X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.h;h=390966e3494273969bdb53a50c6953a6c9782611;hp=2b9161250f5fb8277ba4f2deac1e012646cec331;hb=7c5d724724e826ff1fd9a97c8812d5a4bffaaa84;hpb=cc2b3ece5c5d8d1183f8526fbb0ee4e1ea7a69fe diff --git a/src/bitboard.h b/src/bitboard.h index 2b916125..390966e3 100644 --- a/src/bitboard.h +++ b/src/bitboard.h @@ -1,14 +1,14 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. - Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the @@ -18,35 +18,62 @@ along with this program. If not, see . */ -#if !defined(BITBOARD_H_INCLUDED) +#ifndef BITBOARD_H_INCLUDED #define BITBOARD_H_INCLUDED +#include + #include "types.h" -CACHE_LINE_ALIGNMENT +namespace Bitbases { -extern Bitboard RMasks[64]; -extern Bitboard RMagics[64]; -extern Bitboard* RAttacks[64]; -extern unsigned RShifts[64]; +void init(); +bool probe(Square wksq, Square wpsq, Square bksq, Color us); -extern Bitboard BMasks[64]; -extern Bitboard BMagics[64]; -extern Bitboard* BAttacks[64]; -extern unsigned BShifts[64]; +} -extern Bitboard SquareBB[64]; -extern Bitboard FileBB[8]; -extern Bitboard RankBB[8]; -extern Bitboard AdjacentFilesBB[8]; -extern Bitboard ThisAndAdjacentFilesBB[8]; -extern Bitboard InFrontBB[2][8]; -extern Bitboard StepAttacksBB[16][64]; -extern Bitboard BetweenBB[64][64]; -extern Bitboard SquaresInFrontMask[2][64]; -extern Bitboard PassedPawnMask[2][64]; -extern Bitboard AttackSpanMask[2][64]; -extern Bitboard PseudoAttacks[6][64]; +namespace Bitboards { + +void init(); +const std::string pretty(Bitboard b); + +} + +const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL; + +const Bitboard FileABB = 0x0101010101010101ULL; +const Bitboard FileBBB = FileABB << 1; +const Bitboard FileCBB = FileABB << 2; +const Bitboard FileDBB = FileABB << 3; +const Bitboard FileEBB = FileABB << 4; +const Bitboard FileFBB = FileABB << 5; +const Bitboard FileGBB = FileABB << 6; +const Bitboard FileHBB = FileABB << 7; + +const Bitboard Rank1BB = 0xFF; +const Bitboard Rank2BB = Rank1BB << (8 * 1); +const Bitboard Rank3BB = Rank1BB << (8 * 2); +const Bitboard Rank4BB = Rank1BB << (8 * 3); +const Bitboard Rank5BB = Rank1BB << (8 * 4); +const Bitboard Rank6BB = Rank1BB << (8 * 5); +const Bitboard Rank7BB = Rank1BB << (8 * 6); +const Bitboard Rank8BB = Rank1BB << (8 * 7); + +extern int SquareDistance[SQUARE_NB][SQUARE_NB]; + +extern Bitboard SquareBB[SQUARE_NB]; +extern Bitboard FileBB[FILE_NB]; +extern Bitboard RankBB[RANK_NB]; +extern Bitboard AdjacentFilesBB[FILE_NB]; +extern Bitboard InFrontBB[COLOR_NB][RANK_NB]; +extern Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB]; +extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; +extern Bitboard LineBB[SQUARE_NB][SQUARE_NB]; +extern Bitboard DistanceRingBB[SQUARE_NB][8]; +extern Bitboard ForwardBB[COLOR_NB][SQUARE_NB]; +extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; +extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB]; +extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; /// Overloads of bitwise operators between a Bitboard and a Square for testing @@ -56,6 +83,14 @@ inline Bitboard operator&(Bitboard b, Square s) { return b & SquareBB[s]; } +inline Bitboard operator|(Bitboard b, Square s) { + return b | SquareBB[s]; +} + +inline Bitboard operator^(Bitboard b, Square s) { + return b ^ SquareBB[s]; +} + inline Bitboard& operator|=(Bitboard& b, Square s) { return b |= SquareBB[s]; } @@ -64,17 +99,13 @@ inline Bitboard& operator^=(Bitboard& b, Square s) { return b ^= SquareBB[s]; } -inline Bitboard operator|(Bitboard b, Square s) { - return b | SquareBB[s]; -} - -inline Bitboard operator^(Bitboard b, Square s) { - return b ^ SquareBB[s]; +inline bool more_than_one(Bitboard b) { + return b & (b - 1); } -/// rank_bb() and file_bb() take a file or a square as input and return -/// a bitboard representing all squares on the given file or rank. +/// rank_bb() and file_bb() return a bitboard representing all the squares on +/// the given file or rank. inline Bitboard rank_bb(Rank r) { return RankBB[r]; @@ -93,186 +124,215 @@ inline Bitboard file_bb(Square s) { } -/// adjacent_files_bb takes a file as input and returns a bitboard representing -/// all squares on the adjacent files. +/// shift_bb() moves a bitboard one step along direction Delta. Mainly for pawns + +template +inline Bitboard shift_bb(Bitboard b) { + return Delta == DELTA_N ? b << 8 : Delta == DELTA_S ? b >> 8 + : Delta == DELTA_NE ? (b & ~FileHBB) << 9 : Delta == DELTA_SE ? (b & ~FileHBB) >> 7 + : Delta == DELTA_NW ? (b & ~FileABB) << 7 : Delta == DELTA_SW ? (b & ~FileABB) >> 9 + : 0; +} + + +/// adjacent_files_bb() returns a bitboard representing all the squares on the +/// adjacent files of the given one. inline Bitboard adjacent_files_bb(File f) { return AdjacentFilesBB[f]; } -/// this_and_adjacent_files_bb takes a file as input and returns a bitboard -/// representing all squares on the given and adjacent files. +/// between_bb() returns a bitboard