X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.cpp;h=5c6b6e026f25c2ddd4b68f0e4e6f85475a88a407;hp=758796bed0bf4ac0122174ca0cad1a065b9852bb;hb=b05fbb3733df535a3fdf99e8d832001e57929699;hpb=90890844ade67d8081a5284700cc2ef3ebdbb62d diff --git a/src/bitboard.cpp b/src/bitboard.cpp index 758796be..5c6b6e02 100644 --- a/src/bitboard.cpp +++ b/src/bitboard.cpp @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -17,16 +17,14 @@ along with this program. If not, see . */ +#include #include #include -#include #include "bitboard.h" #include "bitcount.h" #include "rkiss.h" -// Global bitboards definitions with static storage duration are -// automatically set to zero before enter main(). Bitboard RMasks[64]; Bitboard RMagics[64]; Bitboard* RAttacks[64]; @@ -40,7 +38,6 @@ int BShifts[64]; Bitboard SetMaskBB[65]; Bitboard ClearMaskBB[65]; -Bitboard SquaresByColorBB[2]; Bitboard FileBB[8]; Bitboard RankBB[8]; Bitboard NeighboringFilesBB[8]; @@ -52,9 +49,7 @@ Bitboard SquaresInFrontMask[2][64]; Bitboard PassedPawnMask[2][64]; Bitboard AttackSpanMask[2][64]; -Bitboard BishopPseudoAttacks[64]; -Bitboard RookPseudoAttacks[64]; -Bitboard QueenPseudoAttacks[64]; +Bitboard PseudoAttacks[6][64]; uint8_t BitCount8Bit[256]; int SquareDistance[64][64]; @@ -67,8 +62,8 @@ namespace { Bitboard RookTable[0x19000]; // Storage space for rook attacks Bitboard BishopTable[0x1480]; // Storage space for bishop attacks - void init_magic_bitboards(Bitboard* attacks[], Bitboard magics[], - Bitboard masks[], int shifts[], Square deltas[]); + void init_magic_bitboards(PieceType pt, Bitboard* attacks[], Bitboard magics[], + Bitboard masks[], int shifts[]); } @@ -151,20 +146,13 @@ Square pop_1st_bit(Bitboard* bb) { #endif // !defined(USE_BSFQ) -/// init_bitboards() initializes various bitboard arrays. It is called during +/// bitboards_init() initializes various bitboard arrays. It is called during /// program initialization. -void init_bitboards() { +void bitboards_init() { for (Bitboard b = 0; b < 256; b++) - BitCount8Bit[b] = (uint8_t)count_1s(b); - - for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) - for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) - SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2)); - - SquaresByColorBB[DARK] = 0xAA55AA55AA55AA55ULL; - SquaresByColorBB[LIGHT] = ~SquaresByColorBB[DARK]; + BitCount8Bit[b] = (uint8_t)popcount(b); for (Square s = SQ_A1; s <= SQ_H8; s++) { @@ -172,7 +160,7 @@ void init_bitboards() { ClearMaskBB[s] = ~SetMaskBB[s]; } - ClearMaskBB[SQ_NONE] = ~EmptyBoardBB; + ClearMaskBB[SQ_NONE] = ~0ULL; FileBB[FILE_A] = FileABB; RankBB[RANK_1] = Rank1BB; @@ -199,17 +187,21 @@ void init_bitboards() { for (Square s = SQ_A1; s <= SQ_H8; s++) { SquaresInFrontMask[c][s] = in_front_bb(c, s) & file_bb(s); - PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(s); - AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(s); + PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(file_of(s)); + AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(file_of(s)); } + for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) + for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) + SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2)); + for (int i = 0; i < 64; i++) - if (!CpuIs64Bit) // Matt Taylor's folding trick for 32 bit systems + if (!Is64Bit) // Matt Taylor's folding trick for 32 bit systems { Bitboard b = 1ULL << i; b ^= b - 1; b ^= b >> 32; - BSFTable[uint32_t(b * 0x783A9B23) >> 26] = i; + BSFTable[(uint32_t)(b * 0x783A9B23) >> 26] = i; } else BSFTable[((1ULL << i) * 0x218A392CD3D5DBFULL) >> 58] = i; @@ -228,60 +220,55 @@ void init_bitboards() { set_bit(&StepAttacksBB[make_piece(c, pt)][s], to); } - Square RDeltas[] = { DELTA_N, DELTA_E, DELTA_S, DELTA_W }; - Square BDeltas[] = { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW }; - - RAttacks[0] = RookTable; - BAttacks[0] = BishopTable; - - init_magic_bitboards(RAttacks, RMagics, RMasks, RShifts, RDeltas); - init_magic_bitboards(BAttacks, BMagics, BMasks, BShifts, BDeltas); + init_magic_bitboards(ROOK, RAttacks, RMagics, RMasks, RShifts); + init_magic_bitboards(BISHOP, BAttacks, BMagics, BMasks, BShifts); for (Square s = SQ_A1; s <= SQ_H8; s++) { - BishopPseudoAttacks[s] = bishop_attacks_bb(s, EmptyBoardBB); - RookPseudoAttacks[s] = rook_attacks_bb(s, EmptyBoardBB); - QueenPseudoAttacks[s] = queen_attacks_bb(s, EmptyBoardBB); + PseudoAttacks[BISHOP][s] = bishop_attacks_bb(s, 0); + PseudoAttacks[ROOK][s] = rook_attacks_bb(s, 0); + PseudoAttacks[QUEEN][s] = queen_attacks_bb(s, 