFINITE, beta = VALUE_INFINITE;
+    ss->currentMove = MOVE_NULL; // Hack to skip update_gains()
 
-    // Moves to search are verified, scored and sorted
-    RootMoveList rml(pos, searchMoves);
+    // Moves to search are verified and copied
+    Rml.init(pos, searchMoves);
 
-    // Handle special case of searching on a mate/stale position
-    if (rml.size() == 0)
+    // Handle special case of searching on a mate/stalemate position
+    if (Rml.size() == 0)
     {
-        Value s = (pos.is_check() ? -VALUE_MATE : VALUE_DRAW);
-
-        cout << "info depth " << 1
-             << " score " << value_to_uci(s) << endl;
+        cout << "info depth 0 score "
+             << value_to_uci(pos.is_check() ? -VALUE_MATE : VALUE_DRAW)
+             << endl;
 
         return MOVE_NONE;
     }
 
-    // Initialize
-    TT.new_search();
-    H.clear();
-    init_ss_array(ss, PLY_MAX_PLUS_2);
-    ValueByIteration[1] = rml[0].pv_score;
-    Iteration = 1;
-
-    // Send initial RootMoveList scoring (iteration 1)
-    cout << set960(pos.is_chess960()) // Is enough to set once at the beginning
-         << "info depth " << Iteration
-         << "\n" << rml[0].pv_info_to_uci(pos, alpha, beta) << endl;
-
-    // Is one move significantly better than others after initial scoring ?
-    if (   rml.size() == 1
-        || rml[0].pv_score > rml[1].pv_score + EasyMoveMargin)
-        EasyMove = rml[0].pv[0];
+    // Choose a random sampling depth according to SkillLevel so that at low
+    // skills there is an higher risk to pick up a blunder.
+    if (SkillLevelEnabled)
+        skillSamplingDepth = 4 + SkillLevel + (RK.rand<unsigned>() % 4);
 
     // Iterative deepening loop
-    while (Iteration < PLY_MAX)
+    while (++depth <= PLY_MAX && (!MaxDepth || depth <= MaxDepth) && !StopRequest)
     {
-        // Initialize iteration
-        Iteration++;
-        BestMoveChangesByIteration[Iteration] = 0;
-
-        cout << "info depth " << Iteration << endl;
+        Rml.bestMoveChanges = 0;
+        cout << set960(pos.is_chess960()) << "info depth " << depth << endl;
 
         // Calculate dynamic aspiration window based on previous iterations
-        if (MultiPV == 1 && Iteration >= 6 && abs(ValueByIteration[Iteration - 1]) < VALUE_KNOWN_WIN)
+        if (MultiPV == 1 && depth >= 5 && abs(bestValues[depth - 1]) < VALUE_KNOWN_WIN)
         {
-            int prevDelta1 = ValueByIteration[Iteration - 1] - ValueByIteration[Iteration - 2];
-            int prevDelta2 = ValueByIteration[Iteration - 2] - ValueByIteration[Iteration - 3];
+            int prevDelta1 = bestValues[depth - 1] - bestValues[depth - 2];
+            int prevDelta2 = bestValues[depth - 2] - bestValues[depth - 3];
 
-            AspirationDelta = Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16);
-            AspirationDelta = (AspirationDelta + 7) / 8 * 8; // Round to match grainSize
+            aspirationDelta = Min(Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16), 24);
+            aspirationDelta = (aspirationDelta + 7) / 8 * 8; // Round to match grainSize
 
-            alpha = Max(ValueByIteration[Iteration - 1] - AspirationDelta, -VALUE_INFINITE);
-            beta  = Min(ValueByIteration[Iteration - 1] + AspirationDelta,  VALUE_INFINITE);
+            alpha = Max(bestValues[depth - 1] - aspirationDelta, -VALUE_INFINITE);
+            beta  = Min(bestValues[depth - 1] + aspirationDelta,  VALUE_INFINITE);
         }
 
-        depth = (Iteration - 2) * ONE_PLY + InitialDepth;
+        // Start with a small aspiration window and, in case of fail high/low,
+        // research with bigger window until not failing high/low anymore.
+        do {
+            // Search starting from ss+1 to allow calling update_gains()
+            value = search<PV, false, true>(pos, ss+1, alpha, beta, depth * ONE_PLY, 0);
+
+            // Write PV back to transposition table in case the relevant entries
+            // have been overwritten during the search.
+            for (int i = 0; i < Min(MultiPV, (int)Rml.size()); i++)
+                Rml[i].insert_pv_in_tt(pos);
+
+            // Value cannot be trusted. Break out immediately!
+            if (StopRequest)
+                break;
 
-        // Search to the current depth, rml is updated and sorted
-        value = root_search(pos, ss, alpha, beta, depth, rml);
+            assert(value >= alpha);
+
+            // In case of failing high/low increase aspiration window and research,
+            // otherwise exit the fail high/low loop.
+            if (value >= beta)
+            {
+                beta = Min(beta + aspirationDelta, VALUE_INFINITE);
+                aspirationDelta += aspirationDelta / 2;
+            }
+            else if (value <= alpha)
+            {
+                AspirationFailLow = true;
+                StopOnPonderhit = false;
+
+                alpha = Max(alpha - aspirationDelta, -VALUE_INFINITE);
+                aspirationDelta += aspirationDelta / 2;
+            }
+            else
+                break;
 
-        if (AbortSearch)
-            break; // Value cannot be trusted. Break out immediately!
+        } while (abs(value) < VALUE_KNOWN_WIN);
 
-        //Save info about search result
-        ValueByIteration[Iteration] = value;
+        // Collect info about search result
+        bestMove = Rml[0].pv[0];
+        *ponderMove = Rml[0].pv[1];
+        bestValues[depth] = value;
+        bestMoveChanges[depth] = Rml.bestMoveChanges;
 
-        // Drop the easy move if differs from the new best move
-        if (rml[0].pv[0] != EasyMove)
-            EasyMove = MOVE_NONE;
+        // Do we need to pick now the best and the ponder moves ?
+        if (SkillLevelEnabled && depth == skillSamplingDepth)
+            do_skill_level(&skillBest, &skillPonder);
 
-        if (UseTimeManagement)
+        // Send PV line to GUI and to log file
+        for (int i = 0; i < Min(UCIMultiPV, (int)Rml.size()); i++)
+            cout << Rml[i].pv_info_to_uci(pos, depth, alpha, beta, i) << endl;
+
+        if (UseLogFile)
+            LogFile << pretty_pv(pos, depth, value, current_search_time(), Rml[0].pv) << endl;
+
+        // Init easyMove after first iteration or drop if differs from the best move
+        if (depth == 1 && (Rml.size() == 1 || Rml[0].pv_score > Rml[1].pv_score + EasyMoveMargin))
+            easyMove = bestMove;
+        else if (bestMove != easyMove)
+            easyMove = MOVE_NONE;
+
+        if (UseTimeManagement && !StopRequest)
         {
             // Time to stop?
-            bool stopSearch = false;
-
-            // Stop search early if there is only a single legal move,
-            // we search up to Iteration 6 anyway to get a proper score.
-            if (Iteration >= 6 && rml.size() == 1)
-                stopSearch = true;
+            bool noMoreTime = false;
 
