X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.cpp;h=425dc8ad796207cdfa6f79c0b0055abb61259619;hp=c6ee517d4aa8e7b5f7f3dfc0464f814f59f54e39;hb=55df3fa2d7631ed67e46f9433aa7f3a71c18e5e7;hpb=b1b0c640462aed199a3665e575f9cb208b8e4687 diff --git a/src/bitboard.cpp b/src/bitboard.cpp index c6ee517d..425dc8ad 100644 --- a/src/bitboard.cpp +++ b/src/bitboard.cpp @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -17,406 +17,329 @@ along with this program. If not, see . */ +#include +#include #include #include "bitboard.h" #include "bitcount.h" +#include "misc.h" +#include "rkiss.h" + +CACHE_LINE_ALIGNMENT + +Bitboard RMasks[SQUARE_NB]; +Bitboard RMagics[SQUARE_NB]; +Bitboard* RAttacks[SQUARE_NB]; +unsigned RShifts[SQUARE_NB]; + +Bitboard BMasks[SQUARE_NB]; +Bitboard BMagics[SQUARE_NB]; +Bitboard* BAttacks[SQUARE_NB]; +unsigned BShifts[SQUARE_NB]; + +Bitboard SquareBB[SQUARE_NB]; +Bitboard FileBB[FILE_NB]; +Bitboard RankBB[RANK_NB]; +Bitboard AdjacentFilesBB[FILE_NB]; +Bitboard ThisAndAdjacentFilesBB[FILE_NB]; +Bitboard InFrontBB[COLOR_NB][RANK_NB]; +Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB]; +Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; +Bitboard DistanceRingsBB[SQUARE_NB][8]; +Bitboard ForwardBB[COLOR_NB][SQUARE_NB]; +Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; +Bitboard AttackSpanMask[COLOR_NB][SQUARE_NB]; +Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; + +int SquareDistance[SQUARE_NB][SQUARE_NB]; -// Global bitboards definitions with static storage duration are -// automatically set to zero before enter main(). -Magics RMagics[64]; -Magics BMagics[64]; +namespace { -Bitboard SetMaskBB[65]; -Bitboard ClearMaskBB[65]; + // De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan + const uint64_t DeBruijn_64 = 0x3F79D71B4CB0A89ULL; + const uint32_t DeBruijn_32 = 0x783A9B23; -Bitboard SquaresByColorBB[2]; -Bitboard FileBB[8]; -Bitboard RankBB[8]; -Bitboard NeighboringFilesBB[8]; -Bitboard ThisAndNeighboringFilesBB[8]; -Bitboard InFrontBB[2][8]; -Bitboard StepAttacksBB[16][64]; -Bitboard BetweenBB[64][64]; -Bitboard SquaresInFrontMask[2][64]; -Bitboard PassedPawnMask[2][64]; -Bitboard AttackSpanMask[2][64]; + CACHE_LINE_ALIGNMENT -Bitboard BishopPseudoAttacks[64]; -Bitboard RookPseudoAttacks[64]; -Bitboard QueenPseudoAttacks[64]; + int MS1BTable[256]; + Square BSFTable[SQUARE_NB]; + Bitboard RTable[0x19000]; // Storage space for rook attacks + Bitboard BTable[0x1480]; // Storage space for bishop attacks -uint8_t BitCount8Bit[256]; + typedef unsigned (Fn)(Square, Bitboard); -namespace { + void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[], + Bitboard masks[], unsigned shifts[], Square deltas[], Fn index); - CACHE_LINE_ALIGNMENT + FORCE_INLINE unsigned bsf_index(Bitboard b) { + + // Matt Taylor's folding for 32 bit systems, extended to 64 bits by Kim Walisch + b ^= (b - 1); + return Is64Bit ? (b * DeBruijn_64) >> 58 + : ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn_32) >> 26; + } +} + +/// lsb()/msb() finds the least/most significant bit in a nonzero bitboard. +/// pop_lsb() finds and clears the least significant bit in a nonzero bitboard. + +#if !defined(USE_BSFQ) - int