]> git.sesse.net Git - stockfish/blobdiff - src/search.cpp
Fix race while exiting
[stockfish] / src / search.cpp
index 2edaff8c2d1af5d79840f129713d0f2af65f810b..d86f249365f8ed318f70359541fff404862f8cf2 100644 (file)
@@ -62,10 +62,6 @@ namespace {
   // Different node types, used as template parameter
   enum NodeType { Root, PV, NonPV, SplitPointRoot, SplitPointPV, SplitPointNonPV };
 
-  // Lookup table to check if a Piece is a slider and its access function
-  const bool Slidings[18] = { 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 };
-  inline bool piece_is_slider(Piece p) { return Slidings[p]; }
-
   // Dynamic razoring margin based on depth
   inline Value razor_margin(Depth d) { return Value(512 + 16 * int(d)); }
 
@@ -96,15 +92,14 @@ namespace {
   template <NodeType NT>
   Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
 
-  template <NodeType NT>
+  template <NodeType NT, bool InCheck>
   Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth);
 
   void id_loop(Position& pos);
-  bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta);
-  bool connected_moves(const Position& pos, Move m1, Move m2);
   Value value_to_tt(Value v, int ply);
   Value value_from_tt(Value v, int ply);
-  bool connected_threat(const Position& pos, Move m, Move threat);
+  bool check_is_dangerous(Position& pos, Move move, Value futilityBase, Value beta);
+  bool prevents_move(const Position& pos, Move first, Move second);
   string uci_pv(const Position& pos, int depth, Value alpha, Value beta);
 
   struct Skill {
@@ -192,13 +187,13 @@ void Search::think() {
   {
       RootMoves.push_back(MOVE_NONE);
       sync_cout << "info depth 0 score "
-                << score_to_uci(RootPos.in_check() ? -VALUE_MATE : VALUE_DRAW)
+                << score_to_uci(RootPos.checkers() ? -VALUE_MATE : VALUE_DRAW)
                 << sync_endl;
 
       goto finalize;
   }
 
-  if (Options["OwnBook"] && !Limits.infinite)
+  if (Options["OwnBook"] && !Limits.infinite && !Limits.mate)
   {
       Move bookMove = book.probe(RootPos, Options["Book File"], Options["Best Book Move"]);
 
@@ -212,7 +207,7 @@ void Search::think() {
   if (Options["Contempt Factor"] && !Options["UCI_AnalyseMode"])
   {
       int cf = Options["Contempt Factor"] * PawnValueMg / 100; // From centipawns
-      cf = cf * MaterialTable::game_phase(RootPos) / PHASE_MIDGAME; // Scale down with phase
+      cf = cf * Material::game_phase(RootPos) / PHASE_MIDGAME; // Scale down with phase
       DrawValue[ RootColor] = VALUE_DRAW - Value(cf);
       DrawValue[~RootColor] = VALUE_DRAW + Value(cf);
   }
@@ -222,7 +217,7 @@ void Search::think() {
   if (Options["Use Search Log"])
   {
       Log log(Options["Search Log Filename"]);
-      log << "\nSearching: "  << RootPos.to_fen()
+      log << "\nSearching: "  << RootPos.fen()
           << "\ninfinite: "   << Limits.infinite
           << " ponder: "      << Limits.ponder
           << " time: "        << Limits.time[RootColor]
@@ -231,22 +226,25 @@ void Search::think() {
           << std::endl;
   }
 
-  Threads.wake_up();
+  // Reset the threads, still sleeping: will be wake up at split time
+  for (size_t i = 0; i < Threads.size(); i++)
+      Threads[i].maxPly = 0;
+
+  Threads.sleepWhileIdle = Options["Use Sleeping Threads"];
 
   // Set best timer interval to avoid lagging under time pressure. Timer is
   // used to check for remaining available thinking time.
-  if (Limits.use_time_management())
-      Threads.set_timer(std::min(100, std::max(TimeMgr.available_time() / 16,
-                                               TimerResolution)));
-  else if (Limits.nodes)
-      Threads.set_timer(2 * TimerResolution);
-  else
-      Threads.set_timer(100);
+  Threads.timer_thread()->msec =
+  Limits.use_time_management() ? std::min(100, std::max(TimeMgr.available_time() / 16, TimerResolution)) :
+                  Limits.nodes ? 2 * TimerResolution
+                               : 100;
+
+  Threads.timer_thread()->notify_one(); // Wake up the recurring timer
 
   id_loop(RootPos); // Let's start searching !
 