             // Stop search early when the last two iterations returned a mate score
-            if (  Iteration >= 6
-                && abs(ValueByIteration[Iteration]) >= abs(VALUE_MATE) - 100
-                && abs(ValueByIteration[Iteration-1]) >= abs(VALUE_MATE) - 100)
-                stopSearch = true;
-
-            // Stop search early if one move seems to be much better than the others
-            if (   Iteration >= 8
-                && EasyMove == rml[0].pv[0]
-                && (  (   rml[0].nodes > (pos.nodes_searched() * 85) / 100
+            if (   depth >= 5
+                && abs(bestValues[depth])     >= abs(VALUE_MATE) - 100
+                && abs(bestValues[depth - 1]) >= abs(VALUE_MATE) - 100)
+                noMoreTime = true;
+
+            // Stop search early if one move seems to be much better than the
+            // others or if there is only a single legal move. In this latter
+            // case we search up to Iteration 8 anyway to get a proper score.
+            if (   depth >= 7
+                && easyMove == bestMove
+                && (   Rml.size() == 1
+                    ||(   Rml[0].nodes > (pos.nodes_searched() * 85) / 100
                        && current_search_time() > TimeMgr.available_time() / 16)
-                    ||(   rml[0].nodes > (pos.nodes_searched() * 98) / 100
+                    ||(   Rml[0].nodes > (pos.nodes_searched() * 98) / 100
                        && current_search_time() > TimeMgr.available_time() / 32)))
-                stopSearch = true;
+                noMoreTime = true;
 
             // Add some extra time if the best move has changed during the last two iterations
-            if (Iteration > 5 && Iteration <= 50)
-                TimeMgr.pv_instability(BestMoveChangesByIteration[Iteration],
-                                       BestMoveChangesByIteration[Iteration-1]);
+            if (depth > 4 && depth < 50)
+                TimeMgr.pv_instability(bestMoveChanges[depth], bestMoveChanges[depth-1]);
 
             // Stop search if most of MaxSearchTime is consumed at the end of the
             // iteration. We probably don't have enough time to search the first
             // move at the next iteration anyway.
             if (current_search_time() > (TimeMgr.available_time() * 80) / 128)
-                stopSearch = true;
+                noMoreTime = true;
 
-            if (stopSearch)
+            if (noMoreTime)
             {
-                if (PonderSearch)
+                if (Pondering)
                     StopOnPonderhit = true;
                 else
                     break;
             }
         }
-
-        if (MaxDepth && Iteration >= MaxDepth)
-            break;
     }
 
-    *ponderMove = rml[0].pv[1];
-    return rml[0].pv[0];
-  }
-
-
-  // root_search() is the function which searches the root node. It is
-  // similar to search_pv except that it prints some information to the
-  // standard output and handles the fail low/high loops.
-
-  Value root_search(Position& pos, SearchStack* ss, Value alpha,
-                    Value beta, Depth depth, RootMoveList& rml) {
-    StateInfo st;
-    CheckInfo ci(pos);
-    int64_t nodes;
-    Move move;
-    Depth ext, newDepth;
-    Value value, oldAlpha;
-    bool isCheck, moveIsCheck, captureOrPromotion, dangerous;
-    int researchCountFH, researchCountFL;
-
-    researchCountFH = researchCountFL = 0;
-    oldAlpha = alpha;
-    isCheck = pos.is_check();
-
-    // Step 1. Initialize node (polling is omitted at root)
-    ss->currentMove = ss->bestMove = MOVE_NONE;
-
-    // Step 2. Check for aborted search (omitted at root)
-    // Step 3. Mate distance pruning (omitted at root)
-    // Step 4. Transposition table lookup (omitted at root)
-
-    // Step 5. Evaluate the position statically
-    // At root we do this only to get reference value for child nodes
-    ss->evalMargin = VALUE_NONE;
-    ss->eval = isCheck ? VALUE_NONE : evaluate(pos, ss->evalMargin);
-
-    // Step 6. Razoring (omitted at root)
-    // Step 7. Static null move pruning (omitted at root)
-    // Step 8. Null move search with verification search (omitted at root)
-    // Step 9. Internal iterative deepening (omitted at root)
-
-    // Step extra. Fail low loop
-    // We start with small aspiration window and in case of fail low, we research
-    // with bigger window until we are not failing low anymore.
-    while (1)
+    // When using skills fake best and ponder moves with the sub-optimal ones
+    if (SkillLevelEnabled)
     {
-        // Sort the moves before to (re)search
-        rml.set_non_pv_scores(pos);
-        rml.sort();
-
-        // Step 10. Loop through all moves in the root move list
-        for (int i = 0; i < (int)rml.size() && !AbortSearch; i++)
-        {
-            // This is used by time management
-            FirstRootMove = (i == 0);
-
-            // Save the current node count before the move is searched
-            nodes = pos.nodes_searched();
-
-            // Pick the next root move, and print the move and the move number to
-            // the standard output.
-            move = ss->currentMove = rml[i].pv[0];
-
-            if (current_search_time() >= 1000)
-                cout << "info currmove " << move
-                     << " currmovenumber " << i + 1 << endl;
-
-            moveIsCheck = pos.move_is_check(move);
-            captureOrPromotion = pos.move_is_capture_or_promotion(move);
-
-            // Step 11. Decide the new search depth
-            ext = extension<PV>(pos, move, captureOrPromotion, moveIsCheck, false, false, &dangerous);
-            newDepth = depth + ext;
-
-            // Step 12. Futility pruning (omitted at root)
-
-            // Step extra. Fail high loop
-            // If move fails high, we research with bigger window until we are not failing
-            // high anymore.
-            value = -VALUE_INFINITE;
-
-            while (1)
-            {
-                // Step 13. Make the move
-                pos.do_move(move, st, ci, moveIsCheck);
-
-                // Step extra. pv search
-                // We do pv search for first moves (i < MultiPV)
-                // and for fail high research (value > alpha)
-                if (i < MultiPV || value > alpha)
-                {
-                    // Aspiration window is disabled in multi-pv case
-                    if (MultiPV > 1)
-                        alpha = -VALUE_INFINITE;
-
-                    // Full depth PV search, done on first move or after a fail high
-                    value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, 1);
-                }
-                else
-                {
-                    // Step 14. Reduced search
-                    // if the move fails high will be re-searched at full depth
-                    bool doFullDepthSearch = true;
-
-                    if (    depth >= 3 * ONE_PLY
-                        && !dangerous
-                        && !captureOrPromotion
-                        && !move_is_castle(move))
-                    {
-                        ss->reduction = reduction<PV>(depth, i - MultiPV + 2);
-                        if (ss->reduction)
-                        {
-                            assert(newDepth-ss->reduction >= ONE_PLY);
-
-                            // Reduced depth non-pv search using alpha as upperbound
-                            value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction, 1);
-                            doFullDepthSearch = (value > alpha);
-                        }
-                        ss->reduction = DEPTH_ZERO; // Restore original reduction
-                    }
-
-                    // Step 15. Full depth search
-                    if (doFullDepthSearch)
-                    {
-                        // Full depth non-pv search using alpha as upperbound
-                        value = -search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth, 1);
-
-                        // If we are above alpha then research at same depth but as PV
-                        // to get a correct score or eventually a fail high above beta.
-                        if (value > alpha)
-                            value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, 1);
-                    }
-                }
-
-                // Step 16. Undo move
-                pos.undo_move(move);
-
-                // Can we exit fail high loop ?
-                if (AbortSearch || value < beta)
-                    break;
-
-                // We are failing high and going to do a research. It's important to update
-                // the score before research in case we run out of time while researching.
-                ss->bestMove = move;
-                rml[i].pv_score = value;
-                rml[i].extract_pv_from_tt(pos);
-
-                // Inform GUI that PV has changed
-                cout << rml[i].pv_info_to_uci(pos, alpha, beta) << endl;
+        if (skillBest == MOVE_NONE) // Still unassigned ?
+            do_skill_level(&skillBest, &skillPonder);
 