BSFTable[64]; - - Bitboard RAttacks[0x19000]; - Bitboard BAttacks[0x1480]; - - void init_sliding_attacks(Bitboard attacks[], Magics m[], const Bitboard mult[], Square deltas[]); - -#if defined(IS_64BIT) - -const uint64_t DeBruijnMagic = 0x218A392CD3D5DBFULL; - -const uint64_t BMult[64] = { - 0x0440049104032280ULL, 0x1021023C82008040ULL, 0x0404040082000048ULL, - 0x48C4440084048090ULL, 0x2801104026490000ULL, 0x4100880442040800ULL, - 0x0181011002E06040ULL, 0x9101004104200E00ULL, 0x1240848848310401ULL, - 0x2000142828050024ULL, 0x00001004024D5000ULL, 0x0102044400800200ULL, - 0x8108108820112000ULL, 0xA880818210C00046ULL, 0x4008008801082000ULL, - 0x0060882404049400ULL, 0x0104402004240810ULL, 0x000A002084250200ULL, - 0x00100B0880801100ULL, 0x0004080201220101ULL, 0x0044008080A00000ULL, - 0x0000202200842000ULL, 0x5006004882D00808ULL, 0x0000200045080802ULL, - 0x0086100020200601ULL, 0xA802080A20112C02ULL, 0x0080411218080900ULL, - 0x000200A0880080A0ULL, 0x9A01010000104000ULL, 0x0028008003100080ULL, - 0x0211021004480417ULL, 0x0401004188220806ULL, 0x00825051400C2006ULL, - 0x00140C0210943000ULL, 0x0000242800300080ULL, 0x00C2208120080200ULL, - 0x2430008200002200ULL, 0x1010100112008040ULL, 0x8141050100020842ULL, - 0x0000822081014405ULL, 0x800C049E40400804ULL, 0x4A0404028A000820ULL, - 0x0022060201041200ULL, 0x0360904200840801ULL, 0x0881A08208800400ULL, - 0x0060202C00400420ULL, 0x1204440086061400ULL, 0x0008184042804040ULL, - 0x0064040315300400ULL, 0x0C01008801090A00ULL, 0x0808010401140C00ULL, - 0x04004830C2020040ULL, 0x0080005002020054ULL, 0x40000C14481A0490ULL, - 0x0010500101042048ULL, 0x1010100200424000ULL, 0x0000640901901040ULL, - 0x00000A0201014840ULL, 0x00840082AA011002ULL, 0x010010840084240AULL, - 0x0420400810420608ULL, 0x8D40230408102100ULL, 0x4A00200612222409ULL, - 0x0A08520292120600ULL -}; - -const uint64_t RMult[64] = { - 0x0A8002C000108020ULL, 0x4440200140003000ULL, 0x8080200010011880ULL, - 0x0380180080141000ULL, 0x1A00060008211044ULL, 0x410001000A0C0008ULL, - 0x9500060004008100ULL, 0x0100024284A20700ULL, 0x0000802140008000ULL, - 0x0080C01002A00840ULL, 0x0402004282011020ULL, 0x9862000820420050ULL, - 0x0001001448011100ULL, 0x6432800200800400ULL, 0x040100010002000CULL, - 0x0002800D0010C080ULL, 0x90C0008000803042ULL, 0x4010004000200041ULL, - 0x0003010010200040ULL, 0x0A40828028001000ULL, 0x0123010008000430ULL, - 0x0024008004020080ULL, 0x0060040001104802ULL, 0x00582200028400D1ULL, - 0x4000802080044000ULL, 0x0408208200420308ULL, 0x0610038080102000ULL, - 0x3601000900100020ULL, 0x0000080080040180ULL, 0x00C2020080040080ULL, - 0x0080084400100102ULL, 0x4022408200014401ULL, 0x0040052040800082ULL, - 0x0B08200280804000ULL, 0x008A80A008801000ULL, 0x4000480080801000ULL, - 0x0911808800801401ULL, 0x822A003002001894ULL, 0x401068091400108AULL, - 0x000004A10A00004CULL, 0x2000800640008024ULL, 0x1486408102020020ULL, - 0x000100A000D50041ULL, 0x00810050020B0020ULL, 0x0204000800808004ULL, - 0x00020048100A000CULL, 0x0112000831020004ULL, 0x0009000040810002ULL, - 0x0440490200208200ULL, 0x8910401000200040ULL, 0x6404200050008480ULL, - 0x4B824A2010010100ULL, 0x04080801810C0080ULL, 0x00000400802A0080ULL, - 0x8224080110026400ULL, 0x40002C4104088200ULL, 