-  Threads.set_timer(0); // Stop timer
-  Threads.sleep();
+  Threads.timer_thread()->msec = 0; // Stop the timer
+  Threads.sleepWhileIdle = true; // Send idle threads to sleep
 
   if (Options["Use Search Log"])
   {
@@ -266,10 +264,15 @@ void Search::think() {
 finalize:
 
   // When we reach max depth we arrive here even without Signals.stop is raised,
-  // but if we are pondering or in infinite search, we shouldn't print the best
-  // move before we are told to do so.
+  // but if we are pondering or in infinite search, according to UCI protocol,
+  // we shouldn't print the best move before the GUI sends a "stop" or "ponderhit"
+  // command. We simply wait here until GUI sends one of those commands (that
+  // raise Signals.stop).
   if (!Signals.stop && (Limits.ponder || Limits.infinite))
-      RootPos.this_thread()->wait_for_stop_or_ponderhit();
+  {
+      Signals.stopOnPonderhit = true;
+      RootPos.this_thread()->wait_for(Signals.stop);
+  }
 
   // Best move could be MOVE_NONE when searching on a stalemate position
   sync_cout << "bestmove " << move_to_uci(RootMoves[0].pv[0], RootPos.is_chess960())
@@ -394,8 +397,9 @@ namespace {
             }
 
             // Sort the PV lines searched so far and update the GUI
-            sort<RootMove>(RootMoves.begin(), RootMoves.begin() + PVIdx);
-            sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
+            sort<RootMove>(RootMoves.begin(), RootMoves.begin() + PVIdx + 1);
+            if (PVIdx + 1 == PVSize || Time::now() - SearchTime > 3000)
+                sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl;
         }
 
         // Do we need to pick now the sub-optimal best move ?
@@ -413,6 +417,12 @@ namespace {
         if (depth > 2 && BestMoveChanges)
             bestMoveNeverChanged = false;
 
+        // Do we have found a "mate in x"?
+        if (   Limits.mate
+            && bestValue >= VALUE_MATE_IN_MAX_PLY
+            && VALUE_MATE - bestValue <= 2 * Limits.mate)
+            Signals.stop = true;
+
         // Do we have time for the next iteration? Can we stop searching now?
         if (Limits.use_time_management() && !Signals.stopOnPonderhit)
         {
@@ -494,7 +504,7 @@ namespace {
     // Step 1. Initialize node
     Thread* thisThread = pos.this_thread();
     moveCount = playedMoveCount = 0;
-    inCheck = pos.in_check();
+    inCheck = pos.checkers();
 
     if (SpNode)
     {
@@ -553,13 +563,13 @@ namespace {
     // smooth experience in analysis mode. We don't probe at Root nodes otherwise
     // we should also update RootMoveList to avoid bogus output.
     if (   !RootNode
-        && tte && tte->depth() >= depth
+        && tte
+        && tte->depth() >= depth
+        && ttValue != VALUE_NONE // Only in case of TT access race
         && (           PvNode ?  tte->type() == BOUND_EXACT
             : ttValue >= beta ? (tte->type() & BOUND_LOWER)
                               : (tte->type() & BOUND_UPPER)))
     {
-        assert(ttValue != VALUE_NONE); // Due to depth > DEPTH_NONE
-
         TT.refresh(tte);
         ss->currentMove = ttMove; // Can be MOVE_NONE
 
@@ -580,16 +590,16 @@ namespace {
 
     else if (tte)
     {
-        assert(tte->static_value() != VALUE_NONE);
-        assert(ttValue != VALUE_NONE || tte->type() == BOUND_NONE);
-
-        ss->staticEval = eval = tte->static_value();
-        ss->evalMargin = tte->static_value_margin();
+        // Never assume anything on values stored in TT
+        if (  (ss->staticEval = eval = tte->static_value()) == VALUE_NONE
+            ||(ss->evalMargin = tte->static_value_margin()) == VALUE_NONE)
+            eval = ss->staticEval = evaluate(pos, ss->evalMargin);
 
