X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.h;h=2a4ab1666b7509b42e80a932d11e536fc0071a2d;hp=da467cd85c94dafdb5a8b2b3a5f796ffc3e45553;hb=d9113d127b491db0a427a416217d55d3d298c25e;hpb=6cfb661ca506a0d2561c9892e4a4aba523027c17 diff --git a/src/bitboard.h b/src/bitboard.h index da467cd8..2a4ab166 100644 --- a/src/bitboard.h +++ b/src/bitboard.h @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008 Marco Costalba + Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -18,120 +18,53 @@ along with this program. If not, see . */ - #if !defined(BITBOARD_H_INCLUDED) #define BITBOARD_H_INCLUDED - -//// -//// Defines -//// - -// Comment following define if you prefer manually adjust -// platform macros defined below -#define AUTO_CONFIGURATION - -// Quiet a warning on Intel compiler -#if !defined(__SIZEOF_INT__ ) -#define __SIZEOF_INT__ 0 -#endif - -// Check for 64 bits for different compilers: Intel, MSVC and gcc -#if defined(__x86_64) || defined(_WIN64) || (__SIZEOF_INT__ > 4) -#define IS_64BIT -#endif - -#if !defined(AUTO_CONFIGURATION) || defined(IS_64BIT) - -//#define USE_COMPACT_ROOK_ATTACKS -//#define USE_32BIT_ATTACKS -#define USE_FOLDED_BITSCAN - -#define BITCOUNT_SWAR_64 -//#define BITCOUNT_SWAR_32 -//#define BITCOUNT_LOOP - -#else - -#define USE_32BIT_ATTACKS -#define USE_FOLDED_BITSCAN -#define BITCOUNT_SWAR_32 - -#endif - -//// -//// Includes -//// - -#include "direction.h" -#include "piece.h" -#include "square.h" #include "types.h" - -//// -//// Types -//// - -typedef uint64_t Bitboard; - - -//// -//// Constants and variables -//// - -const Bitboard EmptyBoardBB = 0ULL; - -const Bitboard WhiteSquaresBB = 0x55AA55AA55AA55AAULL; -const Bitboard BlackSquaresBB = 0xAA55AA55AA55AA55ULL; - -extern const Bitboard SquaresByColorBB[2]; +const Bitboard EmptyBoardBB = 0; const Bitboard FileABB = 0x0101010101010101ULL; -const Bitboard FileBBB = 0x0202020202020202ULL; -const Bitboard FileCBB = 0x0404040404040404ULL; -const Bitboard FileDBB = 0x0808080808080808ULL; -const Bitboard FileEBB = 0x1010101010101010ULL; -const Bitboard FileFBB = 0x2020202020202020ULL; -const Bitboard FileGBB = 0x4040404040404040ULL; -const Bitboard FileHBB = 0x8080808080808080ULL; +const Bitboard FileBBB = FileABB << 1; +const Bitboard FileCBB = FileABB << 2; +const Bitboard FileDBB = FileABB << 3; +const Bitboard FileEBB = FileABB << 4; +const Bitboard FileFBB = FileABB << 5; +const Bitboard FileGBB = FileABB << 6; +const Bitboard FileHBB = FileABB << 7; + +const Bitboard Rank1BB = 0xFF; +const Bitboard Rank2BB = Rank1BB << (8 * 1); +const Bitboard Rank3BB = Rank1BB << (8 * 2); +const Bitboard Rank4BB = Rank1BB << (8 * 3); +const Bitboard Rank5BB = Rank1BB << (8 * 4); +const Bitboard Rank6BB = Rank1BB << (8 * 5); +const Bitboard Rank7BB = Rank1BB << (8 * 6); +const Bitboard Rank8BB = Rank1BB << (8 * 7); +extern const Bitboard SquaresByColorBB[2]; extern const Bitboard FileBB[8]; extern const Bitboard NeighboringFilesBB[8]; extern const Bitboard ThisAndNeighboringFilesBB[8]; - -const Bitboard Rank1BB = 0xFFULL; -const Bitboard Rank2BB = 0xFF00ULL; -const Bitboard Rank3BB = 0xFF0000ULL; -const Bitboard Rank4BB = 0xFF000000ULL; -const Bitboard Rank5BB = 0xFF00000000ULL; -const Bitboard Rank6BB = 0xFF0000000000ULL; -const Bitboard Rank7BB = 0xFF000000000000ULL; -const Bitboard Rank8BB = 0xFF00000000000000ULL; - extern const Bitboard RankBB[8]; -extern const Bitboard RelativeRankBB[2][8]; extern const Bitboard InFrontBB[2][8]; extern Bitboard SetMaskBB[65]; extern Bitboard ClearMaskBB[65]; -extern Bitboard StepAttackBB[16][64]; -extern Bitboard RayBB[64][8]; +extern Bitboard StepAttacksBB[16][64]; extern Bitboard BetweenBB[64][64]; +extern Bitboard SquaresInFrontMask[2][64]; extern Bitboard PassedPawnMask[2][64]; -extern Bitboard OutpostMask[2][64]; +extern Bitboard AttackSpanMask[2][64]; -#if