X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.cpp;h=318ce049954f7d03316c532c5dba1db3703554e5;hp=bfacc4121a0312b2d2461239008344c940c3857f;hb=ca14345ba26fc40e1039029659f57028f510502f;hpb=64d29a633066e39b62af5ee0bbf32645994744ec diff --git a/src/bitboard.cpp b/src/bitboard.cpp index bfacc412..318ce049 100644 --- a/src/bitboard.cpp +++ b/src/bitboard.cpp @@ -1,7 +1,8 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -18,23 +19,22 @@ */ #include -#include // For memset #include "bitboard.h" -#include "bitcount.h" -#include "rkiss.h" +#include "misc.h" -CACHE_LINE_ALIGNMENT +uint8_t PopCnt16[1 << 16]; +int SquareDistance[SQUARE_NB][SQUARE_NB]; -Bitboard RMasks[SQUARE_NB]; -Bitboard RMagics[SQUARE_NB]; -Bitboard* RAttacks[SQUARE_NB]; -unsigned RShifts[SQUARE_NB]; +Bitboard RookMasks [SQUARE_NB]; +Bitboard RookMagics [SQUARE_NB]; +Bitboard* RookAttacks[SQUARE_NB]; +unsigned RookShifts [SQUARE_NB]; -Bitboard BMasks[SQUARE_NB]; -Bitboard BMagics[SQUARE_NB]; -Bitboard* BAttacks[SQUARE_NB]; -unsigned BShifts[SQUARE_NB]; +Bitboard BishopMasks [SQUARE_NB]; +Bitboard BishopMagics [SQUARE_NB]; +Bitboard* BishopAttacks[SQUARE_NB]; +unsigned BishopShifts [SQUARE_NB]; Bitboard SquareBB[SQUARE_NB]; Bitboard FileBB[FILE_NB]; @@ -44,57 +44,60 @@ Bitboard InFrontBB[COLOR_NB][RANK_NB]; Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB]; Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; Bitboard LineBB[SQUARE_NB][SQUARE_NB]; -Bitboard DistanceRingsBB[SQUARE_NB][8]; +Bitboard DistanceRingBB[SQUARE_NB][8]; Bitboard ForwardBB[COLOR_NB][SQUARE_NB]; Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB]; Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; -int SquareDistance[SQUARE_NB][SQUARE_NB]; - namespace { // De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan - const uint64_t DeBruijn_64 = 0x3F79D71B4CB0A89ULL; - const uint32_t DeBruijn_32 = 0x783A9B23; + const uint64_t DeBruijn64 = 0x3F79D71B4CB0A89ULL; + const uint32_t DeBruijn32 = 0x783A9B23; - CACHE_LINE_ALIGNMENT - - int MS1BTable[256]; - Square BSFTable[SQUARE_NB]; - Bitboard RTable[0x19000]; // Storage space for rook attacks - Bitboard BTable[0x1480]; // Storage space for bishop attacks + int MSBTable[256]; // To implement software msb() + Square BSFTable[SQUARE_NB]; // To implement software bitscan + Bitboard RookTable[0x19000]; // To store rook attacks + Bitboard BishopTable[0x1480]; // To store bishop attacks typedef unsigned (Fn)(Square, Bitboard); void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[], Bitboard masks[], unsigned shifts[], Square deltas[], Fn index); - FORCE_INLINE unsigned bsf_index(Bitboard b) { + // bsf_index() returns the index into BSFTable[] to look up the bitscan. Uses + // Matt Taylor's folding for 32 bit case, extended to 64 bit by Kim Walisch. - // Matt Taylor's folding for 32 bit systems, extended to 64 bits by Kim Walisch - b ^= (b - 1); - return Is64Bit ? (b * DeBruijn_64) >> 58 - : ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn_32) >> 26; + unsigned bsf_index(Bitboard b) { + b ^= b - 1; + return Is64Bit ? (b * DeBruijn64) >> 58 + : ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn32) >> 26; } -} -/// lsb()/msb() finds the least/most significant bit in a non-zero bitboard. -/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard. -#ifndef USE_BSFQ + // popcount16() counts the non-zero bits using SWAR-Popcount algorithm + + unsigned popcount16(unsigned u) { + u -= (u >> 1) & 0x5555U; + u = ((u >> 2) & 0x3333U) + (u & 0x3333U); + u = ((u >> 4) + u) & 