         // Can ttValue be used as a better position evaluation?
-        if (   ((tte->type() & BOUND_LOWER) && ttValue > eval)
-            || ((tte->type() & BOUND_UPPER) && ttValue < eval))
-            eval = ttValue;
+        if (ttValue != VALUE_NONE)
+            if (   ((tte->type() & BOUND_LOWER) && ttValue > eval)
+                || ((tte->type() & BOUND_UPPER) && ttValue < eval))
+                eval = ttValue;
     }
     else
     {
@@ -620,7 +630,7 @@ namespace {
         && !pos.pawn_on_7th(pos.side_to_move()))
     {
         Value rbeta = beta - razor_margin(depth);
-        Value v = qsearch<NonPV>(pos, ss, rbeta-1, rbeta, DEPTH_ZERO);
+        Value v = qsearch<NonPV, false>(pos, ss, rbeta-1, rbeta, DEPTH_ZERO);
         if (v < rbeta)
             // Logically we should return (v + razor_margin(depth)), but
             // surprisingly this did slightly weaker in tests.
@@ -659,7 +669,7 @@ namespace {
 
         pos.do_null_move<true>(st);
         (ss+1)->skipNullMove = true;
-        nullValue = depth-R < ONE_PLY ? -qsearch<NonPV>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
+        nullValue = depth-R < ONE_PLY ? -qsearch<NonPV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
                                       : - search<NonPV>(pos, ss+1, -beta, -alpha, depth-R);
         (ss+1)->skipNullMove = false;
         pos.do_null_move<false>(st);
@@ -682,21 +692,9 @@ namespace {
                 return nullValue;
         }
         else
-        {
             // The null move failed low, which means that we may be faced with
-            // some kind of threat. If the previous move was reduced, check if
-            // the move that refuted the null move was somehow connected to the
-            // move which was reduced. If a connection is found, return a fail
-            // low score (which will cause the reduced move to fail high in the
-            // parent node, which will trigger a re-search with full depth).
+            // some kind of threat.
             threatMove = (ss+1)->currentMove;
-
-            if (   depth < 5 * ONE_PLY
-                && (ss-1)->reduction
-                && threatMove != MOVE_NONE
-                && connected_moves(pos, (ss-1)->currentMove, threatMove))
-                return beta - 1;
-        }
     }
 
     // Step 9. ProbCut (is omitted in PV nodes)
@@ -791,7 +789,7 @@ split_point_start: // At split points actual search starts from here
       {
           Signals.firstRootMove = (moveCount == 1);
 
-          if (thisThread == Threads.main_thread() && Time::now() - SearchTime > 2000)
+          if (thisThread == Threads.main_thread() && Time::now() - SearchTime > 3000)
               sync_cout << "info depth " << depth / ONE_PLY
                         << " currmove " << move_to_uci(move, pos.is_chess960())
                         << " currmovenumber " << moveCount + PVIdx << sync_endl;
@@ -849,13 +847,12 @@ split_point_start: // At split points actual search starts from here
           && !inCheck
           && !dangerous
           &&  move != ttMove
+          && (!threatMove || !prevents_move(pos, move, threatMove))
           && (bestValue > VALUE_MATED_IN_MAX_PLY || (   bestValue == -VALUE_INFINITE
                                                      && alpha > VALUE_MATED_IN_MAX_PLY)))
       {
           // Move count based pruning
-          if (   depth < 16 * ONE_PLY
-              && moveCount >= FutilityMoveCounts[depth]
-              && (!threatMove || !connected_threat(pos, move, threatMove)))
+          if (depth < 16 * ONE_PLY && moveCount >= FutilityMoveCounts[depth])
           {
               if (SpNode)
                   sp->mutex.lock();
@@ -890,13 +887,13 @@ split_point_start: // At split points actual search starts from here
       }
 
       // Check for legality only before to do the move
-      if (!pos.pl_move_is_legal(move, ci.pinned))
+      if (!RootNode && !SpNode && !pos.pl_move_is_legal(move, ci.pinned))
       {
           moveCount--;
           continue;
       }
 
-      pvMove = PvNode ? moveCount == 1 : false;
+      pvMove = PvNode && moveCount == 1;
       ss->currentMove = move;
       if (!SpNode && !captureOrPromotion && playedMoveCount < 64)
           movesSearched[playedMoveCount++] = move;
@@ -929,7 +926,9 @@ split_point_start: // At split points actual search starts from here
       if (doFullDepthSearch)
       {
           alpha = SpNode ? sp->alpha : alpha;
-          value = newDepth < ONE_PLY ? -qsearch<NonPV>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
+          value = newDepth < ONE_PLY ?
+                          givesCheck ? -qsearch<NonPV,  true>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
+                                     : -qsearch<NonPV, false>(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO)
                                      : - search<NonPV>(pos, ss+1, -(alpha+1), -alpha, newDepth);
       }
 