defined(USE_COMPACT_ROOK_ATTACKS) -extern Bitboard RankAttacks[8][64], FileAttacks[8][64]; -#else extern const uint64_t RMult[64]; extern const int RShift[64]; extern Bitboard RMask[64]; extern int RAttackIndex[64]; extern Bitboard RAttacks[0x19000]; -#endif // defined(USE_COMPACT_ROOK_ATTACKS) extern const uint64_t BMult[64]; extern const int BShift[64]; @@ -143,10 +76,8 @@ extern Bitboard BishopPseudoAttacks[64]; extern Bitboard RookPseudoAttacks[64]; extern Bitboard QueenPseudoAttacks[64]; +extern uint8_t BitCount8Bit[256]; -//// -//// Inline functions -//// /// Functions for testing whether a given bit is set in a bitboard, and for /// setting and clearing bits. @@ -164,16 +95,27 @@ inline void clear_bit(Bitboard *b, Square s) { } -/// rank_bb() and file_bb() gives a bitboard containing all squares on a given -/// file or rank. It is also possible to pass a square as input to these -/// functions. +/// Functions used to update a bitboard after a move. This is faster +/// then calling a sequence of clear_bit() + set_bit() + +inline Bitboard make_move_bb(Square from, Square to) { + return SetMaskBB[from] | SetMaskBB[to]; +} + +inline void do_move_bb(Bitboard *b, Bitboard move_bb) { + *b ^= move_bb; +} + + +/// rank_bb() and file_bb() take a file or a square as input and return +/// a bitboard representing all squares on the given file or rank. inline Bitboard rank_bb(Rank r) { return RankBB[r]; } inline Bitboard rank_bb(Square s) { - return rank_bb(square_rank(s)); + return RankBB[square_rank(s)]; } inline Bitboard file_bb(File f) { @@ -181,11 +123,11 @@ inline Bitboard file_bb(File f) { } inline Bitboard file_bb(Square s) { - return file_bb(square_file(s)); + return FileBB[square_file(s)]; } -/// neighboring_files_bb takes a file or a square as input, and returns a +/// neighboring_files_bb takes a file or a square as input and returns a /// bitboard representing all squares on the neighboring files. inline Bitboard neighboring_files_bb(File f) { @@ -193,31 +135,19 @@ inline Bitboard neighboring_files_bb(File f) { } inline Bitboard neighboring_files_bb(Square s) { - return neighboring_files_bb(square_file(s)); + return NeighboringFilesBB[square_file(s)]; } -/// this_and_neighboring_files_bb takes a file or a square as input, and -/// returns a bitboard representing all squares on the given and neighboring -/// files. +/// this_and_neighboring_files_bb takes a file or a square as input and returns +/// a bitboard representing all squares on the given and neighboring files. inline Bitboard this_and_neighboring_files_bb(File f) { return ThisAndNeighboringFilesBB[f]; } inline Bitboard this_and_neighboring_files_bb(Square s) { - return this_and_neighboring_files_bb(square_file(s)); -} - - -/// relative_rank_bb() takes a color and a rank as input, and returns a bitboard -/// representing all squares on the given rank from the given color's point of -/// view. For instance, relative_rank_bb(WHITE, 7) gives all squares on the -/// 7th rank, while relative_rank_bb(BLACK, 7) gives all squares on the 2nd -/// rank. - -inline Bitboard relative_rank_bb(Color c, Rank r) { - return RelativeRankBB[c][r]; + return ThisAndNeighboringFilesBB[square_file(s)]; } @@ -232,90 +162,42 @@ inline Bitboard in_front_bb(Color c, Rank r) { } inline Bitboard in_front_bb(Color c, Square s) { - return in_front_bb(c, square_rank(s)); + return InFrontBB[c][square_rank(s)]; } -/// behind_bb() takes a color and a rank or square as input, and returns a -/// bitboard representing all the squares on all ranks behind of the rank -/// (or square), from the given color's point of view. - -inline Bitboard behind_bb(Color c, Rank r) { - return InFrontBB[opposite_color(c)][r]; -} - -inline Bitboard behind_bb(Color c, Square s) { - return in_front_bb(opposite_color(c), square_rank(s)); -} - - -/// ray_bb() gives