]> git.sesse.net Git - stockfish/blobdiff - src/search.cpp
Score root move list during first iteration
[stockfish] / src / search.cpp
index edd23dad431f7de4037db2c9e8b8604616438022..915e1af25d69ccee4e5faead5f68cf58b14ecd96 100644 (file)
@@ -129,7 +129,7 @@ namespace {
 
     void extract_pv_from_tt(Position& pos);
     void insert_pv_in_tt(Position& pos);
-    std::string pv_info_to_uci(Position& pos, Depth depth, Value alpha, Value beta, int pvLine = 0);
+    std::string pv_info_to_uci(Position& pos, int depth, Value alpha, Value beta, int pvLine);
 
     int64_t nodes;
     Value pv_score;
@@ -209,10 +209,6 @@ namespace {
   // Minimum depth for use of singular extension
   const Depth SingularExtensionDepth[2] = { 8 * ONE_PLY /* non-PV */, 6 * ONE_PLY /* PV */};
 
-  // If the TT move is at least SingularExtensionMargin better then the
-  // remaining ones we will extend it.
-  const Value SingularExtensionMargin = Value(0x20);
-
   // Step 12. Futility pruning
 
   // Futility margin for quiescence search
@@ -249,7 +245,7 @@ namespace {
   // MultiPV mode
   int MultiPV;
 
-  // Time managment variables
+  // Time management variables
   int SearchStartTime, MaxNodes, MaxDepth, ExactMaxTime;
   bool UseTimeManagement, InfiniteSearch, Pondering, StopOnPonderhit;
   bool FirstRootMove, StopRequest, QuitRequest, AspirationFailLow;
@@ -302,11 +298,10 @@ namespace {
   void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount);
   void update_killers(Move m, Move killers[]);
   void update_gains(const Position& pos, Move move, Value before, Value after);
-  void qsearch_scoring(Position& pos, MoveStack* mlist, MoveStack* last);
 
   int current_search_time();
   std::string value_to_uci(Value v);
-  int nps(const Position& pos);
+  std::string speed_to_uci(int64_t nodes);
   void poll(const Position& pos);
   void wait_for_stop_or_ponderhit();
 
@@ -331,7 +326,7 @@ namespace {
       Value score = VALUE_ZERO;
 
       // Score root moves using the standard way used in main search, the moves
-      // are scored according to the order in which are returned by MovePicker.
+      // are scored according to the order in which they are returned by MovePicker.
       // This is the second order score that is used to compare the moves when
       // the first order pv scores of both moves are equal.
       while ((move = MovePicker::get_next_move()) != MOVE_NONE)
@@ -544,12 +539,13 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[
       std::string name = Options["Search Log Filename"].value<std::string>();
       LogFile.open(name.c_str(), std::ios::out | std::ios::app);
 
-      LogFile << "Searching: "  << pos.to_fen()
-              << "\ninfinite: " << infinite
-              << " ponder: "    << ponder
-              << " time: "      << myTime
-              << " increment: " << myIncrement
-              << " moves to go: " << movesToGo << endl;
+      LogFile << "\nSearching: "  << pos.to_fen()
+              << "\ninfinite: "   << infinite
+              << " ponder: "      << ponder
+              << " time: "        << myTime
+              << " increment: "   << myIncrement
+              << " moves to go: " << movesToGo
+              << endl;
   }
 
   // We're ready to start thinking. Call the iterative deepening loop function
@@ -557,25 +553,20 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[
   Move bestMove = id_loop(pos, searchMoves, &ponderMove);
 