0x01002100104A0282ULL, - 0x1208400811048021ULL, 0x3201014A40D02001ULL, 0x0005100019200501ULL, - 0x0101000208001005ULL, 0x0002008450080702ULL, 0x001002080301D00CULL, - 0x410201CE5C030092ULL -}; - -#else // if !defined(IS_64BIT) - -const uint32_t DeBruijnMagic = 0x783A9B23; - -const uint64_t BMult[64] = { - 0x54142844C6A22981ULL, 0x710358A6EA25C19EULL, 0x704F746D63A4A8DCULL, - 0xBFED1A0B80F838C5ULL, 0x90561D5631E62110ULL, 0x2804260376E60944ULL, - 0x84A656409AA76871ULL, 0xF0267F64C28B6197ULL, 0x70764EBB762F0585ULL, - 0x92AA09E0CFE161DEULL, 0x41EE1F6BB266F60EULL, 0xDDCBF04F6039C444ULL, - 0x5A3FAB7BAC0D988AULL, 0xD3727877FA4EAA03ULL, 0xD988402D868DDAAEULL, - 0x812B291AFA075C7CULL, 0x94FAF987B685A932ULL, 0x3ED867D8470D08DBULL, - 0x92517660B8901DE8ULL, 0x2D97E43E058814B4ULL, 0x880A10C220B25582ULL, - 0xC7C6520D1F1A0477ULL, 0xDBFC7FBCD7656AA6ULL, 0x78B1B9BFB1A2B84FULL, - 0x2F20037F112A0BC1ULL, 0x657171EA2269A916ULL, 0xC08302B07142210EULL, - 0x0880A4403064080BULL, 0x3602420842208C00ULL, 0x852800DC7E0B6602ULL, - 0x595A3FBBAA0F03B2ULL, 0x9F01411558159D5EULL, 0x2B4A4A5F88B394F2ULL, - 0x4AFCBFFC292DD03AULL, 0x4A4094A3B3F10522ULL, 0xB06F00B491F30048ULL, - 0xD5B3820280D77004ULL, 0x8B2E01E7C8E57A75ULL, 0x2D342794E886C2E6ULL, - 0xC302C410CDE21461ULL, 0x111F426F1379C274ULL, 0xE0569220ABB31588ULL, - 0x5026D3064D453324ULL, 0xE2076040C343CD8AULL, 0x93EFD1E1738021EEULL, - 0xB680804BED143132ULL, 0x44E361B21986944CULL, 0x44C60170EF5C598CULL, - 0xF4DA475C195C9C94ULL, 0xA3AFBB5F72060B1DULL, 0xBC75F410E41C4FFCULL, - 0xB51C099390520922ULL, 0x902C011F8F8EC368ULL, 0x950B56B3D6F5490AULL, - 0x3909E0635BF202D0ULL, 0x5744F90206EC10CCULL, 0xDC59FD76317ABBC1ULL, - 0x881C7C67FCBFC4F6ULL, 0x47CA41E7E440D423ULL, 0xEB0C88112048D004ULL, - 0x51C60E04359AEF1AULL, 0x1AA1FE0E957A5554ULL, 0xDD9448DB4F5E3104ULL, - 0xDC01F6DCA4BEBBDCULL, -}; - -const uint64_t RMult[64] = { - 0xD7445CDEC88002C0ULL, 0xD0A505C1F2001722ULL, 0xE065D1C896002182ULL, - 0x9A8C41E75A000892ULL, 0x8900B10C89002AA8ULL, 0x9B28D1C1D60005A2ULL, - 0x015D6C88DE002D9AULL, 0xB1DBFC802E8016A9ULL, 0x149A1042D9D60029ULL, - 0xB9C08050599E002FULL, 0x132208C3AF300403ULL, 0xC1000CE2E9C50070ULL, - 0x9D9AA13C99020012ULL, 0xB6B078DAF71E0046ULL, 0x9D880182FB6E002EULL, - 0x52889F467E850037ULL, 0xDA6DC008D19A8480ULL, 0x468286034F902420ULL, - 0x7140AC09DC54C020ULL, 0xD76FFFFA39548808ULL, 0xEA901C4141500808ULL, - 0xC91004093F953A02ULL, 0x02882AFA8F6BB402ULL, 0xAEBE335692442C01ULL, - 0x0E904A22079FB91EULL, 0x13A514851055F606ULL, 0x76C782018C8FE632ULL, - 0x1DC012A9D116DA06ULL, 0x3C9E0037264FFFA6ULL, 0x2036002853C6E4A2ULL, - 0xE3FE08500AFB47D4ULL, 0xF38AF25C86B025C2ULL, 0xC0800E2182CF9A40ULL, - 0x72002480D1F60673ULL, 0x2500200BAE6E9B53ULL, 0xC60018C1EEFCA252ULL, - 0x0600590473E3608AULL, 0x46002C4AB3FE51B2ULL, 0xA200011486BCC8D2ULL, - 0xB680078095784C63ULL, 0x2742002639BF11AEULL, 0xC7D60021A5BDB142ULL, - 0xC8C04016BB83D820ULL, 0xBD520028123B4842ULL, 0x9D1600344AC2A832ULL, - 0x6A808005631C8A05ULL, 0x604600A148D5389AULL, 0xE2E40103D40DEA65ULL, - 0x945B5A0087C62A81ULL, 0x012DC200CD82D28EULL, 0x2431C600B5F9EF76ULL, - 0xFB142A006A9B314AULL, 0x06870E00A1C97D62ULL, 0x2A9DB2004A2689A2ULL, - 0xD3594600CAF5D1A2ULL, 0xEE0E4900439344A7ULL, 