X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.cpp;h=fd5c3c22536c62d03095f4f87fbf23c4780b7139;hp=0bf7eef91fd844206670e14ac255d4df16dae1ec;hb=HEAD;hpb=a24f28be8567c2527b154ef981090368a2bd8f76 diff --git a/src/bitboard.cpp b/src/bitboard.cpp index 0bf7eef9..a8a10cbb 100644 --- a/src/bitboard.cpp +++ b/src/bitboard.cpp @@ -1,8 +1,6 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 - Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad - Copyright (C) 2015-2020 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad + Copyright (C) 2004-2023 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -18,17 +16,21 @@ along with this program. If not, see . */ +#include "bitboard.h" + #include #include +#include -#include "bitboard.h" #include "misc.h" +namespace Stockfish { + uint8_t PopCnt16[1 << 16]; uint8_t SquareDistance[SQUARE_NB][SQUARE_NB]; -Bitboard SquareBB[SQUARE_NB]; Bitboard LineBB[SQUARE_NB][SQUARE_NB]; +Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; Bitboard PawnAttacks[COLOR_NB][SQUARE_NB]; @@ -37,105 +39,113 @@ Magic BishopMagics[SQUARE_NB]; namespace { - Bitboard RookTable[0x19000]; // To store rook attacks - Bitboard BishopTable[0x1480]; // To store bishop attacks +Bitboard RookTable[0x19000]; // To store rook attacks +Bitboard BishopTable[0x1480]; // To store bishop attacks + +void init_magics(PieceType pt, Bitboard table[], Magic magics[]); - void init_magics(PieceType pt, Bitboard table[], Magic magics[]); } +// Returns the bitboard of target square for the given step +// from the given square. If the step is off the board, returns empty bitboard. +inline Bitboard safe_destination(Square s, int step) { + Square to = Square(s + step); + return is_ok(to) && distance(s, to) <= 2 ? square_bb(to) : Bitboard(0); +} -/// Bitboards::pretty() returns an ASCII representation of a bitboard suitable -/// to be printed to standard output. Useful for debugging. -const std::string Bitboards::pretty(Bitboard b) { +// Returns an ASCII representation of a bitboard suitable +// to be printed to standard output. Useful for debugging. +std::string Bitboards::pretty(Bitboard b) { - std::string s = "+---+---+---+---+---+---+---+---+\n"; + std::string s = "+---+---+---+---+---+---+---+---+\n"; - for (Rank r = RANK_8; r >= RANK_1; --r) - { - for (File f = FILE_A; f <= FILE_H; ++f) - s += b & make_square(f, r) ? "| X " : "| "; + for (Rank r = RANK_8; r >= RANK_1; --r) + { + for (File f = FILE_A; f <= FILE_H; ++f) + s += b & make_square(f, r) ? "| X " : "| "; - s += "| " + std::to_string(1 + r) + "\n+---+---+---+---+---+---+---+---+\n"; - } - s += " a b c d e f g h\n"; + s += "| " + std::to_string(1 + r) + "\n+---+---+---+---+---+---+---+---+\n"; + } + s += " a b c d e f g h\n"; - return s; + return s; } -/// Bitboards::init() initializes various bitboard tables. It is called at -/// startup and relies on global objects to be already zero-initialized. - +// Initializes various bitboard tables. It is called at +// startup and relies on global objects to be already zero-initialized. void Bitboards::init() { - for (unsigned i = 0; i < (1 << 16); ++i) - PopCnt16[i] = uint8_t(std::bitset<16>(i).count()); + for (unsigned i = 0; i < (1 << 16); ++i) + PopCnt16[i] = uint8_t(std::bitset<16>(i).count()); - for (Square s = SQ_A1; s <= SQ_H8; ++s) - SquareBB[s] = (1ULL << s); + for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) + for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) + SquareDistance[s1][s2] = std::max(distance(s1, s2), distance(s1, s2)); - for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) - for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) - SquareDistance[s1][s2] = std::max(distance(s1, s2), distance(s1, s2)); + init_magics(ROOK, RookTable, RookMagics); + init_magics(BISHOP, BishopTable, BishopMagics); - init_magics(ROOK, RookTable, RookMagics); - init_magics(BISHOP, BishopTable, BishopMagics); - - for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) - { - PawnAttacks[WHITE][s1] = pawn_attacks_bb(square_bb(s1)); - PawnAttacks[BLACK][s1] = pawn_attacks_bb(square_bb(s1)); + for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) + { + PawnAttacks[WHITE][s1] = pawn_attacks_bb(square_bb(s1)); + PawnAttacks[BLACK][s1] = pawn_attacks_bb(square_bb(s1)); - for (int step : {-9, -8, -7, -1, 1, 7, 8, 9} ) - PseudoAttacks[KING][s1] |= safe_destination(s1, step); + for (int step : {-9, -8, -7, -1, 1, 7, 8, 