X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.cpp;h=415f98692f48195fd152bf8ad15ed262c47f8136;hp=67f211a473113a6221c31e27f9f06882634ce8dc;hb=8a89b12641ab26e7f49b77a82be2d160de2ab6a5;hpb=4c9d570e43b19119354e1c1643653ff85981f976 diff --git a/src/bitboard.cpp b/src/bitboard.cpp index 67f211a4..415f9869 100644 --- a/src/bitboard.cpp +++ b/src/bitboard.cpp @@ -19,6 +19,7 @@ #include #include +#include #include "bitboard.h" #include "bitcount.h" @@ -56,6 +57,7 @@ Bitboard RookPseudoAttacks[64]; Bitboard QueenPseudoAttacks[64]; uint8_t BitCount8Bit[256]; +int SquareDistance[64][64]; namespace { @@ -154,6 +156,13 @@ Square pop_1st_bit(Bitboard* bb) { void init_bitboards() { + for (Bitboard b = 0; b < 256; b++) + BitCount8Bit[b] = (uint8_t)count_1s(b); + + for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) + for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) + SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2)); + SquaresByColorBB[DARK] = 0xAA55AA55AA55AA55ULL; SquaresByColorBB[LIGHT] = ~SquaresByColorBB[DARK]; @@ -194,9 +203,6 @@ void init_bitboards() { AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(s); } - for (Bitboard b = 0; b < 256; b++) - BitCount8Bit[b] = (uint8_t)count_1s(b); - for (int i = 0; i < 64; i++) if (!CpuIs64Bit) // Matt Taylor's folding trick for 32 bit systems { @@ -242,7 +248,7 @@ void init_bitboards() { int f = file_distance(s1, s2); int r = rank_distance(s1, s2); - Square d = (s2 - s1) / Max(f, r); + Square d = (s2 - s1) / std::max(f, r); for (Square s3 = s1 + d; s3 != s2; s3 += d) set_bit(&BetweenBB[s1][s2], s3); @@ -252,7 +258,7 @@ void init_bitboards() { namespace { - Bitboard sliding_attacks(Square sq, Bitboard occupied, Square delta[], Bitboard excluded) { + Bitboard sliding_attacks(Square sq, Bitboard occupied, Square delta[]) { Bitboard attacks = 0; @@ -260,9 +266,7 @@ namespace { { Square s = sq + delta[i]; - while ( square_is_ok(s) - && square_distance(s, s - delta[i]) == 1 - && !bit_is_set(excluded, s)) + while (square_is_ok(s) && square_distance(s, s - delta[i]) == 1) { set_bit(&attacks, s); @@ -302,27 +306,27 @@ namespace { const int MagicBoosters[][8] = { { 3191, 2184, 1310, 3618, 2091, 1308, 2452, 3996 }, { 1059, 3608, 605, 3234, 3326, 38, 2029, 3043 } }; RKISS rk; - Bitboard occupancy[4096], reference[4096], excluded, b; + Bitboard occupancy[4096], reference[4096], edges, b; int key, maxKey, index, booster, offset = 0; for (Square s = SQ_A1; s <= SQ_H8; s++) { - excluded = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); + edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); attack[s] = &attTable[offset]; - mask[s] = sliding_attacks(s, EmptyBoardBB, delta, excluded); + mask[s] = sliding_attacks(s, EmptyBoardBB, delta) & ~edges; shift[s] = (CpuIs64Bit ? 64 : 32) - count_1s(mask[s]); // Use Carry-Rippler trick to enumerate all subsets of mask[s] b = maxKey = 0; do { occupancy[maxKey] = b; - reference[maxKey++] = sliding_attacks(s, b, delta, EmptyBoardBB); + reference[maxKey++] = sliding_attacks(s, b, delta); b = (b - mask[s]) & mask[s]; } while (b); offset += maxKey; - booster = MagicBoosters[CpuIs64Bit][square_rank(s)]; + booster = MagicBoosters[CpuIs64Bit][rank_of(s)]; // Then find a possible magic and the corresponding attacks do {