0x89C4D266CA25007AULL, - 0x3E0013A2743F97E3ULL, 0x0180E31A0431378AULL, 0x3A9E465A4D42A512ULL, - 0x98D0A11A0C0D9CC2ULL, 0x8E711C1ABA19B01EULL, 0x8DCDC836DD201142ULL, - 0x5AC08A4735370479ULL, -}; - -#endif // defined(IS_64BIT) +Square lsb(Bitboard b) { return BSFTable[bsf_index(b)]; } +Square pop_lsb(Bitboard* b) { + + Bitboard bb = *b; + *b = bb & (bb - 1); + return BSFTable[bsf_index(bb)]; } +Square msb(Bitboard b) { -/// print_bitboard() prints a bitboard in an easily readable format to the -/// standard output. This is sometimes useful for debugging. + unsigned b32; + int result = 0; + + if (b > 0xFFFFFFFF) + { + b >>= 32; + result = 32; + } -void print_bitboard(Bitboard b) { + b32 = unsigned(b); - for (Rank r = RANK_8; r >= RANK_1; r--) + if (b32 > 0xFFFF) { - std::cout << "+---+---+---+---+---+---+---+---+" << '\n'; - for (File f = FILE_A; f <= FILE_H; f++) - std::cout << "| " << (bit_is_set(b, make_square(f, r)) ? 'X' : ' ') << ' '; + b32 >>= 16; + result += 16; + } - std::cout << "|\n"; + if (b32 > 0xFF) + { + b32 >>= 8; + result += 8; } - std::cout << "+---+---+---+---+---+---+---+---+" << std::endl; + + return (Square)(result + MS1BTable[b32]); } +#endif // !defined(USE_BSFQ) -/// first_1() finds the least significant nonzero bit in a nonzero bitboard. -/// pop_1st_bit() finds and clears the least significant nonzero bit in a -/// nonzero bitboard. -#if defined(IS_64BIT) && !defined(USE_BSFQ) +/// Bitboards::print() prints a bitboard in an easily readable format to the +/// standard output. This is sometimes useful for debugging. -Square first_1(Bitboard b) { - return Square(BSFTable[((b & -b) * DeBruijnMagic) >> 58]); -} +void Bitboards::print(Bitboard b) { -Square pop_1st_bit(Bitboard* b) { - Bitboard bb = *b; - *b &= (*b - 1); - return Square(BSFTable[((bb & -bb) * DeBruijnMagic) >> 58]); -} + sync_cout; -#elif !defined(USE_BSFQ) + for (Rank rank = RANK_8; rank >= RANK_1; rank--) + { + std::cout << "+---+---+---+---+---+---+---+---+" << '\n'; -Square first_1(Bitboard b) { - b ^= (b - 1); - uint32_t fold = unsigned(b) ^ unsigned(b >> 32); - return Square(BSFTable[(fold * DeBruijnMagic) >> 26]); -} + for (File file = FILE_A; file <= FILE_H; file++) + std::cout << "| " << (b & (file | rank) ? "X " : " "); -// Use type-punning -union b_union { - - Bitboard b; - struct { -#if defined (BIGENDIAN) - uint32_t h; - uint32_t l; -#else - uint32_t l; - uint32_t h; -#endif - } dw; -}; - -Square pop_1st_bit(Bitboard* bb) { - - b_union u; - Square ret; - - u.b = *bb; - - if (u.dw.l) - { - ret = Square(BSFTable[((u.dw.l ^ (u.dw.l - 1)) * DeBruijnMagic) >> 26]); - u.dw.l &= (u.dw.l - 1); - *bb = u.b; - return ret; - } - ret = Square(BSFTable[((~(u.dw.h ^ (u.dw.h - 1))) * DeBruijnMagic) >> 26]); - u.dw.h &= (u.dw.h - 1); - *bb = u.b; - return ret; + std::cout << "|\n"; + } + std::cout << "+---+---+---+---+---+---+---+---+" << sync_endl; } -#endif // !defined(USE_BSFQ) - -/// init_bitboards() initializes various bitboard arrays. It is called during +/// Bitboards::init() initializes various bitboard arrays. It is called during /// program initialization. -void init_bitboards() { +void Bitboards::init() { - SquaresByColorBB[DARK] = 