-                // Prepare for a research after a fail high, each time with a wider window
-                beta = Min(beta + AspirationDelta * (1 << researchCountFH), VALUE_INFINITE);
-                researchCountFH++;
-
-            } // End of fail high loop
-
-            // Finished searching the move. If AbortSearch is true, the search
-            // was aborted because the user interrupted the search or because we
-            // ran out of time. In this case, the return value of the search cannot
-            // be trusted, and we break out of the loop without updating the best
-            // move and/or PV.
-            if (AbortSearch)
-                break;
-
-            // Remember searched nodes counts for this move
-            rml[i].nodes += pos.nodes_searched() - nodes;
-
-            assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE);
-            assert(value < beta);
-
-            // Step 17. Check for new best move
-            if (value <= alpha && i >= MultiPV)
-                rml[i].pv_score = -VALUE_INFINITE;
-            else
-            {
-                // PV move or new best move!
-
-                // Update PV
-                ss->bestMove = move;
-                rml[i].pv_score = value;
-                rml[i].extract_pv_from_tt(pos);
-
-                // We record how often the best move has been changed in each
-                // iteration. This information is used for time managment: When
-                // the best move changes frequently, we allocate some more time.
-                if (MultiPV == 1 && i > 0)
-                    BestMoveChangesByIteration[Iteration]++;
-
-                // Inform GUI that PV has changed, in case of multi-pv UCI protocol
-                // requires we send all the PV lines properly sorted.
-                rml.sort_multipv(i);
-
-                for (int j = 0; j < Min(MultiPV, (int)rml.size()); j++)
-                    cout << rml[j].pv_info_to_uci(pos, alpha, beta, j) << endl;
-
-                // Update alpha. In multi-pv we don't use aspiration window
-                if (MultiPV == 1)
-                {
-                    // Raise alpha to setup proper non-pv search upper bound
-                    if (value > alpha)
-                        alpha = value;
-                }
-                else // Set alpha equal to minimum score among the PV lines
-                    alpha = rml[Min(i, MultiPV - 1)].pv_score;
-
-            } // PV move or new best move
-
-            assert(alpha >= oldAlpha);
-
-            AspirationFailLow = (alpha == oldAlpha);
-
-            if (AspirationFailLow && StopOnPonderhit)
-                StopOnPonderhit = false;
-
-        } // Root moves loop
-
-        // Can we exit fail low loop ?
-        if (AbortSearch || !AspirationFailLow)
-            break;
-
-        // Prepare for a research after a fail low, each time with a wider window
-        oldAlpha = alpha = Max(alpha - AspirationDelta * (1 << researchCountFL), -VALUE_INFINITE);
-        researchCountFL++;
-
-    } // Fail low loop
-
-    // Sort the moves before to return
-    rml.sort();
-
-    // Write PV lines to transposition table, in case the relevant entries
-    // have been overwritten during the search.
-    for (int i = 0; i < MultiPV; i++)
-        rml[i].insert_pv_in_tt(pos);
+        bestMove = skillBest;
+        *ponderMove = skillPonder;
+    }
 
-    return alpha;
+    return bestMove;
   }
 
 
@@ -912,16 +772,17 @@ namespace {
   // all this work again. We also don't need to store anything to the hash table
   // here: This is taken care of after we return from the split point.
 
-  template <NodeType PvNode, bool SpNode>
+  template <NodeType PvNode, bool SpNode, bool Root>
   Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply) {
 
     assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE);
     assert(beta > alpha && beta <= VALUE_INFINITE);
     assert(PvNode || alpha == beta - 1);
-    assert(ply > 0 && ply < PLY_MAX);
+    assert((Root || ply > 0) && ply < PLY_MAX);
     assert(pos.thread() >= 0 && pos.thread() < ThreadsMgr.active_threads());
 
     Move movesSearched[MOVES_MAX];
+    int64_t nodes;
     StateInfo st;
     const TTEntry *tte;
     Key posKey;
@@ -930,11 +791,12 @@ namespace {
     ValueType vt;
     Value bestValue, value, oldAlpha;
     Value refinedValue, nullValue, futilityBase, futilityValueScaled; // Non-PV specific
-    bool isCheck, singleEvasion, singularExtensionNode, moveIsCheck, captureOrPromotion, dangerous;
+    bool isPvMove, isCheck, singularExtensionNode, moveIsCheck, captureOrPromotion, dangerous, isBadCap;
     bool mateThreat = false;
-    int moveCount = 0;
+    int moveCount = 0, playedMoveCount = 0;
     int threadID = pos.thread();
     SplitPoint* sp = NULL;
+
     refinedValue = bestValue = value = -VALUE_INFINITE;
     oldAlpha = alpha;
     isCheck = pos.is_check();
@@ -948,10 +810,12 @@ namespace {
         mateThreat = sp->mateThreat;
         goto split_point_start;
     }
-    else {} // Hack to fix icc's "statement is unreachable" warning
+    else if (Root)
+        bestValue = alpha;
 
     // Step 1. Initialize node and poll. Polling can abort search
-    ss->currentMove = ss->bestMove = threatMove = MOVE_NONE;
+    ss->currentMove = ss->bestMove = threatMove = (ss+1)->excludedMove = MOVE_NONE;
+    (ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO;
     (ss+2)->killers[0] = (ss+2)->killers[1] = (ss+2)->mateKiller = MOVE_NONE;
 
     if (threadID == 0 && ++NodesSincePoll > NodesBetweenPolls)
@@ -961,10 +825,10 @@ namespace {
     }
 
     // Step 2. Check for aborted search and immediate draw
-    if (   AbortSearch
-        || ThreadsMgr.cutoff_at_splitpoint(threadID)
-        || pos.is_draw()
-        || ply >= PLY_MAX - 1)
+    if ((   StopRequest
+         || ThreadsMgr.cutoff_at_splitpoint(threadID)
+         || pos.is_draw()
+         || ply >= PLY_MAX - 1) && !Root)
         return VALUE_DRAW;
 
     // Step 3. Mate distance pruning
@@ -974,31 +838,28 @@ namespace {
         return alpha;
 
     // Step 4. Transposition table lookup
-
     // We don't want the score of a partial search to overwrite a previous full search
-    // TT value, so we use a different position key in case of an excluded move exists.
+    // TT value, so we use a different position key in case of an excluded move.
     excludedMove = ss->excludedMove;
     posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key();
 
     tte = TT.retrieve(posKey);
     ttMove = tte ? tte->move() : MOVE_NONE;
 