@@ -937,9 +936,10 @@ split_point_start: // At split points actual search starts from here
       // high, in the latter case search only if value < beta, otherwise let the
       // parent node to fail low with value <= alpha and to try another move.
       if (PvNode && (pvMove || (value > alpha && (RootNode || value < beta))))
-          value = newDepth < ONE_PLY ? -qsearch<PV>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
+          value = newDepth < ONE_PLY ?
+                          givesCheck ? -qsearch<PV,  true>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
+                                     : -qsearch<PV, false>(pos, ss+1, -beta, -alpha, DEPTH_ZERO)
                                      : - search<PV>(pos, ss+1, -beta, -alpha, newDepth);
-
       // Step 17. Undo move
       pos.undo_move(move);
 
@@ -985,22 +985,21 @@ split_point_start: // At split points actual search starts from here
 
       if (value > bestValue)
       {
-          bestValue = value;
-          if (SpNode) sp->bestValue = value;
+          bestValue = SpNode ? sp->bestValue = value : value;
 
           if (value > alpha)
           {
-              bestMove = move;
-              if (SpNode) sp->bestMove = move;
+              bestMove = SpNode ? sp->bestMove = move : move;
 
-              if (PvNode && value < beta)
+              if (PvNode && value < beta) // Update alpha! Always alpha < beta
+                  alpha = SpNode ? sp->alpha = value : value;
+              else
               {
-                  alpha = value; // Update alpha here! Always alpha < beta
-                  if (SpNode) sp->alpha = value;
-              }
-              else // Fail high
-              {
-                  if (SpNode) sp->cutoff = true;
+                  assert(value >= beta); // Fail high
+
+                  if (SpNode)
+                      sp->cutoff = true;
+
                   break;
               }
           }
@@ -1009,12 +1008,14 @@ split_point_start: // At split points actual search starts from here
       // Step 19. Check for splitting the search
       if (   !SpNode
           &&  depth >= Threads.min_split_depth()
-          &&  bestValue < beta
           &&  Threads.available_slave_exists(thisThread))
       {
+          assert(bestValue < beta);
+
           bestValue = Threads.split<FakeSplit>(pos, ss, alpha, beta, bestValue, &bestMove,
                                                depth, threatMove, moveCount, mp, NT);
-          break;
+          if (bestValue >= beta)
+              break;
       }
     }
 
@@ -1080,12 +1081,13 @@ split_point_start: // At split points actual search starts from here
   // search function when the remaining depth is zero (or, to be more precise,
   // less than ONE_PLY).
 
-  template <NodeType NT>
+  template <NodeType NT, bool InCheck>
   Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) {
 
     const bool PvNode = (NT == PV);
 
     assert(NT == PV || NT == NonPV);
+    assert(InCheck == !!pos.checkers());
     assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE);
     assert(PvNode || (alpha == beta - 1));
     assert(depth <= DEPTH_ZERO);
@@ -1094,11 +1096,14 @@ split_point_start: // At split points actual search starts from here
     const TTEntry* tte;
     Key posKey;
     Move ttMove, move, bestMove;
-    Value bestValue, value, ttValue, futilityValue, futilityBase;
-    bool inCheck, givesCheck, enoughMaterial, evasionPrunable;
+    Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha;
+    bool givesCheck, enoughMaterial, evasionPrunable;
     Depth ttDepth;
 
-    inCheck = pos.in_check();
+    // To flag BOUND_EXACT a node with eval above alpha and no available moves
+    if (PvNode)
+        oldAlpha = alpha;
+
     ss->currentMove = bestMove = MOVE_NONE;
     ss->ply = (ss-1)->ply + 1;
 
@@ -1116,21 +1121,21 @@ split_point_start: // At split points actual search starts from here
     // Decide whether or not to include checks, this fixes also the type of
     // TT entry depth that we are going to use. Note that in qsearch we use
     // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS.
-    ttDepth = inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
+    ttDepth = InCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS
                                                   : DEPTH_QS_NO_CHECKS;
-    if (   tte && tte->depth() >= ttDepth
+    if (   tte
+        && tte->depth() >= ttDepth
+        && ttValue != VALUE_NONE // Only in case of TT access race
         && (           PvNode ?  tte->type() == BOUND_EXACT
             : ttValue >= beta ? (tte->type() & BOUND_LOWER)
                               : (tte->type() & BOUND_UPPER)))
     {
-        assert(ttValue != VALUE_NONE); // Due to ttDepth > DEPTH_NONE
-
         ss->currentMove = ttMove; // Can be MOVE_NONE
         return ttValue;
     }
 
