X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.cpp;h=41ce2955c147f27b2960130d0c2ec2ffa8c7d5f7;hp=3bed69bead7665dc9a51e53f29008d67ab8fda9e;hb=6e00aa6bae8a9634b3aea4b7b0bde652a588e9de;hpb=c2c185423b13b0227c86009c6006e48e8d258896 diff --git a/src/bitboard.cpp b/src/bitboard.cpp index 3bed69be..41ce2955 100644 --- a/src/bitboard.cpp +++ b/src/bitboard.cpp @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -17,6 +17,7 @@ along with this program. If not, see . */ +#include #include #include @@ -24,36 +25,30 @@ #include "bitcount.h" #include "rkiss.h" -// Global bitboards definitions with static storage duration are -// automatically set to zero before enter main(). -Bitboard RMask[64]; -Bitboard RMult[64]; +CACHE_LINE_ALIGNMENT + +Bitboard RMasks[64]; +Bitboard RMagics[64]; Bitboard* RAttacks[64]; -int RShift[64]; +unsigned RShifts[64]; -Bitboard BMask[64]; -Bitboard BMult[64]; +Bitboard BMasks[64]; +Bitboard BMagics[64]; Bitboard* BAttacks[64]; -int BShift[64]; - -Bitboard SetMaskBB[65]; -Bitboard ClearMaskBB[65]; +unsigned BShifts[64]; -Bitboard SquaresByColorBB[2]; +Bitboard SquareBB[64]; Bitboard FileBB[8]; Bitboard RankBB[8]; -Bitboard NeighboringFilesBB[8]; -Bitboard ThisAndNeighboringFilesBB[8]; +Bitboard AdjacentFilesBB[8]; +Bitboard ThisAndAdjacentFilesBB[8]; Bitboard InFrontBB[2][8]; Bitboard StepAttacksBB[16][64]; Bitboard BetweenBB[64][64]; Bitboard SquaresInFrontMask[2][64]; Bitboard PassedPawnMask[2][64]; Bitboard AttackSpanMask[2][64]; - -Bitboard BishopPseudoAttacks[64]; -Bitboard RookPseudoAttacks[64]; -Bitboard QueenPseudoAttacks[64]; +Bitboard PseudoAttacks[6][64]; uint8_t BitCount8Bit[256]; int SquareDistance[64][64]; @@ -63,31 +58,16 @@ namespace { CACHE_LINE_ALIGNMENT int BSFTable[64]; - Bitboard RAttacksTable[0x19000]; - Bitboard BAttacksTable[0x1480]; - - void init_sliding_attacks(Bitboard magic[], Bitboard* attack[], Bitboard attTable[], - Bitboard mask[], int shift[], Square delta[]); -} + int MS1BTable[256]; + Bitboard RTable[0x19000]; // Storage space for rook attacks + Bitboard BTable[0x1480]; // Storage space for bishop attacks + typedef unsigned (Fn)(Square, Bitboard); -/// print_bitboard() prints a bitboard in an easily readable format to the -/// standard output. This is sometimes useful for debugging. - -void print_bitboard(Bitboard b) { - - for (Rank r = RANK_8; r >= RANK_1; r--) - { - std::cout << "+---+---+---+---+---+---+---+---+" << '\n'; - for (File f = FILE_A; f <= FILE_H; f++) - std::cout << "| " << (bit_is_set(b, make_square(f, r)) ? "X " : " "); - - std::cout << "|\n"; - } - std::cout << "+---+---+---+---+---+---+---+---+" << std::endl; + void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[], + Bitboard masks[], unsigned shifts[], Square deltas[], Fn index); } - /// first_1() finds the least significant nonzero bit in a nonzero bitboard. /// pop_1st_bit() finds and clears the least significant nonzero bit in a /// nonzero bitboard. @@ -115,7 +95,7 @@ Square first_1(Bitboard b) { // Use type-punning union b_union { - Bitboard b; + Bitboard dummy; struct { #if defined (BIGENDIAN) uint32_t h; @@ -124,54 +104,83 @@ union b_union { uint32_t l; uint32_t h; #endif - } dw; + } b; }; -Square pop_1st_bit(Bitboard* bb) { - - b_union u; - Square ret; +Square pop_1st_bit(Bitboard* b) { - u.b = *bb; + const b_union u = *((b_union*)b); - if (u.dw.l) + if (u.b.l) { - ret = Square(BSFTable[((u.dw.l ^ (u.dw.l - 1)) * 0x783A9B23) >> 26]); - u.dw.l &= (u.dw.l - 1); - *bb = u.b; - return ret; + ((b_union*)b)->b.l = u.b.l & (u.b.l - 1); + return Square(BSFTable[((u.b.l ^ (u.b.l - 1)) * 0x783A9B23) >> 26]); } - ret = Square(BSFTable[((~(u.dw.h ^ (u.dw.h - 1))) * 0x783A9B23) >> 26]); - u.dw.h &= (u.dw.h - 1); - *bb = u.b; - return ret; + + ((b_union*)b)->b.h = u.b.h & (u.b.h - 1); + return Square(BSFTable[((~(u.b.h ^ (u.b.h - 1))) * 0x783A9B23) >> 26]); } -#endif // !defined(USE_BSFQ) +Square last_1(Bitboard b) { + int result = 0; -/// init_bitboards() initializes various bitboard arrays. It is called during -/// program initialization. + if (b > 0xFFFFFFFF) + { + b >>= 32; + result = 32; + } -void init_bitboards() { + if (b > 0xFFFF) + { + b >>= 16; + result += 16; + } - for (Bitboard b = 0; b < 256; b++) - BitCount8Bit[b] = (uint8_t)count_1s(b); + if (b > 0xFF) + { + b >>= 8; + result += 8; + } - for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) - for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) - SquareDistance[s1][s2] = Max(file_distance(s1, s2), rank_distance(s1, s2)); + return Square(result + MS1BTable[b]); +} - SquaresByColorBB[DARK] = 0xAA55AA55AA55AA55ULL; - SquaresByColorBB[LIGHT] = ~SquaresByColorBB[DARK]; +#endif // !defined(USE_BSFQ) - for (Square s = SQ_A1; s <= SQ_H8; s++) + +/// Bitboards::print() prints a bitboard in an easily readable format to the +/// standard output. This is sometimes useful for debugging. + +void Bitboards::print(Bitboard b) { + + for (Rank rank = RANK_8; rank >= RANK_1; rank--) { - SetMaskBB[s] = 1ULL << s; - ClearMaskBB[s] = ~SetMaskBB[s]; + std::cout << "+---+---+---+---+---+---+---+---+" << '\n'; + + for (File file = FILE_A; file <= FILE_H; file++) + std::cout << "| " << ((b & make_square(file, rank)) ? "X " : " "); + + std::cout << "|\n"; } + std::cout << "+---+---+---+---+---+---+---+---+" << std::endl; +} - ClearMaskBB[SQ_NONE] = ~EmptyBoardBB; + +/// Bitboards::init() initializes various bitboard arrays. It is called during +/// program initialization. + +void Bitboards::init() { + + for (int k = 0, i = 0; i < 8; i++) + while (k < (2 << i)) + MS1BTable[k++] = i; + + for (Bitboard b = 0; b < 256; b++) + BitCount8Bit[b] = (uint8_t)popcount(b); + + for (Square s = SQ_A1; s <= SQ_H8; s++) + SquareBB[s] = 1ULL << s; FileBB[FILE_A] = FileABB; RankBB[RANK_1] = Rank1BB; @@ -184,8 +193,8 @@ void init_bitboards() { for (int f = FILE_A; f <= FILE_H; f++) { - NeighboringFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0); - ThisAndNeighboringFilesBB[f] = FileBB[f] | NeighboringFilesBB[f]; + AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0); + ThisAndAdjacentFilesBB[f] = FileBB[f] | AdjacentFilesBB[f]; } for (int rw = RANK_7, rb = RANK_2; rw >= RANK_1; rw--, rb++) @@ -198,17 +207,21 @@ void init_bitboards() { for (Square s = SQ_A1; s <= SQ_H8; s++) { SquaresInFrontMask[c][s] = in_front_bb(c, s) & file_bb(s); - PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(s); - AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(s); + PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_adjacent_files_bb(file_of(s)); + AttackSpanMask[c][s] = in_front_bb(c, s) & adjacent_files_bb(file_of(s)); } + for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) + for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) + SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2)); + for (int i = 0; i < 64; i++) - if (!CpuIs64Bit) // Matt Taylor's folding trick for 32 bit systems + if (!Is64Bit) // Matt Taylor's folding trick for 32 bit systems { Bitboard b = 1ULL << i; b ^= b - 1; b ^= b >> 32; - BSFTable[uint32_t(b * 0x783A9B23) >> 26] = i; + BSFTable[(uint32_t)(b * 0x783A9B23) >> 26] = i; } else BSFTable[((1ULL << i) * 0x218A392CD3D5DBFULL) >> 58] = i; @@ -223,62 +236,57 @@ void init_bitboards() { { Square to = s + Square(c == WHITE ? steps[pt][k] : -steps[pt][k]); - if (square_is_ok(to) && square_distance(s, to) < 3) - set_bit(&StepAttacksBB[make_piece(c, pt)][s], to); + if (is_ok(to) && square_distance(s, to) < 3) + StepAttacksBB[make_piece(c, pt)][s] |= to; } - Square RDelta[] = { DELTA_N, DELTA_E, DELTA_S, DELTA_W }; - Square BDelta[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW }; + Square RDeltas[] = { DELTA_N, DELTA_E, DELTA_S, DELTA_W }; + Square BDeltas[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW }; - init_sliding_attacks(BMult, BAttacks, BAttacksTable, BMask, BShift, BDelta); - init_sliding_attacks(RMult, RAttacks, RAttacksTable, RMask, RShift, RDelta); + init_magics(RTable, RAttacks, RMagics, RMasks, RShifts, RDeltas, magic_index); + init_magics(BTable, BAttacks, BMagics, BMasks, BShifts, BDeltas, magic_index); for (Square s = SQ_A1; s <= SQ_H8; s++) { - BishopPseudoAttacks[s] = bishop_attacks_bb(s, EmptyBoardBB); - RookPseudoAttacks[s] = rook_attacks_bb(s, EmptyBoardBB); - QueenPseudoAttacks[s] = queen_attacks_bb(s, EmptyBoardBB); + PseudoAttacks[BISHOP][s] = attacks_bb(s, 0); + PseudoAttacks[ROOK][s] = attacks_bb(s, 0); + PseudoAttacks[QUEEN][s] = PseudoAttacks[BISHOP][s] | PseudoAttacks[ROOK][s]; } for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) - if (bit_is_set(QueenPseudoAttacks[s1], s2)) + if (PseudoAttacks[QUEEN][s1] & s2) { - int f = file_distance(s1, s2); - int r = rank_distance(s1, s2); - - Square d = (s2 - s1) / Max(f, r); + Square delta = (s2 - s1) / square_distance(s1, s2); - for (Square s3 = s1 + d; s3 != s2; s3 += d) - set_bit(&BetweenBB[s1][s2], s3); + for (Square s = s1 + delta; s != s2; s += delta) + BetweenBB[s1][s2] |= s; } } namespace { - Bitboard sliding_attacks(Square sq, Bitboard occupied, Square delta[]) { + Bitboard sliding_attack(Square deltas[], Square sq, Bitboard occupied) { - Bitboard attacks = 0; + Bitboard attack = 0; for (int i = 0; i < 4; i++) - { - Square s = sq + delta[i]; - - while (square_is_ok(s) && square_distance(s, s - delta[i]) == 1) + for (Square s = sq + deltas[i]; + is_ok(s) && square_distance(s, s - deltas[i]) == 1; + s += deltas[i]) { - set_bit(&attacks, s); + attack |= s; - if (bit_is_set(occupied, s)) + if (occupied & s) break; - - s += delta[i]; } - } - return attacks; + + return attack; } - Bitboard pick_magic(Bitboard mask, RKISS& rk, int booster) { + + Bitboard pick_random(Bitboard mask, RKISS& rk, int booster) { Bitboard magic; @@ -299,51 +307,73 @@ namespace { } } - void init_sliding_attacks(Bitboard magic[], Bitboard* attack[], Bitboard attTable[], - Bitboard mask[], int shift[], Square delta[]) { - const int MagicBoosters[][8] = { { 3191, 2184, 1310, 3618, 2091, 1308, 2452, 3996 }, - { 1059, 3608, 605, 3234, 3326, 38, 2029, 3043 } }; + // init_magics() computes all rook and bishop attacks at startup. Magic + // bitboards are used to look up attacks of sliding pieces. As a