X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.cpp;h=fd3db6715b6e15278a5c8d382d37798132adc37b;hp=08b43ad8a5b111406af4a0cf3b8ea21e14f630b0;hb=1ff5ce8863cb71f42dc0f707dd566e566c658eb5;hpb=5f5d056c8fb9996748b742c9d5102c9202b0bd2c diff --git a/src/bitboard.cpp b/src/bitboard.cpp index 08b43ad8..fd3db671 100644 --- a/src/bitboard.cpp +++ b/src/bitboard.cpp @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2013 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -19,7 +19,7 @@ #include #include -#include +#include #include "bitboard.h" #include "bitcount.h" @@ -27,82 +27,74 @@ CACHE_LINE_ALIGNMENT -Bitboard RMasks[64]; -Bitboard RMagics[64]; -Bitboard* RAttacks[64]; -unsigned RShifts[64]; - -Bitboard BMasks[64]; -Bitboard BMagics[64]; -Bitboard* BAttacks[64]; -unsigned BShifts[64]; - -Bitboard SquareBB[64]; -Bitboard FileBB[8]; -Bitboard RankBB[8]; -Bitboard AdjacentFilesBB[8]; -Bitboard ThisAndAdjacentFilesBB[8]; -Bitboard InFrontBB[2][8]; -Bitboard StepAttacksBB[16][64]; -Bitboard BetweenBB[64][64]; -Bitboard DistanceRingsBB[64][8]; -Bitboard ForwardBB[2][64]; -Bitboard PassedPawnMask[2][64]; -Bitboard AttackSpanMask[2][64]; -Bitboard PseudoAttacks[6][64]; - -int SquareDistance[64][64]; +Bitboard RMasks[SQUARE_NB]; +Bitboard RMagics[SQUARE_NB]; +Bitboard* RAttacks[SQUARE_NB]; +unsigned RShifts[SQUARE_NB]; + +Bitboard BMasks[SQUARE_NB]; +Bitboard BMagics[SQUARE_NB]; +Bitboard* BAttacks[SQUARE_NB]; +unsigned BShifts[SQUARE_NB]; + +Bitboard SquareBB[SQUARE_NB]; +Bitboard FileBB[FILE_NB]; +Bitboard RankBB[RANK_NB]; +Bitboard AdjacentFilesBB[FILE_NB]; +Bitboard InFrontBB[COLOR_NB][RANK_NB]; +Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB]; +Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; +Bitboard LineBB[SQUARE_NB][SQUARE_NB]; +Bitboard DistanceRingsBB[SQUARE_NB][8]; +Bitboard ForwardBB[COLOR_NB][SQUARE_NB]; +Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; +Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB]; +Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; + +int SquareDistance[SQUARE_NB][SQUARE_NB]; namespace { + // De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan + const uint64_t DeBruijn_64 = 0x3F79D71B4CB0A89ULL; + const uint32_t DeBruijn_32 = 0x783A9B23; + CACHE_LINE_ALIGNMENT - int BSFTable[64]; int MS1BTable[256]; + Square BSFTable[SQUARE_NB]; Bitboard RTable[0x19000]; // Storage space for rook attacks Bitboard BTable[0x1480]; // Storage space for bishop attacks - uint8_t BitCount8Bit[256]; typedef unsigned (Fn)(Square, Bitboard); void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[], Bitboard masks[], unsigned shifts[], Square deltas[], Fn index); -} - -/// first_1() finds the least significant nonzero bit in a nonzero bitboard. -/// pop_1st_bit() finds and clears the least significant nonzero bit in a -/// nonzero bitboard. -#if defined(IS_64BIT) && !defined(USE_BSFQ) + FORCE_INLINE unsigned bsf_index(Bitboard b) { -Square first_1(Bitboard b) { - return Square(BSFTable[((b & -b) * 0x218A392CD3D5DBFULL) >> 58]); + // Matt Taylor's folding for 32 bit systems, extended to 64 bits by Kim Walisch + b ^= (b - 1); + return Is64Bit ? (b * DeBruijn_64) >> 58 + : ((unsigned(b) ^ unsigned(b >> 32)) * DeBruijn_32) >> 26; + } } -Square pop_1st_bit(Bitboard* b) { - Bitboard bb = *b; - *b &= (*b - 1); - return Square(BSFTable[((bb & -bb) * 0x218A392CD3D5DBFULL) >> 58]); -} +/// lsb()/msb() finds the least/most significant bit in a non-zero bitboard. +/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard. -#elif !defined(USE_BSFQ) +#ifndef USE_BSFQ -Square first_1(Bitboard b) { - b ^= (b - 1); - uint32_t fold = unsigned(b) ^ unsigned(b >> 32); - return Square(BSFTable[(fold * 0x783A9B23) >> 26]); -} +Square lsb(Bitboard b) { return BSFTable[bsf_index(b)]; } -Square pop_1st_bit(Bitboard* b) { +Square