     // Evaluate the position statically
-    if (inCheck)
+    if (InCheck)
     {
         ss->staticEval = ss->evalMargin = VALUE_NONE;
         bestValue = futilityBase = -VALUE_INFINITE;
@@ -1140,10 +1145,10 @@ split_point_start: // At split points actual search starts from here
     {
         if (tte)
         {
-            assert(tte->static_value() != VALUE_NONE);
-
-            ss->staticEval = bestValue = tte->static_value();
-            ss->evalMargin = tte->static_value_margin();
+            // Never assume anything on values stored in TT
+            if (  (ss->staticEval = bestValue = tte->static_value()) == VALUE_NONE
+                ||(ss->evalMargin = tte->static_value_margin()) == VALUE_NONE)
+                ss->staticEval = bestValue = evaluate(pos, ss->evalMargin);
         }
         else
             ss->staticEval = bestValue = evaluate(pos, ss->evalMargin);
@@ -1181,7 +1186,7 @@ split_point_start: // At split points actual search starts from here
 
       // Futility pruning
       if (   !PvNode
-          && !inCheck
+          && !InCheck
           && !givesCheck
           &&  move != ttMove
           &&  enoughMaterial
@@ -1194,9 +1199,7 @@ split_point_start: // At split points actual search starts from here
 
           if (futilityValue < beta)
           {
-              if (futilityValue > bestValue)
-                  bestValue = futilityValue;
-
+              bestValue = std::max(bestValue, futilityValue);
               continue;
           }
 
@@ -1204,19 +1207,22 @@ split_point_start: // At split points actual search starts from here
           if (   futilityBase < beta
               && depth < DEPTH_ZERO
               && pos.see(move) <= 0)
+          {
+              bestValue = std::max(bestValue, futilityBase);
               continue;
+          }
       }
 
       // Detect non-capture evasions that are candidate to be pruned
       evasionPrunable =   !PvNode
-                       &&  inCheck
+                       &&  InCheck
                        &&  bestValue > VALUE_MATED_IN_MAX_PLY
                        && !pos.is_capture(move)
                        && !pos.can_castle(pos.side_to_move());
 
       // Don't search moves with negative SEE values
       if (   !PvNode
-          && (!inCheck || evasionPrunable)
+          && (!InCheck || evasionPrunable)
           &&  move != ttMove
           &&  type_of(move) != PROMOTION
           &&  pos.see_sign(move) < 0)
@@ -1224,7 +1230,7 @@ split_point_start: // At split points actual search starts from here
 
       // Don't search useless checks
       if (   !PvNode
-          && !inCheck
+          && !InCheck
           &&  givesCheck
           &&  move != ttMove
           && !pos.is_capture_or_promotion(move)
@@ -1240,7 +1246,8 @@ split_point_start: // At split points actual search starts from here
 
       // Make and search the move
       pos.do_move(move, st, ci, givesCheck);
-      value = -qsearch<NT>(pos, ss+1, -beta, -alpha, depth - ONE_PLY);
+      value = givesCheck ? -qsearch<NT,  true>(pos, ss+1, -beta, -alpha, depth - ONE_PLY)
+                         : -qsearch<NT, false>(pos, ss+1, -beta, -alpha, depth - ONE_PLY);
       pos.undo_move(move);
 
       assert(value > -VALUE_INFINITE && value < VALUE_INFINITE);
@@ -1270,11 +1277,11 @@ split_point_start: // At split points actual search starts from here
 
     // All legal moves have been searched. A special case: If we're in check
     // and no legal moves were found, it is checkmate.
-    if (inCheck && bestValue == -VALUE_INFINITE)
+    if (InCheck && bestValue == -VALUE_INFINITE)
         return mated_in(ss->ply); // Plies to mate from the root
 
     TT.store(posKey, value_to_tt(bestValue, ss->ply),
-             PvNode && bestMove != MOVE_NONE ? BOUND_EXACT : BOUND_UPPER,
+             PvNode && bestValue > oldAlpha ? BOUND_EXACT : BOUND_UPPER,
              ttDepth, bestMove, ss->staticEval, ss->evalMargin);
 
     assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE);
@@ -1283,99 +1290,6 @@ split_point_start: // At split points actual search starts from here
   }
 