   // Print final search statistics
-  cout << "info nodes " << pos.nodes_searched()
-       << " nps " << nps(pos)
-       << " time " << current_search_time() << endl;
+  cout << "info" << speed_to_uci(pos.nodes_searched()) << endl;
 
   if (UseLogFile)
   {
-      LogFile << "\nNodes: " << pos.nodes_searched()
-              << "\nNodes/second: " << nps(pos)
-              << "\nBest move: " << move_to_san(pos, bestMove);
+      int t = current_search_time();
+
+      LogFile << "Nodes: "          << pos.nodes_searched()
+              << "\nNodes/second: " << (t > 0 ? int(pos.nodes_searched() * 1000 / t) : 0)
+              << "\nBest move: "    << move_to_san(pos, bestMove);
 
       StateInfo st;
       pos.do_move(bestMove, st);
-      LogFile << "\nPonder move: "
-              << move_to_san(pos, ponderMove) // Works also with MOVE_NONE
-              << endl;
-
-      // Return from think() with unchanged position
-      pos.undo_move(bestMove);
-
+      LogFile << "\nPonder move: " << move_to_san(pos, ponderMove) << endl;
+      pos.undo_move(bestMove); // Return from think() with unchanged position
       LogFile.close();
   }
 
@@ -605,24 +596,23 @@ namespace {
     SearchStack ss[PLY_MAX_PLUS_2];
     Value bestValues[PLY_MAX_PLUS_2];
     int bestMoveChanges[PLY_MAX_PLUS_2];
-    int iteration, researchCountFL, researchCountFH, aspirationDelta;
+    int depth, researchCountFL, researchCountFH, aspirationDelta;
     Value value, alpha, beta;
-    Depth depth;
     Move bestMove, easyMove;
 
-    // Moves to search are verified, scored and sorted
+    // Moves to search are verified and copied
     Rml.init(pos, searchMoves);
 
     // Initialize FIXME move before Rml.init()
     TT.new_search();
     H.clear();
-    memset(ss, 0, PLY_MAX_PLUS_2 * sizeof(SearchStack));
+    memset(ss, 0, 4 * sizeof(SearchStack));
     *ponderMove = bestMove = easyMove = MOVE_NONE;
-    iteration = aspirationDelta = 0;
+    depth = aspirationDelta = 0;
     ss->currentMove = MOVE_NULL; // Hack to skip update_gains()
     alpha = -VALUE_INFINITE, beta = VALUE_INFINITE;
 
-    // Handle special case of searching on a mate/stale position
+    // Handle special case of searching on a mate/stalemate position
     if (Rml.size() == 0)
     {
         cout << "info depth 0 score "
@@ -632,33 +622,23 @@ namespace {
         return MOVE_NONE;
     }
 
-    // Is one move significantly better than others after initial scoring ?
-    if (   Rml.size() == 1
-        || Rml[0].pv_score > Rml[1].pv_score + EasyMoveMargin)
-        easyMove = Rml[0].pv[0];
-
     // Iterative deepening loop
-    while (++iteration <= PLY_MAX && !StopRequest)
+    while (++depth <= PLY_MAX && (!MaxDepth || depth <= MaxDepth) && !StopRequest)
     {
         Rml.bestMoveChanges = researchCountFL = researchCountFH = 0;
-        depth = iteration * ONE_PLY;
-
-        if (MaxDepth && depth > MaxDepth * ONE_PLY)
-            break;
-
-        cout << "info depth " << depth / ONE_PLY << endl;
+        cout << "info depth " << depth << endl;
 
         // Calculate dynamic aspiration window based on previous iterations
-        if (MultiPV == 1 && iteration >= 5 && abs(bestValues[iteration - 1]) < VALUE_KNOWN_WIN)
+        if (MultiPV == 1 && depth >= 5 && abs(bestValues[depth - 1]) < VALUE_KNOWN_WIN)
         {
-            int prevDelta1 = bestValues[iteration - 1] - bestValues[iteration - 2];
-            int prevDelta2 = bestValues[iteration - 2] - bestValues[iteration - 3];
+            int prevDelta1 = bestValues[depth - 1] - bestValues[depth - 2];
+            int prevDelta2 = bestValues[depth - 2] - bestValues[depth - 3];
 
             aspirationDelta = Min(Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16), 24);
             aspirationDelta = (aspirationDelta + 7) / 8 * 8; // Round to match grainSize
 