a bitboard representing all squares along the ray in a -/// given direction from a given square. - -inline Bitboard ray_bb(Square s, SignedDirection d) { - return RayBB[s][d]; -} - - -/// Functions for computing sliding attack bitboards. rook_attacks_bb(), +/// Functions for computing sliding attack bitboards. rook_attacks_bb(), /// bishop_attacks_bb() and queen_attacks_bb() all take a square and a /// bitboard of occupied squares as input, and return a bitboard representing /// all squares attacked by a rook, bishop or queen on the given square. -#if defined(USE_COMPACT_ROOK_ATTACKS) - -inline Bitboard file_attacks_bb(Square s, Bitboard blockers) { - Bitboard b = (blockers >> square_file(s)) & 0x01010101010100ULL; - return - FileAttacks[square_rank(s)][(b*0xd6e8802041d0c441ULL)>>58] & file_bb(s); -} - -inline Bitboard rank_attacks_bb(Square s, Bitboard blockers) { - Bitboard b = (blockers >> ((s & 56) + 1)) & 63; - return RankAttacks[square_file(s)][b] & rank_bb(s); -} +#if defined(IS_64BIT) inline Bitboard rook_attacks_bb(Square s, Bitboard blockers) { - return file_attacks_bb(s, blockers) | rank_attacks_bb(s, blockers); + Bitboard b = blockers & RMask[s]; + return RAttacks[RAttackIndex[s] + ((b * RMult[s]) >> RShift[s])]; } -#elif defined(USE_32BIT_ATTACKS) - -inline Bitboard rook_attacks_bb(Square s, Bitboard blockers) { - Bitboard b = blockers & RMask[s]; - return RAttacks[RAttackIndex[s] + - (unsigned(int(b) * int(RMult[s]) ^ - int(b >> 32) * int(RMult[s] >> 32)) - >> RShift[s])]; +inline Bitboard bishop_attacks_bb(Square s, Bitboard blockers) { + Bitboard b = blockers & BMask[s]; + return BAttacks[BAttackIndex[s] + ((b * BMult[s]) >> BShift[s])]; } -#else +#else // if !defined(IS_64BIT) inline Bitboard rook_attacks_bb(Square s, Bitboard blockers) { Bitboard b = blockers & RMask[s]; - return RAttacks[RAttackIndex[s] + ((b * RMult[s]) >> RShift[s])]; + return RAttacks[RAttackIndex[s] + + (unsigned(int(b) * int(RMult[s]) ^ int(b >> 32) * int(RMult[s] >> 32)) >> RShift[s])]; } -#endif - -#if defined(USE_32BIT_ATTACKS) - inline Bitboard bishop_attacks_bb(Square s, Bitboard blockers) { Bitboard b = blockers & BMask[s]; return BAttacks[BAttackIndex[s] + - (unsigned(int(b) * int(BMult[s]) ^ - int(b >> 32) * int(BMult[s] >> 32)) - >> BShift[s])]; -} - -#else // defined(USE_32BIT_ATTACKS) - -inline Bitboard bishop_attacks_bb(Square s, Bitboard blockers) { - Bitboard b = blockers & BMask[s]; - return BAttacks[BAttackIndex[s] + ((b * BMult[s]) >> BShift[s])]; + (unsigned(int(b) * int(BMult[s]) ^ int(b >> 32) * int(BMult[s] >> 32)) >> BShift[s])]; } -#endif // defined(USE_32BIT_ATTACKS) +#endif inline Bitboard queen_attacks_bb(Square s, Bitboard blockers) { return rook_attacks_bb(s, blockers) | bishop_attacks_bb(s, blockers); @@ -334,112 +216,70 @@ inline Bitboard squares_between(Square s1, Square s2) { /// squares_in_front_of takes a color and a square as input, and returns a /// bitboard representing all squares along the line in front of the square, -/// from the point of view of the given color. For instance, -/// squares_in_front_of(BLACK, SQ_E4) returns a bitboard with the squares -/// e3, e2 and e1 set. +/// from the point of view of the given color. Definition of the table is: +/// SquaresInFrontOf[c][s] = in_front_bb(c, s) & file_bb(s) inline Bitboard squares_in_front_of(Color c, Square s) { - return in_front_bb(c, s) & file_bb(s); -} - - -/// squares_behind is similar to squares_in_front, but returns the squares -/// behind the square instead of in front of the square. - -inline Bitboard squares_behind(Color c, Square s) { - return in_front_bb(opposite_color(c), s) & file_bb(s); + return SquaresInFrontMask[c][s]; } /// passed_pawn_mask takes a color and a square as input, and returns a /// bitboard mask which can be used to test if a pawn