 
-  // check_is_dangerous() tests if a checking move can be pruned in qsearch().
-  // bestValue is updated only when returning false because in that case move
-  // will be pruned.
-
-  bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta)
-  {
-    Bitboard b, occ, oldAtt, newAtt, kingAtt;
-    Square from, to, ksq;
-    Piece pc;
-    Color them;
-
-    from = from_sq(move);
-    to = to_sq(move);
-    them = ~pos.side_to_move();
-    ksq = pos.king_square(them);
-    kingAtt = pos.attacks_from<KING>(ksq);
-    pc = pos.piece_moved(move);
-
-    occ = pos.pieces() ^ from ^ ksq;
-    oldAtt = pos.attacks_from(pc, from, occ);
-    newAtt = pos.attacks_from(pc,   to, occ);
-
-    // Rule 1. Checks which give opponent's king at most one escape square are dangerous
-    b = kingAtt & ~pos.pieces(them) & ~newAtt & ~(1ULL << to);
-
-    if (!more_than_one(b))
-        return true;
-
-    // Rule 2. Queen contact check is very dangerous
-    if (type_of(pc) == QUEEN && (kingAtt & to))
-        return true;
-
-    // Rule 3. Creating new double threats with checks
-    b = pos.pieces(them) & newAtt & ~oldAtt & ~(1ULL << ksq);
-    while (b)
-    {
-        // Note that here we generate illegal "double move"!
-        if (futilityBase + PieceValue[EG][pos.piece_on(pop_lsb(&b))] >= beta)
-            return true;
-    }
-
-    return false;
-  }
-
-
-  // connected_moves() tests whether two moves are 'connected' in the sense
-  // that the first move somehow made the second move possible (for instance
-  // if the moving piece is the same in both moves). The first move is assumed
-  // to be the move that was made to reach the current position, while the
-  // second move is assumed to be a move from the current position.
-
-  bool connected_moves(const Position& pos, Move m1, Move m2) {
-
-    Square f1, t1, f2, t2;
-    Piece p1, p2;
-    Square ksq;
-
-    assert(is_ok(m1));
-    assert(is_ok(m2));
-
-    // Case 1: The moving piece is the same in both moves
-    f2 = from_sq(m2);
-    t1 = to_sq(m1);
-    if (f2 == t1)
-        return true;
-
-    // Case 2: The destination square for m2 was vacated by m1
-    t2 = to_sq(m2);
-    f1 = from_sq(m1);
-    if (t2 == f1)
-        return true;
-
-    // Case 3: Moving through the vacated square
-    p2 = pos.piece_on(f2);
-    if (piece_is_slider(p2) && (between_bb(f2, t2) & f1))
-      return true;
-
-    // Case 4: The destination square for m2 is defended by the moving piece in m1
-    p1 = pos.piece_on(t1);
-    if (pos.attacks_from(p1, t1) & t2)
-        return true;
-
-    // Case 5: Discovered check, checking piece is the piece moved in m1
-    ksq = pos.king_square(pos.side_to_move());
-    if (    piece_is_slider(p1)
-        && (between_bb(t1, ksq) & f2)
-        && (pos.attacks_from(p1, t1, pos.pieces() ^ f2) & ksq))
-        return true;
-
-    return false;
-  }
-
-
   // value_to_tt() adjusts a mate score from "plies to mate from the root" to
   // "plies to mate from the current position". Non-mate scores are unchanged.
   // The function is called before storing a value to the transposition table.
@@ -1401,40 +1315,86 @@ split_point_start: // At split points actual search starts from here
   }
 
 
-  // connected_threat() tests whether it is safe to forward prune a move or if
-  // is somehow connected to the threat move returned by null search.
+  // check_is_dangerous() tests if a checking move can be pruned in qsearch()
 
-  bool connected_threat(const Position& pos, Move m, Move threat) {
+  bool check_is_dangerous(Position& pos, Move move, Value futilityBase, Value beta)
+  {
+    Piece pc = pos.piece_moved(move);
+    Square from = from_sq(move);
+    Square to = to_sq(move);
+    Color them = ~pos.side_to_move();
+    Square ksq = pos.king_square(them);
+    Bitboard enemies = pos.pieces(them);
+    Bitboard kingAtt = pos.attacks_from<KING>(ksq);
+    Bitboard occ = pos.pieces() ^ from ^ ksq;
+    Bitboard oldAtt = pos.attacks_from(pc, from, occ);
+    Bitboard newAtt = pos.attacks_from(pc, to, occ);
+
+    // Checks which give opponent's king at most one escape square are dangerous
+    if (!more_than_one(kingAtt & ~(enemies | newAtt | to)))
+        return true;
 
-    assert(is_ok(m));
-    assert(is_ok(threat));
-    assert(!pos.is_capture_or_promotion(m));
-    assert(!pos.is_passed_pawn_push(m));
+    // Queen contact check is very dangerous
+    if (type_of(pc) == QUEEN && (kingAtt & to))
+        return true;
 
-    Square mfrom, mto, tfrom, tto;
+    // Creating new double threats with checks is dangerous
+    Bitboard b = (enemies ^ ksq) & newAtt & ~oldAtt;
+    while (b)
+    {
+        // Note that here we generate illegal "double move"!
+        if (futilityBase + PieceValue[EG][pos.piece_on(pop_lsb(&b))] >= beta)
+            return true;
+    }
 