pop_lsb(Bitboard* b) { Bitboard bb = *b; *b = bb & (bb - 1); - bb ^= (bb - 1); - uint32_t fold = unsigned(bb) ^ unsigned(bb >> 32); - return Square(BSFTable[(fold * 0x783A9B23) >> 26]); + return BSFTable[bsf_index(bb)]; } -Square last_1(Bitboard b) { +Square msb(Bitboard b) { unsigned b32; int result = 0; @@ -127,27 +119,30 @@ Square last_1(Bitboard b) { result += 8; } - return Square(result + MS1BTable[b32]); + return (Square)(result + MS1BTable[b32]); } -#endif // !defined(USE_BSFQ) +#endif // ifndef USE_BSFQ + +/// Bitboards::pretty() returns an ASCII representation of a bitboard to be +/// printed to standard output. This is sometimes useful for debugging. -/// Bitboards::print() prints a bitboard in an easily readable format to the -/// standard output. This is sometimes useful for debugging. +const std::string Bitboards::pretty(Bitboard b) { -void Bitboards::print(Bitboard b) { + std::ostringstream ss; - for (Rank rank = RANK_8; rank >= RANK_1; rank--) + for (Rank rank = RANK_8; rank >= RANK_1; --rank) { - std::cout << "+---+---+---+---+---+---+---+---+" << '\n'; + ss << "+---+---+---+---+---+---+---+---+" << '\n'; - for (File file = FILE_A; file <= FILE_H; file++) - std::cout << "| " << (b & (file | rank) ? "X " : " "); + for (File file = FILE_A; file <= FILE_H; ++file) + ss << "| " << (b & (file | rank) ? "X " : " "); - std::cout << "|\n"; + ss << "|\n"; } - std::cout << "+---+---+---+---+---+---+---+---+" << std::endl; + ss << "+---+---+---+---+---+---+---+---+"; + return ss.str(); } @@ -156,72 +151,52 @@ void Bitboards::print(Bitboard b) { void Bitboards::init() { - for (int k = 0, i = 0; i < 8; i++) - while (k < (2 << i)) - MS1BTable[k++] = i; + for (Square s = SQ_A1; s <= SQ_H8; ++s) + BSFTable[bsf_index(SquareBB[s] = 1ULL << s)] = s; - for (Bitboard b = 0; b < 256; b++) - BitCount8Bit[b] = (uint8_t)popcount(b); - - for (Square s = SQ_A1; s <= SQ_H8; s++) - SquareBB[s] = 1ULL << s; + for (Bitboard b = 1; b < 256; ++b) + MS1BTable[b] = more_than_one(b) ? MS1BTable[b - 1] : lsb(b); FileBB[FILE_A] = FileABB; RankBB[RANK_1] = Rank1BB; - for (int i = 1; i < 8; i++) + for (int i = 1; i < 8; ++i) { FileBB[i] = FileBB[i - 1] << 1; RankBB[i] = RankBB[i - 1] << 8; } - for (File f = FILE_A; f <= FILE_H; f++) - { + for (File f = FILE_A; f <= FILE_H; ++f) AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0); - ThisAndAdjacentFilesBB[f] = FileBB[f] | AdjacentFilesBB[f]; - } - for (Rank r = RANK_1; r < RANK_8; r++) + for (Rank r = RANK_1; r < RANK_8; ++r) InFrontBB[WHITE][r] = ~(InFrontBB[BLACK][r + 1] = InFrontBB[BLACK][r] | RankBB[r]); - for (Color c = WHITE; c <= BLACK; c++) - for (Square s = SQ_A1; s <= SQ_H8; s++) + for (Color c = WHITE; c <= BLACK; ++c) + for (Square s = SQ_A1; s <= SQ_H8; ++s) { ForwardBB[c][s] = InFrontBB[c][rank_of(s)] & FileBB[file_of(s)]; - PassedPawnMask[c][s] = InFrontBB[c][rank_of(s)] & ThisAndAdjacentFilesBB[file_of(s)]; - AttackSpanMask[c][s] = InFrontBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)]; + PawnAttackSpan[c][s] = InFrontBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)]; + PassedPawnMask[c][s] = ForwardBB[c][s] | PawnAttackSpan[c][s]; } - for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) - for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) - SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2)); - - for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) - for (int d = 1; d < 8; d++) - for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) - if (SquareDistance[s1][s2] == d) - DistanceRingsBB[s1][d - 1] |= s2; - - for (int i = 0; i < 64; i++) - if (!Is64Bit) // Matt Taylor's folding trick for 32 bit systems + for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) + for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) { - Bitboard b = 1ULL << i; - b ^= b - 1; - b ^= b >> 32; - BSFTable[(uint32_t)(b * 0x783A9B23) >> 26] = i; + SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2)); + if (s1 != s2) + DistanceRingsBB[s1][SquareDistance[s1][s2] - 1] |= s2; } - else - BSFTable[((1ULL << i) * 0x218A392CD3D5DBFULL) >> 58] = i; int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 }, {}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } }; - for (Color c = WHITE; c <= BLACK; c++) - for (PieceType pt = PAWN; pt <= KING; pt++) - for (Square s = SQ_A1; s <= SQ_H8; s++) - for (int k = 0; steps[pt][k]; k++) + for (Color c = WHITE; c <= BLACK; ++c) + for (PieceType pt = PAWN; pt <= KING; ++pt) + for (Square s = SQ_A1; s <= SQ_H8; ++s) + for (int i = 0; steps[pt][i]; ++i) { - Square to = s + Square(c == WHITE ? steps[pt][k] : -steps[pt][k]); + Square to = s + Square(c == WHITE ? steps[pt][i] : -steps[pt][i]); if (is_ok(to) && square_distance(s, to) < 3) StepAttacksBB[make_piece(c, pt)][s] |= to; @@ -233,21 +208,23 @@ void Bitboards::init() { init_magics(RTable, RAttacks, RMagics, RMasks, RShifts, RDeltas, magic_index); init_magics(BTable, BAttacks, BMagics, BMasks, BShifts, BDeltas, magic_index); - for (Square s = SQ_A1; s <= SQ_H8; s++) + for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) { - PseudoAttacks[QUEEN][s] = PseudoAttacks[BISHOP][s] = attacks_bb(s, 0); - PseudoAttacks[QUEEN][s] |= PseudoAttacks[ ROOK][s] = attacks_bb< ROOK>(s, 0); - } + PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb(s1, 0); + PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0); + + for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) + { + Piece pc = (PseudoAttacks[BISHOP][s1] & s2) ? W_BISHOP : + (PseudoAttacks[ROOK][s1] & s2) ? W_ROOK : NO_PIECE; - for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++) - for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++) - if (PseudoAttacks[QUEEN][s1] & s2) - { - Square delta = (s2 - s1) / square_distance(s1, s2); + if (pc == NO_PIECE) + continue; - for (Square s = s1 + delta; s != s2; s += delta) - BetweenBB[s1][s2] |= s; - } + LineBB[s1][s2] = (attacks_bb(pc, s1, 0) & attacks_bb(pc, s2, 0)) | s1 | s2; + BetweenBB[s1][s2] = attacks_bb(pc, s1, SquareBB[s2]) & attacks_bb(pc, s2, SquareBB[s1]); + } + } } @@ -257,7 +234,7 @@ namespace { Bitboard attack = 0; - for (int i = 0; i < 4; i++) + for (int i = 0; i < 4; ++i) for (Square s = sq + deltas[i]; is_ok(s) && square_distance(s, s - deltas[i]) == 1; s += deltas[i]) @@ -275,7 +252,7 @@ namespace { Bitboard pick_random(RKISS& rk, int booster) { // Values s1 and s2 are used to rotate the candidate magic of a - // quantity known to be the optimal to quickly find the magics. + // quantity known to be optimal to quickly find the magics. int s1 = booster & 63, s2 = (booster >> 6) & 63; Bitboard m = rk.rand(); @@ -303,7 +280,7 @@ namespace { // attacks[s] is a pointer to the beginning of the attacks table for square 's' attacks[SQ_A1] = table; - for (Square s = SQ_A1; s <= SQ_H8; s++) + for (Square s = SQ_A1; s <= SQ_H8; ++s) { // Board edges are not considered in the relevant occupancies edges = ((Rank1BB | Rank8BB) & ~rank_bb(s)) | ((FileABB | FileHBB) & ~file_bb(s)); @@ -336,15 +313,15 @@ namespace { // until we find the one that passes the verification test. do { do magics[s] = pick_random(rk, booster); - while (BitCount8Bit[(magics[s] * masks[s]) >> 56] < 6); + while (popcount((magics[s] * masks[s]) >> 56) < 6); - memset(attacks[s], 0, size * sizeof(Bitboard)); + std::memset(attacks[s], 0, size * sizeof(Bitboard)); // A good magic must map every possible occupancy to an index that // looks up the correct sliding attack in the attacks[s] database. // Note that we build up the database for square 's' as a side // effect of verifying the magic. - for (i = 0; i < size; i++) + for (i = 0; i < size; ++i) { Bitboard& attack = attacks[s][index(s, occupancy[i])];