-    // At PV nodes, we don't use the TT for pruning, but only for move ordering.
-    // This is to avoid problems in the following areas:
-    //
-    // * Repetition draw detection
-    // * Fifty move rule detection
-    // * Searching for a mate
-    // * Printing of full PV line
-    if (!PvNode && tte && ok_to_use_TT(tte, depth, beta, ply))
+    // At PV nodes we check for exact scores, while at non-PV nodes we check for
+    // a fail high/low. Biggest advantage at probing at PV nodes is to have a
+    // smooth experience in analysis mode.
+    if (   !Root
+        && tte
+        && (PvNode ? tte->depth() >= depth && tte->type() == VALUE_TYPE_EXACT
+                   : ok_to_use_TT(tte, depth, beta, ply)))
     {
         TT.refresh(tte);
         ss->bestMove = ttMove; // Can be MOVE_NONE
         return value_from_tt(tte->value(), ply);
     }
 
-    // Step 5. Evaluate the position statically and
-    // update gain statistics of parent move.
+    // Step 5. Evaluate the position statically and update parent's gain statistics
     if (isCheck)
         ss->eval = ss->evalMargin = VALUE_NONE;
     else if (tte)
@@ -1022,9 +883,9 @@ namespace {
     if (   !PvNode
         &&  depth < RazorDepth
         && !isCheck
-        &&  refinedValue < beta - razor_margin(depth)
+        &&  refinedValue + razor_margin(depth) < beta
         &&  ttMove == MOVE_NONE
-        && !value_is_mate(beta)
+        &&  abs(beta) < VALUE_MATE_IN_PLY_MAX
         && !pos.has_pawn_on_7th(pos.side_to_move()))
     {
         Value rbeta = beta - razor_margin(depth);
@@ -1042,8 +903,8 @@ namespace {
         && !ss->skipNullMove
         &&  depth < RazorDepth
         && !isCheck
-        &&  refinedValue >= beta + futility_margin(depth, 0)
-        && !value_is_mate(beta)
+        &&  refinedValue - futility_margin(depth, 0) >= beta
+        &&  abs(beta) < VALUE_MATE_IN_PLY_MAX
         &&  pos.non_pawn_material(pos.side_to_move()))
         return refinedValue - futility_margin(depth, 0);
 
@@ -1053,7 +914,7 @@ namespace {
         &&  depth > ONE_PLY
         && !isCheck
         &&  refinedValue >= beta
-        && !value_is_mate(beta)
+        &&  abs(beta) < VALUE_MATE_IN_PLY_MAX
         &&  pos.non_pawn_material(pos.side_to_move()))
     {
         ss->currentMove = MOVE_NULL;
@@ -1062,7 +923,7 @@ namespace {
         int R = 3 + (depth >= 5 * ONE_PLY ? depth / 8 : 0);
 
         // Null move dynamic reduction based on value
-        if (refinedValue - beta > PawnValueMidgame)
+        if (refinedValue - PawnValueMidgame > beta)
             R++;
 
         pos.do_null_move(st);
@@ -1074,7 +935,7 @@ namespace {
         if (nullValue >= beta)
         {
             // Do not return unproven mate scores
-            if (nullValue >= value_mate_in(PLY_MAX))
+            if (nullValue >= VALUE_MATE_IN_PLY_MAX)
                 nullValue = beta;
 
             if (depth < 6 * ONE_PLY)
@@ -1100,6 +961,7 @@ namespace {
                 mateThreat = true;
 
             threatMove = (ss+1)->bestMove;
+
             if (   depth < ThreatDepth
                 && (ss-1)->reduction
                 && threatMove != MOVE_NONE
@@ -1109,9 +971,9 @@ namespace {
     }
 
     // Step 9. Internal iterative deepening
-    if (    depth >= IIDDepth[PvNode]
-        &&  ttMove == MOVE_NONE
-        && (PvNode || (!isCheck && ss->eval >= beta - IIDMargin)))
+    if (   depth >= IIDDepth[PvNode]
+        && ttMove == MOVE_NONE
+        && (PvNode || (!isCheck && ss->eval + IIDMargin >= beta)))
     {
         Depth d = (PvNode ? depth - 2 * ONE_PLY : depth / 2);
 
@@ -1123,21 +985,19 @@ namespace {
         tte = TT.retrieve(posKey);
     }
 
-    // Expensive mate threat detection (only for PV nodes)
+    // Mate threat detection for PV nodes, otherwise we use null move search
     if (PvNode)
         mateThreat = pos.has_mate_threat();
 
 split_point_start: // At split points actual search starts from here
 
     // Initialize a MovePicker object for the current position
-    // FIXME currently MovePicker() c'tor is needless called also in SplitPoint
-    MovePicker mpBase(pos, ttMove, depth, H, ss, (PvNode ? -VALUE_INFINITE : beta));
-    MovePicker& mp = SpNode ? *sp->mp : mpBase;
+    MovePickerExt<SpNode, Root> mp(pos, ttMove, depth, H, ss, (PvNode ? -VALUE_INFINITE : beta));
     CheckInfo ci(pos);
     ss->bestMove = MOVE_NONE;
-    singleEvasion = !SpNode && isCheck && mp.number_of_evasions() == 1;
     futilityBase = ss->eval + ss->evalMargin;
-    singularExtensionNode =  !SpNode
+    singularExtensionNode =   !Root
+                           && !SpNode
                            && depth >= SingularExtensionDepth[PvNode]
                            && tte
                            && tte->move()
@@ -1166,18 +1026,42 @@ split_point_start: // At split points actual search starts from here
       else if (move == excludedMove)
           continue;
       else
-          movesSearched[moveCount++] = move;
+          moveCount++;
+
+      if (Root)
+      {
+          // This is used by time management
+          FirstRootMove = (moveCount == 1);
+
+          // Save the current node count before the move is searched
+          nodes = pos.nodes_searched();
+
+          // If it's time to send nodes info, do it here where we have the
+          // correct accumulated node counts searched by each thread.
+          if (SendSearchedNodes)
+          {
+              SendSearchedNodes = false;
+              cout << "info" << speed_to_uci(pos.nodes_searched()) << endl;
+          }
 
+          if (current_search_time() > 2000)
+              cout << "info currmove " << move
+                   << " currmovenumber " << moveCount << endl;
+      }
+
+      // At Root and at first iteration do a PV search on all the moves to score root moves
+      isPvMove = (PvNode && moveCount <= (Root ? depth <= ONE_PLY ? 1000 : MultiPV : 1));
       moveIsCheck = pos.move_is_check(move, ci);
       captureOrPromotion = pos.move_is_capture_or_promotion(move);
 
       // Step 11. Decide the new search depth
-      ext = extension<PvNode>(pos, move, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous);
+      ext = extension<PvNode>(pos, move, captureOrPromotion, moveIsCheck, mateThreat, &dangerous);
 