0); } for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) - if (bit_is_set(QueenPseudoAttacks[s1], s2)) + if (bit_is_set(PseudoAttacks[QUEEN][s1], s2)) { - int f = file_distance(s1, s2); - int r = rank_distance(s1, s2); - - Square d = (s2 - s1) / std::max(f, r); + Square delta = (s2 - s1) / square_distance(s1, s2); - for (Square s3 = s1 + d; s3 != s2; s3 += d) - set_bit(&BetweenBB[s1][s2], s3); + for (Square s = s1 + delta; s != s2; s += delta) + set_bit(&BetweenBB[s1][s2], s); } } namespace { - Bitboard sliding_attacks(Square sq, Bitboard occupied, Square deltas[]) { + Bitboard sliding_attacks(PieceType pt, Square sq, Bitboard occupied) { + Square deltas[][4] = { { DELTA_N, DELTA_E, DELTA_S, DELTA_W }, + { DELTA_NE, DELTA_SE, DELTA_SW, DELTA_NW } }; Bitboard attacks = 0; + Square* delta = (pt == ROOK ? deltas[0] : deltas[1]); for (int i = 0; i < 4; i++) { - Square s = sq + deltas[i]; + Square s = sq + delta[i]; - while (square_is_ok(s) && square_distance(s, s - deltas[i]) == 1) + while (square_is_ok(s) && square_distance(s, s - delta[i]) == 1) { set_bit(&attacks, s); if (bit_is_set(occupied, s)) break; - s += deltas[i]; + s += delta[i]; } } return attacks; } + Bitboard pick_random(Bitboard mask, RKISS& rk, int booster) { Bitboard magic; @@ -309,14 +296,17 @@ namespace { // see chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we // use the so called "fancy" approach. - void init_magic_bitboards(Bitboard* attacks[], Bitboard magics[], - Bitboard masks[], int shifts[], Square deltas[]) { + void init_magic_bitboards(PieceType pt, Bitboard* attacks[], Bitboard magics[], + Bitboard masks[], int shifts[]) { - const int MagicBoosters[][8] = { { 3191, 2184, 1310, 3618, 2091, 1308, 2452, 3996 }, - { 1059, 3608, 605, 3234, 3326, 38, 2029, 3043 } }; + int MagicBoosters[][8] = { { 3191, 2184, 1310, 3618, 2091, 1308, 2452, 3996 }, + { 1059, 3608, 605, 3234, 3326, 38, 2029, 3043 } }; RKISS rk; Bitboard occupancy[4096], reference[4096], edges, b; - int key, maxKey, index, booster; + int i, size, index, booster; + + // attacks[s] is a pointer to the beginning of the attacks table for square 's' + attacks[SQ_A1] = (pt == ROOK ? RookTable : BishopTable); for (Square s = SQ_A1; s <= SQ_H8; s++) { @@ -328,47 +318,47 @@ namespace { // all the attacks for each possible subset of the mask and so is 2 power // the number of 1s of the mask. Hence we deduce the size of the shift to // apply to the 64 or 32 bits word to get the index. - masks[s] = sliding_attacks(s, EmptyBoardBB, deltas) & ~edges; - shifts[s] = (CpuIs64Bit ? 64 : 32) - count_1s(masks[s]); + masks[s] = sliding_attacks(pt, s, 0) & ~edges; + shifts[s] = (Is64Bit ? 64 : 32) - popcount(masks[s]); // Use Carry-Rippler trick to enumerate all subsets of masks[s] and - // store the corresponding sliding attacks in reference[]. - b = maxKey = 0; + // store the corresponding sliding attacks bitboard in reference[]. + b = size = 0; do { - occupancy[maxKey] = b; - reference[maxKey++] = sliding_attacks(s, b, deltas); + occupancy[size] = b; + reference[size++] = sliding_attacks(pt, s, b); b = (b - masks[s]) & masks[s]; } while (b); // Set the offset for the table of the next square. We have individual // table sizes for each square with "Fancy Magic Bitboards". if (s < SQ_H8) - attacks[s + 1] = attacks[s] + maxKey; + attacks[s + 1] = attacks[s] + size; - booster = MagicBoosters[CpuIs64Bit][rank_of(s)]; + booster = MagicBoosters[Is64Bit][rank_of(s)]; // Find a magic for square 's' picking up an (almost) random number // until we find the one that passes the verification test. do { magics[s] = pick_random(masks[s], rk, booster); - memset(attacks[s], 0, maxKey * sizeof(Bitboard)); + memset(attacks[s], 0, size * sizeof(Bitboard)); // A good magic must map every possible occupancy to an index that // looks up the correct sliding attack in the attacks[s] database. // Note that we build up the database for square 's' as a side // effect of verifying the magic. - for (key = 0; key < maxKey; key++) + for (i = 0; i < size; i++) { - index = CpuIs64Bit ? unsigned((occupancy[key] * magics[s]) >> shifts[s]) - : unsigned(occupancy[key] * magics[s] ^ (occupancy[key] >> 32) * (magics[s] >> 32)) >> shifts[s]; + index = (pt == ROOK ? rook_index(s, occupancy[i]) + : bishop_index(s, occupancy[i])); if (!attacks[s][index]) - attacks[s][index] = reference[key]; + attacks[s][index] = reference[i]; - else if (attacks[s][index] != reference[key]) + else if (attacks[s][index] != reference[i]) break; } - } while (key != maxKey); + } while (i != size); } } }