-    mfrom = from_sq(m);
-    mto = to_sq(m);
-    tfrom = from_sq(threat);
-    tto = to_sq(threat);
+    return false;
+  }
 
-    // Case 1: Don't prune moves which move the threatened piece
-    if (mfrom == tto)
-        return true;
 
-    // Case 2: If the threatened piece has value less than or equal to the
-    // value of the threatening piece, don't prune moves which defend it.
-    if (   pos.is_capture(threat)
-        && (   PieceValue[MG][pos.piece_on(tfrom)] >= PieceValue[MG][pos.piece_on(tto)]
-            || type_of(pos.piece_on(tfrom)) == KING)
-        && pos.move_attacks_square(m, tto))
+  // prevents_move() tests whether a move (first) is able to defend against an
+  // opponent's move (second). In this case will not be pruned. Normally the
+  // second move is the threat move (the best move returned from a null search
+  // that fails low).
+
+  bool prevents_move(const Position& pos, Move first, Move second) {
+
+    assert(is_ok(first));
+    assert(is_ok(second));
+
+    Square m1from = from_sq(first);
+    Square m2from = from_sq(second);
+    Square m1to = to_sq(first);
+    Square m2to = to_sq(second);
+
+    // Don't prune moves of the threatened piece
+    if (m1from == m2to)
         return true;
 
-    // Case 3: If the moving piece in the threatened move is a slider, don't
-    // prune safe moves which block its ray.
-    if (    piece_is_slider(pos.piece_on(tfrom))
-        && (between_bb(tfrom, tto) & mto)
-        &&  pos.see_sign(m) >= 0)
+    // If the threatened piece has value less than or equal to the value of the
+    // threat piece, don't prune moves which defend it.
+    if (    pos.is_capture(second)
+        && (   PieceValue[MG][pos.piece_on(m2from)] >= PieceValue[MG][pos.piece_on(m2to)]
+            || type_of(pos.piece_on(m2from)) == KING))
+    {
+        // Update occupancy as if the piece and the threat are moving
+        Bitboard occ = pos.pieces() ^ m1from ^ m1to ^ m2from;
+        Piece piece = pos.piece_on(m1from);
+
+        // The moved piece attacks the square 'tto' ?
+        if (pos.attacks_from(piece, m1to, occ) & m2to)
+            return true;
+
+        // Scan for possible X-ray attackers behind the moved piece
+        Bitboard xray =  (attacks_bb<  ROOK>(m2to, occ) & pos.pieces(color_of(piece), QUEEN, ROOK))
+                       | (attacks_bb<BISHOP>(m2to, occ) & pos.pieces(color_of(piece), QUEEN, BISHOP));
+
+        // Verify attackers are triggered by our move and not already existing
+        if (xray && (xray ^ (xray & pos.attacks_from<QUEEN>(m2to))))
+            return true;
+    }
+
+    // Don't prune safe moves which block the threat path
+    if ((between_bb(m2from, m2to) & m1to) && pos.see_sign(first) >= 0)
         return true;
 
     return false;
@@ -1491,23 +1451,24 @@ split_point_start: // At split points actual search starts from here
 
     std::stringstream s;
     Time::point elaspsed = Time::now() - SearchTime + 1;
+    size_t uciPVSize = std::min((size_t)Options["MultiPV"], RootMoves.size());
     int selDepth = 0;
 
     for (size_t i = 0; i < Threads.size(); i++)
         if (Threads[i].maxPly > selDepth)
             selDepth = Threads[i].maxPly;
 
-    for (size_t i = 0; i < std::min((size_t)Options["MultiPV"], RootMoves.size()); i++)
+    for (size_t i = 0; i < uciPVSize; i++)
     {
         bool updated = (i <= PVIdx);
 
         if (depth == 1 && !updated)
             continue;
 
-        int d = (updated ? depth : depth - 1);
-        Value v = (updated ? RootMoves[i].score : RootMoves[i].prevScore);
+        int d   = updated ? depth : depth - 1;
+        Value v = updated ? RootMoves[i].score : RootMoves[i].prevScore;
 
-        if (s.rdbuf()->in_avail())
+        if (s.rdbuf()->in_avail()) // Not at first line
             s << "\n";
 
         s << "info depth " << d
@@ -1538,29 +1499,28 @@ void RootMove::extract_pv_from_tt(Position& pos) {
 
   StateInfo state[MAX_PLY_PLUS_2], *st = state;
   TTEntry* tte;
-  int ply = 1;
+  int ply = 0;
   Move m = pv[0];
 