of the given color on -/// the given square is a passed pawn. +/// the given square is a passed pawn. Definition of the table is: +/// PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(s) inline Bitboard passed_pawn_mask(Color c, Square s) { return PassedPawnMask[c][s]; } -/// outpost_mask takes a color and a square as input, and returns a bitboard -/// mask which can be used to test whether a piece on the square can possibly -/// be driven away by an enemy pawn. - -inline Bitboard outpost_mask(Color c, Square s) { - return OutpostMask[c][s]; -} - - -/// isolated_pawn_mask takes a square as input, and returns a bitboard mask -/// which can be used to test whether a pawn on the given square is isolated. +/// attack_span_mask takes a color and a square as input, and returns a bitboard +/// representing all squares that can be attacked by a pawn of the given color +/// when it moves along its file starting from the given square. Definition is: +/// AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(s); -inline Bitboard isolated_pawn_mask(Square s) { - return neighboring_files_bb(s); +inline Bitboard attack_span_mask(Color c, Square s) { + return AttackSpanMask[c][s]; } -/// count_1s() counts the number of nonzero bits in a bitboard. - -#if defined(BITCOUNT_LOOP) +/// squares_aligned returns true if the squares s1, s2 and s3 are aligned +/// either on a straight or on a diagonal line. -inline int count_1s(Bitboard b) { - int r; - for(r = 0; b; r++, b &= b - 1); - return r; +inline bool squares_aligned(Square s1, Square s2, Square s3) { + return (BetweenBB[s1][s2] | BetweenBB[s1][s3] | BetweenBB[s2][s3]) + & ((1ULL << s1) | (1ULL << s2) | (1ULL << s3)); } -inline int count_1s_max_15(Bitboard b) { - return count_1s(b); -} -#elif defined(BITCOUNT_SWAR_32) +/// first_1() finds the least significant nonzero bit in a nonzero bitboard. +/// pop_1st_bit() finds and clears the least significant nonzero bit in a +/// nonzero bitboard. -inline int count_1s(Bitboard b) { - unsigned w = unsigned(b >> 32), v = unsigned(b); - v -= ((v >> 1) & 0x77777777) + ((v >> 2) & 0x33333333) + ((v & 0x88888888) >> 3); // 0-4 in 4 bits - w -= ((w >> 1) & 0x77777777) + ((w >> 2) & 0x33333333) + ((w & 0x88888888) >> 3); - v = ((v >> 4) + v) & 0x0F0F0F0F; // 0-8 in 8 bits - v += (((w >> 4) + w) & 0x0F0F0F0F); // 0-16 in 8 bits - v *= 0x01010101; // mul is fast on amd procs - return int(v >> 24); -} +#if defined(USE_BSFQ) // Assembly code by Heinz van Saanen -inline int count_1s_max_15(Bitboard b) { - unsigned w = unsigned(b >> 32), v = unsigned(b); - v -= ((v >> 1) & 0x77777777) + ((v >> 2) & 0x33333333) + ((v & 0x88888888) >> 3); // 0-4 in 4 bits - w -= ((w >> 1) & 0x77777777) + ((w >> 2) & 0x33333333) + ((w & 0x88888888) >> 3); - v += w; // 0-8 in 4 bits - v *= 0x11111111; - return int(v >> 28); +inline Square first_1(Bitboard b) { + Bitboard dummy; + __asm__("bsfq %1, %0": "=r"(dummy): "rm"(b) ); + return (Square)(dummy); } -#elif defined(BITCOUNT_SWAR_64) - -inline int count_1s(Bitboard b) { - b -= ((b>>1) & 0x5555555555555555ULL); - b = ((b>>2) & 0x3333333333333333ULL) + (b & 0x3333333333333333ULL); - b = ((b>>4) + b) & 0x0F0F0F0F0F0F0F0FULL; - b *= 0x0101010101010101ULL; - return int(b >> 56); +inline Square pop_1st_bit(Bitboard* b) { + const Square s = first_1(*b); + *b &= ~(1ULL<>1) & 0x5555555555555555ULL; - b = ((b>>2) & 0x3333333333333333ULL) + (b & 0x3333333333333333ULL); - b *= 0x1111111111111111ULL; - return int(b >> 60); -} +#else // if !defined(USE_BSFQ) -#endif // BITCOUNT +extern Square first_1(Bitboard b); +extern Square pop_1st_bit(Bitboard* b); +#endif -//// -//// Prototypes -//// extern void print_bitboard(Bitboard b); extern void init_bitboards(); -extern Square first_1(Bitboard b); -extern Square pop_1st_bit(Bitboard *b); - #endif // !defined(BITBOARD_H_INCLUDED)