-      // Singular extension search. If all moves but one fail low on a search of (alpha-s, beta-s),
-      // and just one fails high on (alpha, beta), then that move is singular and should be extended.
-      // To verify this we do a reduced search on all the other moves but the ttMove, if result is
-      // lower then ttValue minus a margin then we extend ttMove.
+      // Singular extension search. If all moves but one fail low on a search of
+      // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move
+      // is singular and should be extended. To verify this we do a reduced search
+      // on all the other moves but the ttMove, if result is lower than ttValue minus
+      // a margin then we extend ttMove.
       if (   singularExtensionNode
           && move == tte->move()
           && ext < ONE_PLY)
@@ -1186,14 +1070,14 @@ split_point_start: // At split points actual search starts from here
 
           if (abs(ttValue) < VALUE_KNOWN_WIN)
           {
-              Value b = ttValue - SingularExtensionMargin;
+              Value rBeta = ttValue - int(depth);
               ss->excludedMove = move;
               ss->skipNullMove = true;
-              Value v = search<NonPV>(pos, ss, b - 1, b, depth / 2, ply);
+              Value v = search<NonPV>(pos, ss, rBeta - 1, rBeta, depth / 2, ply);
               ss->skipNullMove = false;
               ss->excludedMove = MOVE_NONE;
               ss->bestMove = MOVE_NONE;
-              if (v < b)
+              if (v < rBeta)
                   ext = ONE_PLY;
           }
       }
@@ -1212,8 +1096,8 @@ split_point_start: // At split points actual search starts from here
       {
           // Move count based pruning
           if (   moveCount >= futility_move_count(depth)
-              && !(threatMove && connected_threat(pos, move, threatMove))
-              && bestValue > value_mated_in(PLY_MAX)) // FIXME bestValue is racy
+              && (!threatMove || !connected_threat(pos, move, threatMove))
+              && bestValue > VALUE_MATED_IN_PLY_MAX) // FIXME bestValue is racy
           {
               if (SpNode)
                   lock_grab(&(sp->lock));
@@ -1244,7 +1128,7 @@ split_point_start: // At split points actual search starts from here
 
           // Prune moves with negative SEE at low depths
           if (   predictedDepth < 2 * ONE_PLY
-              && bestValue > value_mated_in(PLY_MAX)
+              && bestValue > VALUE_MATED_IN_PLY_MAX
               && pos.see_sign(move) < 0)
           {
               if (SpNode)
@@ -1254,18 +1138,38 @@ split_point_start: // At split points actual search starts from here
           }
       }
 
+      // Bad capture detection. Will be used by prob-cut search
+      isBadCap =   depth >= 3 * ONE_PLY
+                && depth < 8 * ONE_PLY
+                && captureOrPromotion
+                && move != ttMove
+                && !dangerous
+                && !move_is_promotion(move)
+                &&  abs(alpha) < VALUE_MATE_IN_PLY_MAX
+                &&  pos.see_sign(move) < 0;
+
       // Step 13. Make the move
       pos.do_move(move, st, ci, moveIsCheck);
 
+      if (!SpNode && !captureOrPromotion)
+          movesSearched[playedMoveCount++] = move;
+
       // Step extra. pv search (only in PV nodes)
       // The first move in list is the expected PV
-      if (PvNode && moveCount == 1)
+      if (isPvMove)
+      {
+          // Aspiration window is disabled in multi-pv case
+          if (Root && MultiPV > 1)
+              alpha = -VALUE_INFINITE;
+
           value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, ply+1);
+      }
       else
       {
           // Step 14. Reduced depth search
           // If the move fails high will be re-searched at full depth.
           bool doFullDepthSearch = true;
+          alpha = SpNode ? sp->alpha : alpha;
 
           if (    depth >= 3 * ONE_PLY
               && !captureOrPromotion
@@ -1275,7 +1179,6 @@ split_point_start: // At split points actual search starts from here
               &&  ss->killers[1] != move)
           {
               ss->reduction = reduction<PvNode>(depth, moveCount);
-
               if (ss->reduction)
               {
                   alpha = SpNode ? sp->alpha : alpha;
@@ -1287,6 +1190,18 @@ split_point_start: // At split points actual search starts from here
               ss->reduction = DEPTH_ZERO; // Restore original reduction
           }
 
+          // Probcut search for bad captures. If a reduced search returns a value
+          // very below beta then we can (almost) safely prune the bad capture.
+          if (isBadCap)
+          {
+              ss->reduction = 3 * ONE_PLY;
+              Value rAlpha = alpha - 300;
+              Depth d = newDepth - ss->reduction;
+              value = -search<NonPV>(pos, ss+1, -(rAlpha+1), -rAlpha, d, ply+1);
+              doFullDepthSearch = (value > rAlpha);
+              ss->reduction = DEPTH_ZERO; // Restore original reduction
+          }
+
           // Step 15. Full depth search
           if (doFullDepthSearch)
           {
@@ -1296,7 +1211,7 @@ split_point_start: // At split points actual search starts from here
               // Step extra. pv search (only in PV nodes)
               // Search only for possible new PV nodes, if instead value >= beta then
               // parent node fails low with value <= alpha and tries another move.
-              if (PvNode && value > alpha && value < beta)
+              if (PvNode && value > alpha && (Root || value < beta))
                   value = -search<PV>(pos, ss+1, -beta, -alpha, newDepth, ply+1);
           }
       }
@@ -1321,7 +1236,7 @@ split_point_start: // At split points actual search starts from here
           if (SpNode)
               sp->bestValue = value;
 
-          if (value > alpha)
+          if (!Root && value > alpha)
           {
               if (PvNode && value < beta) // We want always alpha < beta
               {
@@ -1339,19 +1254,60 @@ split_point_start: // At split points actual search starts from here
               ss->bestMove = move;
 
               if (SpNode)
-                  sp->parentSstack->bestMove = move;
+                  sp->ss->bestMove = move;
           }
       }
 
+      if (Root)
+      {
+          // Finished searching the move. If StopRequest is true, the search
+          // was aborted because the user interrupted the search or because we
+          // ran out of time. In this case, the return value of the search cannot
+          // be trusted, and we break out of the loop without updating the best
+          // move and/or PV.
+          if (StopRequest)
+              break;
+
+          // Remember searched nodes counts for this move
+          mp.rm->nodes += pos.nodes_searched() - nodes;
+
+          // PV move or new best move ?
+          if (isPvMove || value > alpha)
+          {
+              // Update PV
+              ss->bestMove = move;
+              mp.rm->pv_score = value;
+              mp.rm->extract_pv_from_tt(pos);
+
+              // We record how often the best move has been changed in each
+              // iteration. This information is used for time management: When
+              // the best move changes frequently, we allocate some more time.
+              if (!isPvMove && MultiPV == 1)
+                  Rml.bestMoveChanges++;
+
+              Rml.sort_multipv(moveCount);
+
+              // Update alpha. In multi-pv we don't use aspiration window, so
+              // set alpha equal to minimum score among the PV lines.
+              if (MultiPV > 1)
+                  alpha = Rml[Min(moveCount, MultiPV) - 1].pv_score; // FIXME why moveCount?
+              else if (value > alpha)
+                  alpha = value;
+          }
+          else
+              mp.rm->pv_score = -VALUE_INFINITE;
+
+      } // Root
+
       // Step 18. Check for split
-      if (   !SpNode
+      if (   !Root
+          && !SpNode
           && depth >= ThreadsMgr.min_split_depth()
           && ThreadsMgr.active_threads() > 1
           && bestValue < beta
           && ThreadsMgr.available_thread_exists(threadID)
-          && !AbortSearch
-          && !ThreadsMgr.cutoff_at_splitpoint(threadID)
-          && Iteration <= 99)
+          && !StopRequest
+          && !ThreadsMgr.cutoff_at_splitpoint(threadID))
           ThreadsMgr.split<FakeSplit>(pos, ss, ply, &alpha, beta, &bestValue, depth,
                                       threatMove, mateThreat, moveCount, &mp, PvNode);
     }
@@ -1366,7 +1322,7 @@ split_point_start: // At split points actual search starts from here
     // Step 20. Update tables
     // If the search is not aborted, update the transposition table,
     // history counters, and killer moves.
-    if (!SpNode && !AbortSearch && !ThreadsMgr.cutoff_at_splitpoint(threadID))
+    if (!SpNode && !StopRequest && !ThreadsMgr.cutoff_at_splitpoint(threadID))
     {
         move = bestValue <= oldAlpha ? MOVE_NONE : ss->bestMove;
         vt   = bestValue <= oldAlpha ? VALUE_TYPE_UPPER
@@ -1378,8 +1334,12 @@ split_point_start: // At split points actual search starts from here
         if (    bestValue >= beta
             && !pos.move_is_capture_or_promotion(move))
         {
-            update_history(pos, move, depth, movesSearched, moveCount);
-            update_killers(move, ss);
+            if (move != ss->killers[0])
+            {
+                ss->killers[1] = ss->killers[0];
+                ss->killers[0] = move;
+            }
+            update_history(pos, move, depth, movesSearched, playedMoveCount);
         }
     }
 