-            alpha = Max(bestValues[iteration - 1] - aspirationDelta, -VALUE_INFINITE);
-            beta  = Min(bestValues[iteration - 1] + aspirationDelta,  VALUE_INFINITE);
+            alpha = Max(bestValues[depth - 1] - aspirationDelta, -VALUE_INFINITE);
+            beta  = Min(bestValues[depth - 1] + aspirationDelta,  VALUE_INFINITE);
         }
 
         // Start with a small aspiration window and, in case of fail high/low,
@@ -666,7 +646,7 @@ namespace {
         while (true)
         {
             // Search starting from ss+1 to allow calling update_gains()
-            value = search<PV, false, true>(pos, ss+1, alpha, beta, depth, 0);
+            value = search<PV, false, true>(pos, ss+1, alpha, beta, depth * ONE_PLY, 0);
 
             // Send PV line to GUI and write to transposition table in case the
             // relevant entries have been overwritten during the search.
@@ -704,11 +684,16 @@ namespace {
 
         // Collect info about search result
         bestMove = Rml[0].pv[0];
-        bestValues[iteration] = value;
-        bestMoveChanges[iteration] = Rml.bestMoveChanges;
+        bestValues[depth] = value;
+        bestMoveChanges[depth] = Rml.bestMoveChanges;
+
+        if (UseLogFile)
+            LogFile << pretty_pv(pos, depth, value, current_search_time(), Rml[0].pv) << endl;
 
-        // Drop the easy move if differs from the new best move
-        if (bestMove != easyMove)
+        // Init easyMove after first iteration or drop if differs from the best move
+        if (depth == 1 && (Rml.size() == 1 || Rml[0].pv_score > Rml[1].pv_score + EasyMoveMargin))
+            easyMove = bestMove;
+        else if (bestMove != easyMove)
             easyMove = MOVE_NONE;
 
         if (UseTimeManagement && !StopRequest)
@@ -717,15 +702,15 @@ namespace {
             bool noMoreTime = false;
 
             // Stop search early when the last two iterations returned a mate score
-            if (   iteration >= 5
-                && abs(bestValues[iteration])     >= abs(VALUE_MATE) - 100
-                && abs(bestValues[iteration - 1]) >= abs(VALUE_MATE) - 100)
+            if (   depth >= 5
+                && abs(bestValues[depth])     >= abs(VALUE_MATE) - 100
+                && abs(bestValues[depth - 1]) >= abs(VALUE_MATE) - 100)
                 noMoreTime = true;
 
             // Stop search early if one move seems to be much better than the
             // others or if there is only a single legal move. In this latter
             // case we search up to Iteration 8 anyway to get a proper score.
-            if (   iteration >= 7
+            if (   depth >= 7
                 && easyMove == bestMove
                 && (   Rml.size() == 1
                     ||(   Rml[0].nodes > (pos.nodes_searched() * 85) / 100
@@ -735,8 +720,8 @@ namespace {
                 noMoreTime = true;
 
             // Add some extra time if the best move has changed during the last two iterations
-            if (iteration > 4 && iteration < 50)
-                TimeMgr.pv_instability(bestMoveChanges[iteration], bestMoveChanges[iteration-1]);
+            if (depth > 4 && depth < 50)
+                TimeMgr.pv_instability(bestMoveChanges[depth], bestMoveChanges[depth-1]);
 
             // Stop search if most of MaxSearchTime is consumed at the end of the
             // iteration. We probably don't have enough time to search the first
@@ -808,7 +793,8 @@ namespace {
         bestValue = alpha;
 