reference see + // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we + // use the so called "fancy" approach. + + void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[], + Bitboard masks[], unsigned shifts[], Square deltas[], Fn index) { + + int MagicBoosters[][8] = { { 3191, 2184, 1310, 3618, 2091, 1308, 2452, 3996 }, + { 1059, 3608, 605, 3234, 3326, 38, 2029, 3043 } }; RKISS rk; Bitboard occupancy[4096], reference[4096], edges, b; - int key, maxKey, index, booster, offset = 0; + int i, size, booster; + + // attacks[s] is a pointer to the beginning of the attacks table for square 's' + attacks[SQ_A1] = table; for (Square s = SQ_A1; s <= SQ_H8; s++) { + // Board edges are not considered in the relevant occupancies edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); - attack[s] = &attTable[offset]; - mask[s] = sliding_attacks(s, EmptyBoardBB, delta) & ~edges; - shift[s] = (CpuIs64Bit ? 64 : 32) - count_1s(mask[s]); - - // Use Carry-Rippler trick to enumerate all subsets of mask[s] - b = maxKey = 0; + // Given a square 's', the mask is the bitboard of sliding attacks from + // 's' computed on an empty board. The index must be big enough to contain + // all the attacks for each possible subset of the mask and so is 2 power + // the number of 1s of the mask. Hence we deduce the size of the shift to + // apply to the 64 or 32 bits word to get the index. + masks[s] = sliding_attack(deltas, s, 0) & ~edges; + shifts[s] = (Is64Bit ? 64 : 32) - popcount(masks[s]); + + // Use Carry-Rippler trick to enumerate all subsets of masks[s] and + // store the corresponding sliding attack bitboard in reference[]. + b = size = 0; do { - occupancy[maxKey] = b; - reference[maxKey++] = sliding_attacks(s, b, delta); - b = (b - mask[s]) & mask[s]; + occupancy[size] = b; + reference[size++] = sliding_attack(deltas, s, b); + b = (b - masks[s]) & masks[s]; } while (b); - offset += maxKey; - booster = MagicBoosters[CpuIs64Bit][rank_of(s)]; + // Set the offset for the table of the next square. We have individual + // table sizes for each square with "Fancy Magic Bitboards". + if (s < SQ_H8) + attacks[s + 1] = attacks[s] + size; - // Then find a possible magic and the corresponding attacks - do { - magic[s] = pick_magic(mask[s], rk, booster); - memset(attack[s], 0, maxKey * sizeof(Bitboard)); + booster = MagicBoosters[Is64Bit][rank_of(s)]; - for (key = 0; key < maxKey; key++) + // Find a magic for square 's' picking up an (almost) random number + // until we find the one that passes the verification test. + do { + magics[s] = pick_random(masks[s], rk, booster); + memset(attacks[s], 0, size * sizeof(Bitboard)); + + // A good magic must map every possible occupancy to an index that + // looks up the correct sliding attack in the attacks[s] database. + // Note that we build up the database for square 's' as a side + // effect of verifying the magic. + for (i = 0; i < size; i++) { - index = CpuIs64Bit ? unsigned((occupancy[key] * magic[s]) >> shift[s]) - : unsigned(occupancy[key] * magic[s] ^ (occupancy[key] >> 32) * (magic[s] >> 32)) >> shift[s]; + Bitboard& attack = attacks[s][index(s, occupancy[i])]; - if (!attack[s][index]) - attack[s][index] = reference[key]; - - else if (attack[s][index] != reference[key]) + if (attack && attack != reference[i]) break; + + attack = reference[i]; } - } while (key != maxKey); + } while (i != size); } } }