@@ -1513,11 +1473,17 @@ split_point_start: // At split points actual search starts from here
                   bestValue = futilityValue;
               continue;
           }
+
+          // Prune moves with negative or equal SEE
+          if (   futilityBase < beta
+              && depth < DEPTH_ZERO
+              && pos.see(move) <= 0)
+              continue;
       }
 
       // Detect non-capture evasions that are candidate to be pruned
       evasionPrunable =   isCheck
-                       && bestValue > value_mated_in(PLY_MAX)
+                       && bestValue > VALUE_MATED_IN_PLY_MAX
                        && !pos.move_is_capture(move)
                        && !pos.can_castle(pos.side_to_move());
 
@@ -1691,28 +1657,16 @@ split_point_start: // At split points actual search starts from here
   }
 
 
-  // value_is_mate() checks if the given value is a mate one eventually
-  // compensated for the ply.
-
-  bool value_is_mate(Value value) {
-
-    assert(abs(value) <= VALUE_INFINITE);
-
-    return   value <= value_mated_in(PLY_MAX)
-          || value >= value_mate_in(PLY_MAX);
-  }
-
-
   // value_to_tt() adjusts a mate score from "plies to mate from the root" to
   // "plies to mate from the current ply".  Non-mate scores are unchanged.
   // The function is called before storing a value to the transposition table.
 
   Value value_to_tt(Value v, int ply) {
 
-    if (v >= value_mate_in(PLY_MAX))
+    if (v >= VALUE_MATE_IN_PLY_MAX)
       return v + ply;
 
-    if (v <= value_mated_in(PLY_MAX))
+    if (v <= VALUE_MATED_IN_PLY_MAX)
       return v - ply;
 
     return v;
@@ -1724,10 +1678,10 @@ split_point_start: // At split points actual search starts from here
 
   Value value_from_tt(Value v, int ply) {
 
-    if (v >= value_mate_in(PLY_MAX))
+    if (v >= VALUE_MATE_IN_PLY_MAX)
       return v - ply;
 
-    if (v <= value_mated_in(PLY_MAX))
+    if (v <= VALUE_MATED_IN_PLY_MAX)
       return v + ply;
 
     return v;
@@ -1741,22 +1695,19 @@ split_point_start: // At split points actual search starts from here
   // extended, as example because the corresponding UCI option is set to zero,
   // the move is marked as 'dangerous' so, at least, we avoid to prune it.
   template <NodeType PvNode>
-  Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck,
-                  bool singleEvasion, bool mateThreat, bool* dangerous) {
+  Depth extension(const Position& pos, Move m, bool captureOrPromotion,
+                  bool moveIsCheck, bool mateThreat, bool* dangerous) {
 
     assert(m != MOVE_NONE);
 
     Depth result = DEPTH_ZERO;
-    *dangerous = moveIsCheck | singleEvasion | mateThreat;
+    *dangerous = moveIsCheck | mateThreat;
 
     if (*dangerous)
     {
         if (moveIsCheck && pos.see_sign(m) >= 0)
             result += CheckExtension[PvNode];
 
-        if (singleEvasion)
-            result += SingleEvasionExtension[PvNode];
-
         if (mateThreat)
             result += MateThreatExtension[PvNode];
     }
@@ -1787,21 +1738,12 @@ split_point_start: // At split points actual search starts from here
         *dangerous = true;
     }
 
-    if (   PvNode
-        && captureOrPromotion
-        && pos.type_of_piece_on(move_to(m)) != PAWN
-        && pos.see_sign(m) >= 0)
-    {
-        result += ONE_PLY / 2;
-        *dangerous = true;
-    }
-
     return Min(result, ONE_PLY);
   }
 
 
   // connected_threat() tests whether it is safe to forward prune a move or if
-  // is somehow coonected to the threat move returned by null search.
+  // is somehow connected to the threat move returned by null search.
 
   bool connected_threat(const Position& pos, Move m, Move threat) {
 
@@ -1823,7 +1765,7 @@ split_point_start: // At split points actual search starts from here
         return true;
 
     // Case 2: If the threatened piece has value less than or equal to the
-    // value of the threatening piece, don't prune move which defend it.
+    // value of the threatening piece, don't prune moves which defend it.
     if (   pos.move_is_capture(threat)
         && (   pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto)
             || pos.type_of_piece_on(tfrom) == KING)
@@ -1849,8 +1791,8 @@ split_point_start: // At split points actual search starts from here
     Value v = value_from_tt(tte->value(), ply);
 
     return   (   tte->depth() >= depth
-              || v >= Max(value_mate_in(PLY_MAX), beta)
-              || v < Min(value_mated_in(PLY_MAX), beta))
+              || v >= Max(VALUE_MATE_IN_PLY_MAX, beta)
+              || v < Min(VALUE_MATED_IN_PLY_MAX, beta))
 
           && (   ((tte->type() & VALUE_TYPE_LOWER) && v >= beta)
               || ((tte->type() & VALUE_TYPE_UPPER) && v < beta));
@@ -1880,8 +1822,9 @@ split_point_start: // At split points actual search starts from here
   void update_history(const Position& pos, Move move, Depth depth,
                       Move movesSearched[], int moveCount) {
     Move m;
+    Value bonus = Value(int(depth) * int(depth));
 
-    H.success(pos.piece_on(move_from(move)), move_to(move), depth);
+    H.update(pos.piece_on(move_from(move)), move_to(move), bonus);
 
     for (int i = 0; i < moveCount - 1; i++)
     {
@@ -1889,25 +1832,11 @@ split_point_start: // At split points actual search starts from here
 
         assert(m != move);
 
-        if (!pos.move_is_capture_or_promotion(m))
-            H.failure(pos.piece_on(move_from(m)), move_to(m), depth);
+        H.update(pos.piece_on(move_from(m)), move_to(m), -bonus);
     }
   }
 
 
-  // update_killers() add a good move that produced a beta-cutoff
-  // among the killer moves of that ply.
-
-  void update_killers(Move m, SearchStack* ss) {
-
-    if (m == ss->killers[0])
-        return;
-
-    ss->killers[1] = ss->killers[0];
-    ss->killers[0] = m;
-  }
-
-
   // update_gains() updates the gains table of a non-capture move given
   // the static position evaluation before and after the move.
 