-  assert(m != MOVE_NONE && pos.is_pseudo_legal(m));
-
   pv.clear();
-  pv.push_back(m);
-  pos.do_move(m, *st++);
-
-  while (   (tte = TT.probe(pos.key())) != NULL
-         && (m = tte->move()) != MOVE_NONE // Local copy, TT entry could change
-         && pos.is_pseudo_legal(m)
-         && pos.pl_move_is_legal(m, pos.pinned_pieces())
-         && ply < MAX_PLY
-         && (!pos.is_draw<true, true>() || ply < 2))
-  {
+
+  do {
       pv.push_back(m);
-      pos.do_move(m, *st++);
-      ply++;
-  }
-  pv.push_back(MOVE_NONE);
 
-  do pos.undo_move(pv[--ply]); while (ply);
+      assert(MoveList<LEGAL>(pos).contains(pv[ply]));
+
+      pos.do_move(pv[ply++], *st++);
+      tte = TT.probe(pos.key());
+
+  } while (   tte
+           && pos.is_pseudo_legal(m = tte->move()) // Local copy, TT could change
+           && pos.pl_move_is_legal(m, pos.pinned_pieces())
+           && ply < MAX_PLY
+           && (!pos.is_draw<true, true>() || ply < 2));
+
+  pv.push_back(MOVE_NONE); // Must be zero-terminating
+
+  while (ply) pos.undo_move(pv[--ply]);
 }
 
 
@@ -1572,27 +1532,21 @@ void RootMove::insert_pv_in_tt(Position& pos) {
 
   StateInfo state[MAX_PLY_PLUS_2], *st = state;
   TTEntry* tte;
-  Key k;
-  Value v, m = VALUE_NONE;
   int ply = 0;
 
-  assert(pv[ply] != MOVE_NONE && pos.is_pseudo_legal(pv[ply]));
-
   do {
-      k = pos.key();
-      tte = TT.probe(k);
+      tte = TT.probe(pos.key());
 
-      // Don't overwrite existing correct entries
-      if (!tte || tte->move() != pv[ply])
-      {
-          v = (pos.in_check() ? VALUE_NONE : evaluate(pos, m));
-          TT.store(k, VALUE_NONE, BOUND_NONE, DEPTH_NONE, pv[ply], v, m);
-      }
-      pos.do_move(pv[ply], *st++);
+      if (!tte || tte->move() != pv[ply]) // Don't overwrite correct entries
+          TT.store(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE, pv[ply], VALUE_NONE, VALUE_NONE);
+
+      assert(MoveList<LEGAL>(pos).contains(pv[ply]));
+
+      pos.do_move(pv[ply++], *st++);
 
-  } while (pv[++ply] != MOVE_NONE);
+  } while (pv[ply] != MOVE_NONE);
 
-  do pos.undo_move(pv[--ply]); while (ply);
+  while (ply) pos.undo_move(pv[--ply]);
 }
 
 
@@ -1612,9 +1566,7 @@ void Thread::idle_loop() {
   {
       // If we are not searching, wait for a condition to be signaled
       // instead of wasting CPU time polling for work.
-      while (   do_sleep
-             || do_exit
-             || (!is_searching && Threads.use_sleeping_threads()))
+      while (do_exit || (!is_searching && Threads.sleepWhileIdle))
       {
           if (do_exit)
           {
@@ -1636,7 +1588,7 @@ void Thread::idle_loop() {
           // particular we need to avoid a deadlock in case a master thread has,
           // in the meanwhile, allocated us and sent the wake_up() call before we
           // had the chance to grab the lock.
-          if (do_sleep || !is_searching)
+          if (!is_searching && !do_exit)
               sleepCondition.wait(mutex);
 
           mutex.unlock();
@@ -1645,7 +1597,7 @@ void Thread::idle_loop() {
       // If this thread has been assigned work, launch a search
       if (is_searching)
       {
-          assert(!do_sleep && !do_exit);
+          assert(!do_exit);
 
           Threads.mutex.lock();
 
@@ -1684,12 +1636,12 @@ void Thread::idle_loop() {
 
           // Wake up master thread so to allow it to return from the idle loop in
           // case we are the last slave of the split point.
-          if (    Threads.use_sleeping_threads()
+          if (    Threads.sleepWhileIdle
               &&  this != sp->master
               && !sp->slavesMask)
           {
               assert(!sp->master->is_searching);
-              sp->master->wake_up();
+              sp->master->notify_one();
           }
 
           // After releasing the lock we cannot access anymore any SplitPoint