0xAA55AA55AA55AA55ULL; - SquaresByColorBB[LIGHT] = ~SquaresByColorBB[DARK]; + for (int k = 0, i = 0; i < 8; i++) + while (k < (2 << i)) + MS1BTable[k++] = i; - for (Square s = SQ_A1; s <= SQ_H8; s++) - { - SetMaskBB[s] = (1ULL << s); - ClearMaskBB[s] = ~SetMaskBB[s]; - } + for (int i = 0; i < 64; i++) + BSFTable[bsf_index(1ULL << i)] = Square(i); - ClearMaskBB[SQ_NONE] = ~EmptyBoardBB; + for (Square s = SQ_A1; s <= SQ_H8; s++) + SquareBB[s] = 1ULL << s; FileBB[FILE_A] = FileABB; RankBB[RANK_1] = Rank1BB; - for (int f = FILE_B; f <= FILE_H; f++) + for (int i = 1; i < 8; i++) { - FileBB[f] = FileBB[f - 1] << 1; - RankBB[f] = RankBB[f - 1] << 8; + FileBB[i] = FileBB[i - 1] << 1; + RankBB[i] = RankBB[i - 1] << 8; } - for (int f = FILE_A; f <= FILE_H; f++) + for (File f = FILE_A; f <= FILE_H; f++) { - NeighboringFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0); - ThisAndNeighboringFilesBB[f] = FileBB[f] | NeighboringFilesBB[f]; + AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0); + ThisAndAdjacentFilesBB[f] = FileBB[f] | AdjacentFilesBB[f]; } - for (int rw = RANK_7, rb = RANK_2; rw >= RANK_1; rw--, rb++) - { - InFrontBB[WHITE][rw] = InFrontBB[WHITE][rw + 1] | RankBB[rw + 1]; - InFrontBB[BLACK][rb] = InFrontBB[BLACK][rb - 1] | RankBB[rb - 1]; - } + for (Rank r = RANK_1; r < RANK_8; r++) + InFrontBB[WHITE][r] = ~(InFrontBB[BLACK][r + 1] = InFrontBB[BLACK][r] | RankBB[r]); for (Color c = WHITE; c <= BLACK; c++) for (Square s = SQ_A1; s <= SQ_H8; s++) { - SquaresInFrontMask[c][s] = in_front_bb(c, s) & file_bb(s); - PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(s); - AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(s); + ForwardBB[c][s] = InFrontBB[c][rank_of(s)] & FileBB[file_of(s)]; + PassedPawnMask[c][s] = InFrontBB[c][rank_of(s)] & ThisAndAdjacentFilesBB[file_of(s)]; + AttackSpanMask[c][s] = InFrontBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)]; } - for (Bitboard b = 0; b < 256; b++) - BitCount8Bit[b] = (uint8_t)count_1s(b); + for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) + for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) + SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2)); - for (int i = 1; i < 64; i++) - if (!CpuIs64Bit) // Matt Taylor's folding trick for 32 bit systems - { - Bitboard b = 1ULL << i; - b ^= b - 1; - b ^= b >> 32; - BSFTable[uint32_t(b * DeBruijnMagic) >> 26] = i; - } - else - BSFTable[((1ULL << i) * DeBruijnMagic) >> 58] = i; + for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) + for (int d = 1; d < 8; d++) + for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) + if (SquareDistance[s1][s2] == d) + DistanceRingsBB[s1][d - 1] |= s2; - int steps[][9] = { - {0}, {7,9,0}, {17,15,10,6,-6,-10,-15,-17,0}, {0}, {0}, {0}, {9,7,-7,-9,8,1,-1,-8,0} - }; + int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 }, + {}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } }; for (Color c = WHITE; c <= BLACK; c++) - for (Square s = SQ_A1; s <= SQ_H8; s++) - for (PieceType pt = PAWN; pt <= KING; pt++) + for (PieceType pt = PAWN; pt <= KING; pt++) + for (Square s = SQ_A1; s <= SQ_H8; s++) for (int k = 0; steps[pt][k]; k++) { Square