@@ -1918,7 +1847,7 @@ split_point_start: // At split points actual search starts from here
         && after != VALUE_NONE
         && pos.captured_piece_type() == PIECE_TYPE_NONE
         && !move_is_special(m))
-        H.set_gain(pos.piece_on(move_to(m)), move_to(m), -(before + after));
+        H.update_gain(pos.piece_on(move_to(m)), move_to(m), -(before + after));
   }
 
 
@@ -1945,17 +1874,25 @@ split_point_start: // At split points actual search starts from here
     if (abs(v) < VALUE_MATE - PLY_MAX * ONE_PLY)
       s << "cp " << int(v) * 100 / int(PawnValueMidgame); // Scale to centipawns
     else
-      s << "mate " << (v > 0 ? (VALUE_MATE - v + 1) / 2 : -(VALUE_MATE + v) / 2 );
+      s << "mate " << (v > 0 ? VALUE_MATE - v + 1 : -VALUE_MATE - v) / 2;
 
     return s.str();
   }
 
-  // nps() computes the current nodes/second count.
 
-  int nps(const Position& pos) {
+  // speed_to_uci() returns a string with time stats of current search suitable
+  // to be sent to UCI gui.
+
+  std::string speed_to_uci(int64_t nodes) {
 
+    std::stringstream s;
     int t = current_search_time();
-    return (t > 0 ? int((pos.nodes_searched() * 1000) / t) : 0);
+
+    s << " nodes " << nodes
+      << " nps "   << (t > 0 ? int(nodes * 1000 / t) : 0)
+      << " time "  << t;
+
+    return s.str();
   }
 
 
@@ -1969,28 +1906,35 @@ split_point_start: // At split points actual search starts from here
     int t = current_search_time();
 
     //  Poll for input
-    if (data_available())
+    if (input_available())
     {
         // We are line oriented, don't read single chars
         std::string command;
 
-        if (!std::getline(std::cin, command))
-            command = "quit";
-
-        if (command == "quit")
+        if (!std::getline(std::cin, command) || command == "quit")
         {
-            AbortSearch = true;
-            PonderSearch = false;
-            Quit = true;
+            // Quit the program as soon as possible
+            Pondering = false;
+            QuitRequest = StopRequest = true;
             return;
         }
         else if (command == "stop")
         {
-            AbortSearch = true;
-            PonderSearch = false;
+            // Stop calculating as soon as possible, but still send the "bestmove"
+            // and possibly the "ponder" token when finishing the search.
+            Pondering = false;
+            StopRequest = true;
         }
         else if (command == "ponderhit")
-            ponderhit();
+        {
+            // The opponent has played the expected move. GUI sends "ponderhit" if
+            // we were told to ponder on the same move the opponent has played. We
+            // should continue searching but switching from pondering to normal search.
+            Pondering = false;
+
+            if (StopOnPonderhit)
+                StopRequest = true;
+        }
     }
 
     // Print search information
@@ -2012,12 +1956,12 @@ split_point_start: // At split points actual search starts from here
         if (dbg_show_hit_rate)
             dbg_print_hit_rate();
 
-        cout << "info nodes " << pos.nodes_searched() << " nps " << nps(pos)
-             << " time " << t << endl;
+        // Send info on searched nodes as soon as we return to root
+        SendSearchedNodes = true;
     }
 
     // Should we stop the search?
-    if (PonderSearch)
+    if (Pondering)
         return;
 
     bool stillAtFirstMove =    FirstRootMove
@@ -2027,49 +1971,10 @@ split_point_start: // At split points actual search starts from here
     bool noMoreTime =   t > TimeMgr.maximum_time()
                      || stillAtFirstMove;
 
-    if (   (Iteration >= 3 && UseTimeManagement && noMoreTime)
+    if (   (UseTimeManagement && noMoreTime)
         || (ExactMaxTime && t >= ExactMaxTime)
-        || (Iteration >= 3 && MaxNodes && pos.nodes_searched() >= MaxNodes))
-        AbortSearch = true;
-  }
-
-
-  // ponderhit() is called when the program is pondering (i.e. thinking while
-  // it's the opponent's turn to move) in order to let the engine know that
-  // it correctly predicted the opponent's move.
-
-  void ponderhit() {
-
-    int t = current_search_time();
-    PonderSearch = false;
-
-    bool stillAtFirstMove =    FirstRootMove
-                           && !AspirationFailLow
-                           &&  t > TimeMgr.available_time();
-
-    bool noMoreTime =   t > TimeMgr.maximum_time()
-                     || stillAtFirstMove;
-
-    if (Iteration >= 3 && UseTimeManagement && (noMoreTime || StopOnPonderhit))
-        AbortSearch = true;
-  }
-
-
-  // init_ss_array() does a fast reset of the first entries of a SearchStack
-  // array and of all the excludedMove and skipNullMove entries.
-
-  void init_ss_array(SearchStack* ss, int size) {
-
-    for (int i = 0; i < size; i++, ss++)
-    {
-        ss->excludedMove = MOVE_NONE;
-        ss->skipNullMove = false;
-        ss->reduction = DEPTH_ZERO;
-        ss->sp = NULL;
-
-        if (i < 3)
-            ss->killers[0] = ss->killers[1] = ss->mateKiller = MOVE_NONE;
-    }
+        || (MaxNodes && pos.nodes_searched() >= MaxNodes)) // FIXME
+        StopRequest = true;
   }
 
 
@@ -2078,25 +1983,18 @@ split_point_start: // At split points actual search starts from here
   // the UCI protocol: When pondering, the engine is not allowed to give a
   // "bestmove" before the GUI sends it a "stop" or "ponderhit" command.
   // We simply wait here until one of these commands is sent, and return,
-  // after which the bestmove and pondermove will be printed (in id_loop()).
+  // after which the bestmove and pondermove will be printed.
 
   void wait_for_stop_or_ponderhit() {
 
     std::string command;
 
-    while (true)
-    {
-        if (!std::getline(std::cin, command))
-            command = "quit";
+    // Wait for a command from stdin
+    while (   std::getline(std::cin, command)
+           && command != "ponderhit" && command != "stop" && command != "quit") {};
 
-        if (command == "quit")
-        {
-            Quit = true;
-            break;
-        }
-        else if (command == "ponderhit" || command == "stop")
-            break;
-    }
+    if (command != "ponderhit" && command != "stop")
+        QuitRequest = true; // Must be "quit" or getline() returned false
   }
 
 
@@ -2200,16 +2098,19 @@ split_point_start: // At split points actual search starts from here
 
             threads[threadID].state = THREAD_SEARCHING;
 
-            // Here we call search() with SplitPoint template parameter set to true
+            // Copy SplitPoint position and search stack and call search()
+            // with SplitPoint template parameter set to true.
+            SearchStack ss[PLY_MAX_PLUS_2];
             SplitPoint* tsp = threads[threadID].splitPoint;
             Position pos(*tsp->pos, threadID);
-            SearchStack* ss = tsp->sstack[threadID] + 1;
-            ss->sp = tsp;
+
+            memcpy(ss, tsp->ss - 1, 4 * sizeof(SearchStack));
+            (ss+1)->sp = tsp;
 
             if (tsp->pvNode)
-                search<PV, true>(pos, ss, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
+                search<PV, true, false>(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
             else
-                search<NonPV, true>(pos, ss, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
+                search<NonPV, true, false>(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
 
             assert(threads[threadID].state == THREAD_SEARCHING);
 