     // Step 1. Initialize node and poll. Polling can abort search
-    ss->currentMove = ss->bestMove = threatMove = MOVE_NONE;
+    ss->currentMove = ss->bestMove = threatMove = (ss+1)->excludedMove = MOVE_NONE;
+    (ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO;
     (ss+2)->killers[0] = (ss+2)->killers[1] = (ss+2)->mateKiller = MOVE_NONE;
 
     if (threadID == 0 && ++NodesSincePoll > NodesBetweenPolls)
@@ -832,7 +818,7 @@ namespace {
 
     // Step 4. Transposition table lookup
     // We don't want the score of a partial search to overwrite a previous full search
-    // TT value, so we use a different position key in case of an excluded move exists.
+    // TT value, so we use a different position key in case of an excluded move.
     excludedMove = ss->excludedMove;
     posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key();
 
@@ -1034,9 +1020,7 @@ split_point_start: // At split points actual search starts from here
           if (SendSearchedNodes)
           {
               SendSearchedNodes = false;
-              cout << "info nodes " << nodes
-                   << " nps " << nps(pos)
-                   << " time " << current_search_time() << endl;
+              cout << "info" << speed_to_uci(pos.nodes_searched()) << endl;
           }
 
           if (current_search_time() >= 1000)
@@ -1044,7 +1028,9 @@ split_point_start: // At split points actual search starts from here
                    << " currmovenumber " << moveCount << endl;
       }
 
-      isPvMove = (PvNode && moveCount <= (Root ? MultiPV : 1));
+      // At Root and at first iteration do a PV search on all the moves
+      // to score root moves. Otherwise only the first one is the PV.
+      isPvMove = (PvNode && moveCount <= (Root ? MultiPV + 1000 * (depth <= ONE_PLY) : 1));
       moveIsCheck = pos.move_is_check(move, ci);
       captureOrPromotion = pos.move_is_capture_or_promotion(move);
 
@@ -1054,7 +1040,7 @@ split_point_start: // At split points actual search starts from here
       // Singular extension search. If all moves but one fail low on a search of (alpha-s, beta-s),
       // and just one fails high on (alpha, beta), then that move is singular and should be extended.
       // To verify this we do a reduced search on all the other moves but the ttMove, if result is
-      // lower then ttValue minus a margin then we extend ttMove.
+      // lower than ttValue minus a margin then we extend ttMove.
       if (   singularExtensionNode
           && move == tte->move()
           && ext < ONE_PLY)
@@ -1063,7 +1049,7 @@ split_point_start: // At split points actual search starts from here
 
           if (abs(ttValue) < VALUE_KNOWN_WIN)
           {
-              Value b = ttValue - SingularExtensionMargin;
+              Value b = ttValue - depth;
               ss->excludedMove = move;
               ss->skipNullMove = true;
               Value v = search<NonPV>(pos, ss, b - 1, b, depth / 2, ply);
@@ -1077,7 +1063,7 @@ split_point_start: // At split points actual search starts from here
 
       // Update current move (this must be done after singular extension search)
       ss->currentMove = move;
-      newDepth = depth - (!Root ? ONE_PLY : DEPTH_ZERO) + ext;
+      newDepth = depth - ONE_PLY + ext;
 
       // Step 12. Futility pruning (is omitted in PV nodes)
       if (   !PvNode
@@ -1160,8 +1146,7 @@ split_point_start: // At split points actual search starts from here
               &&  ss->killers[0] != move
               &&  ss->killers[1] != move)
           {
-              ss->reduction = Root ? reduction<PvNode>(depth, moveCount - MultiPV + 1)
-                                   : reduction<PvNode>(depth, moveCount);
+              ss->reduction = reduction<PvNode>(depth, moveCount);
               if (ss->reduction)
               {
                   alpha = SpNode ? sp->alpha : alpha;
@@ -1200,14 +1185,14 @@ split_point_start: // At split points actual search starts from here
           alpha = sp->alpha;
       }
 