to = s + Square(c == WHITE ? steps[pt][k] : -steps[pt][k]); - if (square_is_ok(to) && square_distance(s, to) < 3) - set_bit(&StepAttacksBB[make_piece(c, pt)][s], to); + if (is_ok(to) && square_distance(s, to) < 3) + StepAttacksBB[make_piece(c, pt)][s] |= to; } Square RDeltas[] = { DELTA_N, DELTA_E, DELTA_S, DELTA_W }; Square BDeltas[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW }; - init_sliding_attacks(RAttacks, RMagics, RMult, RDeltas); - init_sliding_attacks(BAttacks, BMagics, BMult, BDeltas); + init_magics(RTable, RAttacks, RMagics, RMasks, RShifts, RDeltas, magic_index); + init_magics(BTable, BAttacks, BMagics, BMasks, BShifts, BDeltas, magic_index); for (Square s = SQ_A1; s <= SQ_H8; s++) { - BishopPseudoAttacks[s] = bishop_attacks_bb(s, EmptyBoardBB); - RookPseudoAttacks[s] = rook_attacks_bb(s, EmptyBoardBB); - QueenPseudoAttacks[s] = queen_attacks_bb(s, EmptyBoardBB); + PseudoAttacks[QUEEN][s] = PseudoAttacks[BISHOP][s] = attacks_bb(s, 0); + PseudoAttacks[QUEEN][s] |= PseudoAttacks[ ROOK][s] = attacks_bb< ROOK>(s, 0); } for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) - if (bit_is_set(QueenPseudoAttacks[s1], s2)) + if (PseudoAttacks[QUEEN][s1] & s2) { - int f = file_distance(s1, s2); - int r = rank_distance(s1, s2); - - Square d = (s2 - s1) / Max(f, r); + Square delta = (s2 - s1) / square_distance(s1, s2); - for (Square s3 = s1 + d; s3 != s2; s3 += d) - set_bit(&BetweenBB[s1][s2], s3); + for (Square s = s1 + delta; s != s2; s += delta) + BetweenBB[s1][s2] |= s; } } namespace { - Bitboard submask(Bitboard mask, int key) { - - Bitboard subMask = 0; - int bitNum = -1; - - // Extract an unique submask out of a mask according to the given key - for (Square s = SQ_A1; s <= SQ_H8; s++) - if (bit_is_set(mask, s) && bit_is_set(key, Square(++bitNum))) - set_bit(&subMask, s); - - return subMask; - } - - Bitboard sliding_attacks(Square sq, Bitboard occupied, Square deltas[], Bitboard excluded) { + Bitboard sliding_attack(Square deltas[], Square sq, Bitboard occupied) { - Bitboard attacks = 0; + Bitboard attack = 0; for (int i = 0; i < 4; i++) - { - Square s = sq + deltas[i]; - - while ( square_is_ok(s) - && square_distance(s, s - deltas[i]) == 1 - && !bit_is_set(excluded, s)) + for (Square s = sq + deltas[i]; + is_ok(s) && square_distance(s, s - deltas[i]) == 1; + s += deltas[i]) { - set_bit(&attacks, s); + attack |= s; - if (bit_is_set(occupied, s)) + if (occupied & s) break; - - s += deltas[i]; } - } - return attacks; + + return attack; } - void init_sliding_attacks(Bitboard attacks[], Magics m[], const Bitboard mult[], Square deltas[]) { - Bitboard occupancy, index, excluded; - int maxKey, offset = 0; + Bitboard pick_random(RKISS& rk, int booster) { - for (Square s = SQ_A1; s <= SQ_H8; s++) - { - excluded = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); + // Values s1 and s2 are used to rotate the candidate magic of a + // quantity known to be the optimal to quickly find the magics. + int s1 = booster & 63, s2 = (booster >> 6) & 63; - m[s].attacks = &attacks[offset]; - m[s].mult = mult[s]; - m[s].mask = sliding_attacks(s, EmptyBoardBB, deltas, excluded); - m[s].shift = (CpuIs64Bit ? 