9}) + PseudoAttacks[KING][s1] |= safe_destination(s1, step); - for (int step : {-17, -15, -10, -6, 6, 10, 15, 17} ) - PseudoAttacks[KNIGHT][s1] |= safe_destination(s1, step); + for (int step : {-17, -15, -10, -6, 6, 10, 15, 17}) + PseudoAttacks[KNIGHT][s1] |= safe_destination(s1, step); - PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb(s1, 0); - PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0); + PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb(s1, 0); + PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ROOK][s1] = attacks_bb(s1, 0); - for (PieceType pt : { BISHOP, ROOK }) - for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) - if (PseudoAttacks[pt][s1] & s2) - LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2; - } + for (PieceType pt : {BISHOP, ROOK}) + for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2) + { + if (PseudoAttacks[pt][s1] & s2) + { + LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2; + BetweenBB[s1][s2] = + (attacks_bb(pt, s1, square_bb(s2)) & attacks_bb(pt, s2, square_bb(s1))); + } + BetweenBB[s1][s2] |= s2; + } + } } - namespace { - Bitboard sliding_attack(PieceType pt, Square sq, Bitboard occupied) { +Bitboard sliding_attack(PieceType pt, Square sq, Bitboard occupied) { - Bitboard attacks = 0; - Direction RookDirections[4] = {NORTH, SOUTH, EAST, WEST}; + Bitboard attacks = 0; + Direction RookDirections[4] = {NORTH, SOUTH, EAST, WEST}; Direction BishopDirections[4] = {NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST}; - for(Direction d : (pt == ROOK ? RookDirections : BishopDirections)) + for (Direction d : (pt == ROOK ? RookDirections : BishopDirections)) { Square s = sq; - while(safe_destination(s, d) && !(occupied & s)) + while (safe_destination(s, d) && !(occupied & s)) attacks |= (s += d); } return attacks; - } - +} - // init_magics() computes all rook and bishop attacks at startup. Magic - // bitboards are used to look up attacks of sliding pieces. As a reference see - // www.chessprogramming.org/Magic_Bitboards. In particular, here we use the so - // called "fancy" approach. - void init_magics(PieceType pt, Bitboard table[], Magic magics[]) { +// Computes all rook and bishop attacks at startup. Magic +// bitboards are used to look up attacks of sliding pieces. As a reference see +// www.chessprogramming.org/Magic_Bitboards. In particular, here we use the so +// called "fancy" approach. +void init_magics(PieceType pt, Bitboard table[], Magic magics[]) { // Optimal PRNG seeds to pick the correct magics in the shortest time - int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020 }, - { 728, 10316, 55013, 32803, 12281, 15100, 16645, 255 } }; + int seeds[][RANK_NB] = {{8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020}, + {728, 10316, 55013, 32803, 12281, 15100, 16645, 255}}; Bitboard occupancy[4096], reference[4096], edges, b; - int epoch[4096] = {}, cnt = 0, size = 0; + int epoch[4096] = {}, cnt = 0, size = 0; for (Square s = SQ_A1; s <= SQ_H8; ++s) { @@ -148,8 +158,8 @@ namespace { // the number of 1s of the mask. Hence we deduce the size of the shift to // apply to the 64 or 32 bits word to get the index. Magic& m = magics[s]; - m.mask = sliding_attack(pt, s, 0) & ~edges; - m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask); + m.mask = sliding_attack(pt, s, 0) & ~edges; + m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask); // Set the offset for the attacks table of the square. We have individual // table sizes for each square with "Fancy Magic Bitboards". @@ -158,7 +168,8 @@ namespace { // Use Carry-Rippler trick to enumerate all subsets of masks[s] and // store the corresponding sliding attack bitboard in reference[]. b = size = 0; - do { + do + { occupancy[size] = b; reference[size] = sliding_attack(pt, s, b); @@ -176,9 +187,9 @@ namespace { // Find a magic for square 's' picking up an (almost) random number // until we find the one that passes the verification test. - for (int i = 0; i < size; ) + for (int i = 0; i < size;) { - for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; ) + for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6;) m.magic = rng.sparse_rand(); // A good magic must map every possible occupancy to an index that @@ -193,7 +204,7 @@ namespace { if (epoch[idx] < cnt) { - epoch[idx] = cnt; + epoch[idx] = cnt; m.attacks[idx] = reference[i]; } else if (m.attacks[idx] != reference[i]) @@ -201,5 +212,7 @@ namespace { } } } - } } +} + +} // namespace Stockfish