-      if (!Root && value > bestValue && !(SpNode && ThreadsMgr.cutoff_at_splitpoint(threadID)))
+      if (value > bestValue && !(SpNode && ThreadsMgr.cutoff_at_splitpoint(threadID)))
       {
           bestValue = value;
 
           if (SpNode)
               sp->bestValue = value;
 
-          if (value > alpha)
+          if (!Root && value > alpha)
           {
               if (PvNode && value < beta) // We want always alpha < beta
               {
@@ -1225,16 +1210,12 @@ split_point_start: // At split points actual search starts from here
               ss->bestMove = move;
 
               if (SpNode)
-                  sp->parentSstack->bestMove = move;
+                  sp->ss->bestMove = move;
           }
       }
 
       if (Root)
       {
-          // To avoid to exit with bestValue == -VALUE_INFINITE
-          if (value > bestValue)
-              bestValue = value;
-
           // Finished searching the move. If StopRequest is true, the search
           // was aborted because the user interrupted the search or because we
           // ran out of time. In this case, the return value of the search cannot
@@ -1246,20 +1227,16 @@ split_point_start: // At split points actual search starts from here
           // Remember searched nodes counts for this move
           mp.rm->nodes += pos.nodes_searched() - nodes;
 
-          // Step 17. Check for new best move
-          if (!isPvMove && value <= alpha)
-              mp.rm->pv_score = -VALUE_INFINITE;
-          else
+          // PV move or new best move ?
+          if (isPvMove || value > alpha)
           {
-              // PV move or new best move!
-
               // Update PV
               ss->bestMove = move;
               mp.rm->pv_score = value;
               mp.rm->extract_pv_from_tt(pos);
 
               // We record how often the best move has been changed in each
-              // iteration. This information is used for time managment: When
+              // iteration. This information is used for time management: When
               // the best move changes frequently, we allocate some more time.
               if (!isPvMove && MultiPV == 1)
                   Rml.bestMoveChanges++;
@@ -1272,9 +1249,11 @@ split_point_start: // At split points actual search starts from here
                   alpha = Rml[Min(moveCount, MultiPV) - 1].pv_score; // FIXME why moveCount?
               else if (value > alpha)
                   alpha = value;
+          }
+          else
+              mp.rm->pv_score = -VALUE_INFINITE;
 
-          } // PV move or new best move
-      }
+      } // Root
 
       // Step 18. Check for split
       if (   !Root
@@ -1446,6 +1425,12 @@ split_point_start: // At split points actual search starts from here
                   bestValue = futilityValue;
               continue;
           }
+
+          // Prune moves with negative or equal SEE
+          if (   futilityBase < beta
+              && depth < DEPTH_ZERO
+              && pos.see(move) <= 0)
+              continue;
       }
 
       // Detect non-capture evasions that are candidate to be pruned
@@ -1514,26 +1499,6 @@ split_point_start: // At split points actual search starts from here
   }
 
 
-  // qsearch_scoring() scores each move of a list using a qsearch() evaluation,
-  // it is used in RootMoveList to get an initial scoring.
-  void qsearch_scoring(Position& pos, MoveStack* mlist, MoveStack* last) {
-
-    SearchStack ss[PLY_MAX_PLUS_2];
-    StateInfo st;
-
-    memset(ss, 0, 4 * sizeof(SearchStack));
-    ss[0].eval = ss[0].evalMargin = VALUE_NONE;
-
-    for (MoveStack* cur = mlist; cur != last; cur++)
-    {
-        ss[0].currentMove = cur->move;
-        pos.do_move(cur->move, st);
-        cur->score = -qsearch<PV>(pos, ss+1, -VALUE_INFINITE, VALUE_INFINITE, DEPTH_ZERO, 1);
-        pos.undo_move(cur->move);
-    }
-  }
-
-
   // check_is_dangerous() tests if a checking move can be pruned in qsearch().
   // bestValue is updated only when returning false because in that case move
   // will be pruned.
@@ -1751,7 +1716,7 @@ split_point_start: // At split points actual search starts from here
 