@@ -2454,7 +2355,7 @@ split_point_start: // At split points actual search starts from here
     splitPoint.moveCount = moveCount;
     splitPoint.pos = &pos;
     splitPoint.nodes = 0;
-    splitPoint.parentSstack = ss;
+    splitPoint.ss = ss;
     for (i = 0; i < activeThreads; i++)
         splitPoint.slaves[i] = 0;
 
@@ -2481,12 +2382,10 @@ split_point_start: // At split points actual search starts from here
     lock_release(&mpLock);
 
     // Tell the threads that they have work to do. This will make them leave
-    // their idle loop. But before copy search stack tail for each thread.
+    // their idle loop.
     for (i = 0; i < activeThreads; i++)
         if (i == master || splitPoint.slaves[i])
         {
-            memcpy(splitPoint.sstack[i], ss - 1, 4 * sizeof(SearchStack));
-
             assert(i == master || threads[i].state == THREAD_BOOKED);
 
             threads[i].state = THREAD_WORKISWAITING; // This makes the slave to exit from idle_loop()
@@ -2597,7 +2496,7 @@ split_point_start: // At split points actual search starts from here
         k = pos.get_key();
         tte = TT.retrieve(k);
 
-        // Don't overwrite exsisting correct entries
+        // Don't overwrite existing correct entries
         if (!tte || tte->move() != pv[ply])
         {
             v = (pos.is_check() ? VALUE_NONE : evaluate(pos, m));
@@ -2611,51 +2510,38 @@ split_point_start: // At split points actual search starts from here
   }
 
   // pv_info_to_uci() returns a string with information on the current PV line
-  // formatted according to UCI specification and eventually writes the info
-  // to a log file. It is called at each iteration or after a new pv is found.
+  // formatted according to UCI specification.
 
-  std::string RootMove::pv_info_to_uci(const Position& pos, Value alpha, Value beta, int pvLine) {
+  std::string RootMove::pv_info_to_uci(Position& pos, int depth, Value alpha,
+                                       Value beta, int pvIdx) {
+    std::stringstream s, l;
+    Move* m = pv;
 
-    std::stringstream s;
+    while (*m != MOVE_NONE)
+        l << *m++ << " ";
 
-    s << "info depth " << Iteration // FIXME
-      << " multipv " << pvLine + 1
+    s << "info depth " << depth
+      << " seldepth " << int(m - pv)
+      << " multipv " << pvIdx + 1
       << " score " << value_to_uci(pv_score)
       << (pv_score >= beta ? " lowerbound" : pv_score <= alpha ? " upperbound" : "")
-      << " time "  << current_search_time()
-      << " nodes " << pos.nodes_searched()
-      << " nps "   << nps(pos)
-      << " pv ";
-
-    for (Move* m = pv; *m != MOVE_NONE; m++)
-        s << *m << " ";
+      << speed_to_uci(pos.nodes_searched())
+      << " pv "    << l.str();
 
-    if (UseLogFile && pvLine == 0)
-    {
-        ValueType t = pv_score >= beta  ? VALUE_TYPE_LOWER :
-                      pv_score <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT;
-
-        LogFile << pretty_pv(pos, current_search_time(), Iteration, pv_score, t, pv) << endl;
-    }
     return s.str();
   }
 
 
-  RootMoveList::RootMoveList(Position& pos, Move searchMoves[]) {
+  void RootMoveList::init(Position& pos, Move searchMoves[]) {
 
-    SearchStack ss[PLY_MAX_PLUS_2];
     MoveStack mlist[MOVES_MAX];
-    StateInfo st;
     Move* sm;
 
-    // Initialize search stack
-    init_ss_array(ss, PLY_MAX_PLUS_2);
-    ss[0].eval = ss[0].evalMargin = VALUE_NONE;
+    clear();
+    bestMoveChanges = 0;
 
-    // Generate all legal moves
-    MoveStack* last = generate_moves(pos, mlist);
-
-    // Add each move to the RootMoveList's vector
+    // Generate all legal moves and add them to RootMoveList
+    MoveStack* last = generate<MV_LEGAL>(pos, mlist);
     for (MoveStack* cur = mlist; cur != last; cur++)
     {
         // If we have a searchMoves[] list then verify cur->move
@@ -2665,38 +2551,54 @@ split_point_start: // At split points actual search starts from here
         if (searchMoves[0] && *sm != cur->move)
             continue;
 
-        // Find a quick score for the move and add to the list
-        pos.do_move(cur->move, st);
-
         RootMove rm;
-        rm.pv[0] = ss[0].currentMove = cur->move;
+        rm.pv[0] = cur->move;
         rm.pv[1] = MOVE_NONE;
-        rm.pv_score = -qsearch<PV>(pos, ss+1, -VALUE_INFINITE, VALUE_INFINITE, DEPTH_ZERO, 1);
+        rm.pv_score = -VALUE_INFINITE;
         push_back(rm);
-
-        pos.undo_move(cur->move);
     }
-    sort();
   }
 
-  // Score root moves using the standard way used in main search, the moves
-  // are scored according to the order in which are returned by MovePicker.
-  // This is the second order score that is used to compare the moves when
-  // the first order pv scores of both moves are equal.
 
-  void RootMoveList::set_non_pv_scores(const Position& pos)
-  {
-      Move move;
-      Value score = VALUE_ZERO;
-      MovePicker mp(pos, MOVE_NONE, ONE_PLY, H);
+  // When playing with strength handicap choose best move among the MultiPV set
+  // using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen.
+  void do_skill_level(Move* best, Move* ponder) {
 
-      while ((move = mp.get_next_move()) != MOVE_NONE)
-          for (Base::iterator it = begin(); it != end(); ++it)
-              if (it->pv[0] == move)
-              {
-                  it->non_pv_score = score--;
-                  break;
-              }
+    assert(MultiPV > 1);
+
+    // Rml list is already sorted by pv_score in descending order
+    int s;
+    int max_s = -VALUE_INFINITE;
+    int size = Min(MultiPV, (int)Rml.size());
+    int max = Rml[0].pv_score;
+    int var = Min(max - Rml[size - 1].pv_score, PawnValueMidgame);
+    int wk = 120 - 2 * SkillLevel;
+
+    // PRNG sequence should be non deterministic
+    for (int i = abs(get_system_time() % 50); i > 0; i--)
+        RK.rand<unsigned>();
+
+    // Choose best move. For each move's score we add two terms both dependent
+    // on wk, one deterministic and bigger for weaker moves, and one random,
+    // then we choose the move with the resulting highest score.
+    for (int i = 0; i < size; i++)
+    {
+        s = Rml[i].pv_score;
+
+        // Don't allow crazy blunders even at very low skills
+        if (i > 0 && Rml[i-1].pv_score > s + EasyMoveMargin)
+            break;
+
+        // This is our magical formula
+        s += ((max - s) * wk + var * (RK.rand<unsigned>() % wk)) / 128;
+
+        if (s > max_s)
+        {
+            max_s = s;
+            *best = Rml[i].pv[0];
+            *ponder = Rml[i].pv[1];
+        }
+    }
   }
 
 } // namespace