0x0F0FU; + return (u * 0x0101U) >> 8; + } +} -Square lsb(Bitboard b) { return BSFTable[bsf_index(b)]; } +#ifdef NO_BSF -Square pop_lsb(Bitboard* b) { +/// Software fall-back of lsb() and msb() for CPU lacking hardware support - Bitboard bb = *b; - *b = bb & (bb - 1); - return BSFTable[bsf_index(bb)]; +Square lsb(Bitboard b) { + assert(b); + return BSFTable[bsf_index(b)]; } Square msb(Bitboard b) { + assert(b); unsigned b32; int result = 0; @@ -118,14 +121,14 @@ Square msb(Bitboard b) { result += 8; } - return Square(result + MS1BTable[b32]); + return Square(result + MSBTable[b32]); } -#endif // ifndef USE_BSFQ +#endif // ifdef NO_BSF -/// Bitboards::pretty() returns an ASCII representation of a bitboard to be -/// printed to standard output. This is sometimes useful for debugging. +/// Bitboards::pretty() returns an ASCII representation of a bitboard suitable +/// to be printed to standard output. Useful for debugging. const std::string Bitboards::pretty(Bitboard b) { @@ -134,9 +137,9 @@ const std::string Bitboards::pretty(Bitboard b) { for (Rank r = RANK_8; r >= RANK_1; --r) { for (File f = FILE_A; f <= FILE_H; ++f) - s.append(b & make_square(f, r) ? "| X " : "| "); + s += b & make_square(f, r) ? "| X " : "| "; - s.append("|\n+---+---+---+---+---+---+---+---+\n"); + s += "|\n+---+---+---+---+---+---+---+---+\n"; } return s; @@ -148,11 +151,17 @@ const std::string Bitboards::pretty(Bitboard b) { void Bitboards::init() { + for (unsigned i = 0; i < (1 << 16); ++i) + PopCnt16[i] = (uint8_t) popcount16(i); + for (Square s = SQ_A1; s <= SQ_H8; ++s) - BSFTable[bsf_index(SquareBB[s] = 1ULL << s)] = s; + { + SquareBB[s] = 1ULL << s; + BSFTable[bsf_index(SquareBB[s])] = s; + } - for (Bitboard b = 1; b < 256; ++b) - MS1BTable[b] = more_than_one(b) ? MS1BTable[b - 1] : lsb(b); + for (Bitboard b = 2; b < 256; ++b) + MSBTable[b] = MSBTable[b - 1] + !more_than_one(b); for (File f = FILE_A; f <= FILE_H; ++f) FileBB[f] = f > FILE_A ? FileBB[f - 1] << 1 : FileABB; @@ -178,8 +187,8 @@ void Bitboards::init() { for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) if (s1 != s2) { - SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2)); - DistanceRingsBB[s1][SquareDistance[s1][s2] - 1] |= s2; + SquareDistance[s1][s2] = std::max(distance(s1, s2), distance(s1, s2)); + DistanceRingBB[s1][SquareDistance[s1][s2] - 1] |= s2; } int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 }, @@ -192,32 +201,30 @@ void Bitboards::init() { { Square to = s + Square(c == WHITE ? steps[pt][i] : -steps[pt][i]); - if (is_ok(to) && square_distance(s, to) < 3) + if (is_ok(to) && distance(s, to) < 3) StepAttacksBB[make_piece(c, pt)][s] |= to; } - Square RDeltas[] = { DELTA_N, DELTA_E, DELTA_S, DELTA_W }; - Square BDeltas[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW }; + Square RookDeltas[] = { DELTA_N, DELTA_E, DELTA_S, DELTA_W }; + Square BishopDeltas[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW }; - init_magics(RTable, RAttacks, RMagics, RMasks, RShifts, RDeltas, magic_index); - init_magics(BTable, BAttacks, BMagics, BMasks, BShifts, BDeltas, magic_index); + init_magics(RookTable, RookAttacks, RookMagics, RookMasks, RookShifts, RookDeltas, magic_index); + init_magics(BishopTable, BishopAttacks, BishopMagics, BishopMasks, BishopShifts, BishopDeltas, magic_index); for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) { PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb(s1, 0); PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0); - for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) - { - Piece pc = (PseudoAttacks[BISHOP][s1] & s2) ? W_BISHOP : - (PseudoAttacks[ROOK][s1] & s2) ? W_ROOK : NO_PIECE; - - if (pc == NO_PIECE) - continue; + for (Piece pc = W_BISHOP; pc <= W_ROOK; ++pc) + for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) + { + if (!