64 : 32) - count_1s(m[s].mask); + Bitboard m = rk.rand(); + m = (m >> s1) | (m << (64 - s1)); + m &= rk.rand(); + m = (m >> s2) | (m << (64 - s2)); + return m & rk.rand(); + } - maxKey = 1 << count_1s(m[s].mask); - for (int key = 0; key < maxKey; key++) - { - occupancy = submask(m[s].mask, key); + // init_magics() computes all rook and bishop attacks at startup. Magic + // bitboards are used to look up attacks of sliding pieces. As a reference see + // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we + // use the so called "fancy" approach. - index = CpuIs64Bit ? occupancy * mult[s] - : unsigned(occupancy * mult[s] ^ (occupancy >> 32) * (mult[s] >> 32)); + void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[], + Bitboard masks[], unsigned shifts[], Square deltas[], Fn index) { - m[s].attacks[index >> m[s].shift] = sliding_attacks(s, occupancy, deltas, EmptyBoardBB); - } - offset += maxKey; + int MagicBoosters[][8] = { { 3191, 2184, 1310, 3618, 2091, 1308, 2452, 3996 }, + { 1059, 3608, 605, 3234, 3326, 38, 2029, 3043 } }; + RKISS rk; + Bitboard occupancy[4096], reference[4096], edges, b; + int i, size, booster; + + // attacks[s] is a pointer to the beginning of the attacks table for square 's' + attacks[SQ_A1] = table; + + for (Square s = SQ_A1; s <= SQ_H8; s++) + { + // Board edges are not considered in the relevant occupancies + edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); + + // Given a square 's', the mask is the bitboard of sliding attacks from + // 's' computed on an empty board. The index must be big enough to contain + // all the attacks for each possible subset of the mask and so is 2 power + // the number of 1s of the mask. Hence we deduce the size of the shift to + // apply to the 64 or 32 bits word to get the index. + masks[s] = sliding_attack(deltas, s, 0) & ~edges; + shifts[s] = (Is64Bit ? 64 : 32) - popcount(masks[s]); + + // Use Carry-Rippler trick to enumerate all subsets of masks[s] and + // store the corresponding sliding attack bitboard in reference[]. + b = size = 0; + do { + occupancy[size] = b; + reference[size++] = sliding_attack(deltas, s, b); + b = (b - masks[s]) & masks[s]; + } while (b); + + // Set the offset for the table of the next square. We have individual + // table sizes for each square with "Fancy Magic Bitboards". + if (s < SQ_H8) + attacks[s + 1] = attacks[s] + size; + + booster = MagicBoosters[Is64Bit][rank_of(s)]; + + // Find a magic for square 's' picking up an (almost) random number + // until we find the one that passes the verification test. + do { + do magics[s] = pick_random(rk, booster); + while (popcount((magics[s] * masks[s]) >> 56) < 6); + + memset(attacks[s], 0, size * sizeof(Bitboard)); + + // A good magic must map every possible occupancy to an index that + // looks up the correct sliding attack in the attacks[s] database. + // Note that we build up the database for square 's' as a side + // effect of verifying the magic. + for (i = 0; i < size; i++) + { + Bitboard& attack = attacks[s][index(s, occupancy[i])]; + + if (attack && attack != reference[i]) + break; + + assert(reference[i] != 0); + + attack = reference[i]; + } + } while (i != size); } } }