 
   // connected_threat() tests whether it is safe to forward prune a move or if
-  // is somehow coonected to the threat move returned by null search.
+  // is somehow connected to the threat move returned by null search.
 
   bool connected_threat(const Position& pos, Move m, Move threat) {
 
@@ -1773,7 +1738,7 @@ split_point_start: // At split points actual search starts from here
         return true;
 
     // Case 2: If the threatened piece has value less than or equal to the
-    // value of the threatening piece, don't prune move which defend it.
+    // value of the threatening piece, don't prune moves which defend it.
     if (   pos.move_is_capture(threat)
         && (   pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto)
             || pos.type_of_piece_on(tfrom) == KING)
@@ -1871,6 +1836,14 @@ split_point_start: // At split points actual search starts from here
         H.update_gain(pos.piece_on(move_to(m)), move_to(m), -(before + after));
   }
 
+  // current_search_time() returns the number of milliseconds which have passed
+  // since the beginning of the current search.
+
+  int current_search_time() {
+
+    return get_system_time() - SearchStartTime;
+  }
+
 
   // value_to_uci() converts a value to a string suitable for use with the UCI
   // protocol specifications:
@@ -1886,27 +1859,25 @@ split_point_start: // At split points actual search starts from here
     if (abs(v) < VALUE_MATE - PLY_MAX * ONE_PLY)
       s << "cp " << int(v) * 100 / int(PawnValueMidgame); // Scale to centipawns
     else
-      s << "mate " << (v > 0 ? (VALUE_MATE - v + 1) / 2 : -(VALUE_MATE + v) / 2 );
+      s << "mate " << (v > 0 ? (VALUE_MATE - v + 1) / 2 : -(VALUE_MATE + v) / 2);
 
     return s.str();
   }
 
 
-  // current_search_time() returns the number of milliseconds which have passed
-  // since the beginning of the current search.
-
-  int current_search_time() {
-
-    return get_system_time() - SearchStartTime;
-  }
+  // speed_to_uci() returns a string with time stats of current search suitable
+  // to be sent to UCI gui.
 
+  std::string speed_to_uci(int64_t nodes) {
 
-  // nps() computes the current nodes/second count
+    std::stringstream s;
+    int t = current_search_time();
 
-  int nps(const Position& pos) {
+    s << " nodes " << nodes
+      << " nps "   << (t > 0 ? int(nodes * 1000 / t) : 0)
+      << " time "  << t;
 
-    int t = current_search_time();
-    return (t > 0 ? int((pos.nodes_searched() * 1000) / t) : 0);
+    return s.str();
   }
 
 
@@ -2123,16 +2094,19 @@ split_point_start: // At split points actual search starts from here
 
             threads[threadID].state = THREAD_SEARCHING;
 
-            // Here we call search() with SplitPoint template parameter set to true
+            // Copy SplitPoint position and search stack and call search()
+            // with SplitPoint template parameter set to true.
+            SearchStack ss[PLY_MAX_PLUS_2];
             SplitPoint* tsp = threads[threadID].splitPoint;
             Position pos(*tsp->pos, threadID);
-            SearchStack* ss = tsp->sstack[threadID] + 1;
-            ss->sp = tsp;
+
+            memcpy(ss, tsp->ss - 1, 4 * sizeof(SearchStack));
+            (ss+1)->sp = tsp;
 
             if (tsp->pvNode)
-                search<PV, true, false>(pos, ss, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
+                search<PV, true, false>(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
             else
-                search<NonPV, true, false>(pos, ss, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
+                search<NonPV, true, false>(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth, tsp->ply);
 
             assert(threads[threadID].state == THREAD_SEARCHING);
 
@@ -2377,7 +2351,7 @@ split_point_start: // At split points actual search starts from here
     splitPoint.moveCount = moveCount;
     splitPoint.pos = &pos;
     splitPoint.nodes = 0;
-    splitPoint.parentSstack = ss;
+    splitPoint.ss = ss;
     for (i = 0; i < activeThreads; i++)
         splitPoint.slaves[i] = 0;
 