(PseudoAttacks[pc][s1] & s2)) + continue; - LineBB[s1][s2] = (attacks_bb(pc, s1, 0) & attacks_bb(pc, s2, 0)) | s1 | s2; - BetweenBB[s1][s2] = attacks_bb(pc, s1, SquareBB[s2]) & attacks_bb(pc, s2, SquareBB[s1]); - } + LineBB[s1][s2] = (attacks_bb(pc, s1, 0) & attacks_bb(pc, s2, 0)) | s1 | s2; + BetweenBB[s1][s2] = attacks_bb(pc, s1, SquareBB[s2]) & attacks_bb(pc, s2, SquareBB[s1]); + } } } @@ -230,7 +237,7 @@ namespace { for (int i = 0; i < 4; ++i) for (Square s = sq + deltas[i]; - is_ok(s) && square_distance(s, s - deltas[i]) == 1; + is_ok(s) && distance(s, s - deltas[i]) == 1; s += deltas[i]) { attack |= s; @@ -251,12 +258,11 @@ namespace { void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[], Bitboard masks[], unsigned shifts[], Square deltas[], Fn index) { - int MagicBoosters[][8] = { { 969, 1976, 2850, 542, 2069, 2852, 1708, 164 }, - { 3101, 552, 3555, 926, 834, 26, 2131, 1117 } }; + int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020 }, + { 728, 10316, 55013, 32803, 12281, 15100, 16645, 255 } }; - RKISS rk; Bitboard occupancy[4096], reference[4096], edges, b; - int i, size, booster; + int age[4096] = {0}, current = 0, i, size; // attacks[s] is a pointer to the beginning of the attacks table for square 's' attacks[SQ_A1] = table; @@ -272,14 +278,19 @@ namespace { // the number of 1s of the mask. Hence we deduce the size of the shift to // apply to the 64 or 32 bits word to get the index. masks[s] = sliding_attack(deltas, s, 0) & ~edges; - shifts[s] = (Is64Bit ? 64 : 32) - popcount(masks[s]); + shifts[s] = (Is64Bit ? 64 : 32) - popcount(masks[s]); // Use Carry-Rippler trick to enumerate all subsets of masks[s] and // store the corresponding sliding attack bitboard in reference[]. b = size = 0; do { occupancy[size] = b; - reference[size++] = sliding_attack(deltas, s, b); + reference[size] = sliding_attack(deltas, s, b); + + if (HasPext) + attacks[s][pext(b, masks[s])] = reference[size]; + + size++; b = (b - masks[s]) & masks[s]; } while (b); @@ -288,30 +299,33 @@ namespace { if (s < SQ_H8) attacks[s + 1] = attacks[s] + size; - booster = MagicBoosters[Is64Bit][rank_of(s)]; + if (HasPext) + continue; + + PRNG rng(seeds[Is64Bit][rank_of(s)]); // Find a magic for square 's' picking up an (almost) random number // until we find the one that passes the verification test. do { - do magics[s] = rk.magic_rand(booster); - while (popcount((magics[s] * masks[s]) >> 56) < 6); - - std::memset(attacks[s], 0, size * sizeof(Bitboard)); + do + magics[s] = rng.sparse_rand(); + while (popcount((magics[s] * masks[s]) >> 56) < 6); // A good magic must map every possible occupancy to an index that // looks up the correct sliding attack in the attacks[s] database. // Note that we build up the database for square 's' as a side // effect of verifying the magic. - for (i = 0; i < size; ++i) + for (++current, i = 0; i < size; ++i) { - Bitboard& attack = attacks[s][index(s, occupancy[i])]; - - if (attack && attack != reference[i]) + unsigned idx = index(s, occupancy[i]); + + if (age[idx] < current) + { + age[idx] = current; + attacks[s][idx] = reference[i]; + } + else if (attacks[s][idx] != reference[i]) break; - - assert(reference[i]); - - attack = reference[i]; } } while (i < size); }