X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.cpp;h=e4e409583bcd4b71ebc0bc853746a7c6b0062f1c;hp=b36f8a291d77647b5af8d1888bc83efabf0542d3;hb=aa392c366e6b52fa51b4be7965347d867a7f9804;hpb=22b9307aba0f78aa92abcf85e807af8b64011c7a diff --git a/src/bitboard.cpp b/src/bitboard.cpp index b36f8a29..e4e40958 100644 --- a/src/bitboard.cpp +++ b/src/bitboard.cpp @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -17,16 +17,14 @@ along with this program. If not, see . */ +#include #include #include -#include #include "bitboard.h" #include "bitcount.h" #include "rkiss.h" -// Global bitboards definitions with static storage duration are -// automatically set to zero before enter main(). Bitboard RMasks[64]; Bitboard RMagics[64]; Bitboard* RAttacks[64]; @@ -40,7 +38,6 @@ int BShifts[64]; Bitboard SetMaskBB[65]; Bitboard ClearMaskBB[65]; -Bitboard SquaresByColorBB[2]; Bitboard FileBB[8]; Bitboard RankBB[8]; Bitboard NeighboringFilesBB[8]; @@ -151,20 +148,13 @@ Square pop_1st_bit(Bitboard* bb) { #endif // !defined(USE_BSFQ) -/// init_bitboards() initializes various bitboard arrays. It is called during +/// bitboards_init() initializes various bitboard arrays. It is called during /// program initialization. -void init_bitboards() { +void bitboards_init() { for (Bitboard b = 0; b < 256; b++) - BitCount8Bit[b] = (uint8_t)count_1s(b); - - for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) - for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) - SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2)); - - SquaresByColorBB[DARK] = 0xAA55AA55AA55AA55ULL; - SquaresByColorBB[LIGHT] = ~SquaresByColorBB[DARK]; + BitCount8Bit[b] = (uint8_t)popcount(b); for (Square s = SQ_A1; s <= SQ_H8; s++) { @@ -172,7 +162,7 @@ void init_bitboards() { ClearMaskBB[s] = ~SetMaskBB[s]; } - ClearMaskBB[SQ_NONE] = ~EmptyBoardBB; + ClearMaskBB[SQ_NONE] = ~0ULL; FileBB[FILE_A] = FileABB; RankBB[RANK_1] = Rank1BB; @@ -199,12 +189,16 @@ void init_bitboards() { for (Square s = SQ_A1; s <= SQ_H8; s++) { SquaresInFrontMask[c][s] = in_front_bb(c, s) & file_bb(s); - PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(s); - AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(s); + PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(file_of(s)); + AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(file_of(s)); } + for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) + for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) + SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2)); + for (int i = 0; i < 64; i++) - if (!CpuIs64Bit) // Matt Taylor's folding trick for 32 bit systems + if (!Is64Bit) // Matt Taylor's folding trick for 32 bit systems { Bitboard b = 1ULL << i; b ^= b - 1; @@ -233,9 +227,9 @@ void init_bitboards() { for (Square s = SQ_A1; s <= SQ_H8; s++) { - BishopPseudoAttacks[s] = bishop_attacks_bb(s, EmptyBoardBB); - RookPseudoAttacks[s] = rook_attacks_bb(s, EmptyBoardBB); - QueenPseudoAttacks[s] = queen_attacks_bb(s, EmptyBoardBB); + BishopPseudoAttacks[s] = bishop_attacks_bb(s, 0); + RookPseudoAttacks[s] = rook_attacks_bb(s, 0); + QueenPseudoAttacks[s] = queen_attacks_bb(s, 0); } for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) @@ -276,6 +270,7 @@ namespace { return attacks; } + Bitboard pick_random(Bitboard mask, RKISS& rk, int booster) { Bitboard magic; @@ -325,8 +320,8 @@ namespace { // all the attacks for each possible subset of the mask and so is 2 power // the number of 1s of the mask. Hence we deduce the size of the shift to // apply to the 64 or 32 bits word to get the index. - masks[s] = sliding_attacks(pt, s, EmptyBoardBB) & ~edges; - shifts[s] = (CpuIs64Bit ? 64 : 32) - count_1s(masks[s]); + masks[s] = sliding_attacks(pt, s, 0) & ~edges; + shifts[s] = (Is64Bit ? 64 : 32) - popcount(masks[s]); // Use Carry-Rippler trick to enumerate all subsets of masks[s] and // store the corresponding sliding attacks bitboard in reference[]. @@ -342,7 +337,7 @@ namespace { if (s < SQ_H8) attacks[s + 1] = attacks[s] + size; - booster = MagicBoosters[CpuIs64Bit][rank_of(s)]; + booster = MagicBoosters[Is64Bit][rank_of(s)]; // Find a magic for square 's' picking up an (almost) random number // until we find the one that passes the verification test.