@@ -2404,12 +2378,10 @@ split_point_start: // At split points actual search starts from here
     lock_release(&mpLock);
 
     // Tell the threads that they have work to do. This will make them leave
-    // their idle loop. But before copy search stack tail for each thread.
+    // their idle loop.
     for (i = 0; i < activeThreads; i++)
         if (i == master || splitPoint.slaves[i])
         {
-            memcpy(splitPoint.sstack[i], ss - 1, 4 * sizeof(SearchStack));
-
             assert(i == master || threads[i].state == THREAD_BOOKED);
 
             threads[i].state = THREAD_WORKISWAITING; // This makes the slave to exit from idle_loop()
@@ -2520,7 +2492,7 @@ split_point_start: // At split points actual search starts from here
         k = pos.get_key();
         tte = TT.retrieve(k);
 
-        // Don't overwrite exsisting correct entries
+        // Don't overwrite existing correct entries
         if (!tte || tte->move() != pv[ply])
         {
             v = (pos.is_check() ? VALUE_NONE : evaluate(pos, m));
@@ -2534,10 +2506,10 @@ split_point_start: // At split points actual search starts from here
   }
 
   // pv_info_to_uci() returns a string with information on the current PV line
-  // formatted according to UCI specification and eventually writes the info
-  // to a log file. It is called at each iteration or after a new pv is found.
+  // formatted according to UCI specification. It is called at each iteration
+  // or after a new pv is found.
 
-  std::string RootMove::pv_info_to_uci(Position& pos, Depth depth, Value alpha, Value beta, int pvLine) {
+  std::string RootMove::pv_info_to_uci(Position& pos, int depth, Value alpha, Value beta, int pvLine) {
 
     std::stringstream s, l;
     Move* m = pv;
@@ -2545,23 +2517,14 @@ split_point_start: // At split points actual search starts from here
     while (*m != MOVE_NONE)
         l << *m++ << " ";
 
-    s << "info depth " << depth / ONE_PLY
+    s << "info depth " << depth
       << " seldepth " << int(m - pv)
       << " multipv " << pvLine + 1
       << " score " << value_to_uci(pv_score)
       << (pv_score >= beta ? " lowerbound" : pv_score <= alpha ? " upperbound" : "")
-      << " time "  << current_search_time()
-      << " nodes " << pos.nodes_searched()
-      << " nps "   << nps(pos)
+      << speed_to_uci(pos.nodes_searched())
       << " pv "    << l.str();
 
-    if (UseLogFile && pvLine == 0)
-    {
-        ValueType t = pv_score >= beta  ? VALUE_TYPE_LOWER :
-                      pv_score <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT;
-
-        LogFile << pretty_pv(pos, current_search_time(), depth / ONE_PLY, pv_score, t, pv) << endl;
-    }
     return s.str();
   }
 
@@ -2574,11 +2537,8 @@ split_point_start: // At split points actual search starts from here
     clear();
     bestMoveChanges = 0;
 
-    // Generate all legal moves and score them
+    // Generate all legal moves and add them to RootMoveList
     MoveStack* last = generate<MV_LEGAL>(pos, mlist);
-    qsearch_scoring(pos, mlist, last);
-
-    // Add each move to the RootMoveList's vector
     for (MoveStack* cur = mlist; cur != last; cur++)
     {
         // If we have a searchMoves[] list then verify cur->move
@@ -2591,10 +2551,9 @@ split_point_start: // At split points actual search starts from here
         RootMove rm;
         rm.pv[0] = cur->move;
         rm.pv[1] = MOVE_NONE;
-        rm.pv_score = Value(cur->score);
+        rm.pv_score = -VALUE_INFINITE;
         push_back(rm);
     }
-    sort();
   }
 
 } // namespace