representing all the squares between the two +/// given ones. For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with +/// the bits for square d5 and e6 set. If s1 and s2 are not on the same rank, file +/// or diagonal, 0 is returned. -inline Bitboard this_and_adjacent_files_bb(File f) { - return ThisAndAdjacentFilesBB[f]; +inline Bitboard between_bb(Square s1, Square s2) { + return BetweenBB[s1][s2]; } -/// in_front_bb() takes a color and a rank or square as input, and returns a -/// bitboard representing all the squares on all ranks in front of the rank -/// (or square), from the given color's point of view. For instance, -/// in_front_bb(WHITE, RANK_5) will give all squares on ranks 6, 7 and 8, while -/// in_front_bb(BLACK, SQ_D3) will give all squares on ranks 1 and 2. +/// in_front_bb() returns a bitboard representing all the squares on all the ranks +/// in front of the given one, from the point of view of the given color. For +/// instance, in_front_bb(BLACK, RANK_3) will return the squares on ranks 1 and 2. inline Bitboard in_front_bb(Color c, Rank r) { return InFrontBB[c][r]; } -inline Bitboard in_front_bb(Color c, Square s) { - return InFrontBB[c][rank_of(s)]; -} +/// forward_bb() returns a bitboard representing all the squares along the line +/// in front of the given one, from the point of view of the given color: +/// ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s) -/// Functions for computing sliding attack bitboards. Function attacks_bb() takes -/// a square and a bitboard of occupied squares as input, and returns a bitboard -/// representing all squares attacked by Pt (bishop or rook) on the given square. -template -FORCE_INLINE unsigned magic_index(Square s, Bitboard occ) { +inline Bitboard forward_bb(Color c, Square s) { + return ForwardBB[c][s]; +} - Bitboard* const Masks = Pt == ROOK ? RMasks : BMasks; - Bitboard* const Magics = Pt == ROOK ? RMagics : BMagics; - unsigned* const Shifts = Pt == ROOK ? RShifts : BShifts; - if (Is64Bit) - return unsigned(((occ & Masks[s]) * Magics[s]) >> Shifts[s]); +/// pawn_attack_span() returns a bitboard representing all the squares that can be +/// attacked by a pawn of the given color when it moves along its file, starting +/// from the given square: +/// PawnAttackSpan[c][s] = in_front_bb(c, s) & adjacent_files_bb(s); - unsigned lo = unsigned(occ) & unsigned(Masks[s]); - unsigned hi = unsigned(occ >> 32) & unsigned(Masks[s] >> 32); - return (lo * unsigned(Magics[s]) ^ hi * unsigned(Magics[s] >> 32)) >> Shifts[s]; +inline Bitboard pawn_attack_span(Color c, Square s) { + return PawnAttackSpan[c][s]; } -template -inline Bitboard attacks_bb(Square s, Bitboard occ) { - Bitboard** const Attacks = Pt == ROOK ? RAttacks : BAttacks; - return Attacks[s][magic_index(s, occ)]; + +/// passed_pawn_mask() returns a bitboard mask which can be used to test if a +/// pawn of the given color and on the given square is a passed pawn: +/// PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s) + +inline Bitboard passed_pawn_mask(Color c, Square s) { + return PassedPawnMask[c][s]; } -/// squares_between returns a bitboard representing all squares between -/// two squares. For instance, squares_between(SQ_C4, SQ_F7) returns a -/// bitboard with the bits for square d5 and e6 set. If s1 and s2 are not -/// on the same line, file or diagonal, EmptyBoardBB is returned. +/// aligned() returns true if the squares s1, s2 and s3 are aligned either on a +/// straight or on a diagonal line. -inline Bitboard squares_between(Square s1, Square s2) { - return BetweenBB[s1][s2]; +inline bool aligned(Square s1, Square s2, Square s3) { + return LineBB[s1][s2] & s3; } -/// squares_in_front_of takes a color and a square as input, and returns a -/// bitboard representing all squares along the line in front of the square, -/// from the point of view of the given color. Definition of the table is: -/// SquaresInFrontOf[c][s] = in_front_bb(c, s) & file_bb(s) +/// distance() functions return the distance between x and y, defined as the +/// number of steps for a king in x to reach y. Works with squares, ranks, files. -inline Bitboard squares_in_front_of(Color c, Square s) { - return SquaresInFrontMask[c][s]; -} +template inline int distance(T x, T y) { return x < y ? y - x : x - y; } +template<> inline int distance(Square x, Square y) { return SquareDistance[x][y]; } +template inline int distance(T2 x, T2 y); +template<> inline int distance(Square x, Square y) { return distance(file_of(x), file_of(y)); } +template<> inline int distance(Square x, Square y) { return distance(rank_of(x), rank_of(y)); } -/// passed_pawn_mask takes a color and a square as input, and returns a -/// bitboard mask which can be used to test if a pawn of the given color on -/// the given square is a passed pawn. Definition of the table is: -/// PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_adjacent_files_bb(s) -inline Bitboard passed_pawn_mask(Color c, Square s) { - return PassedPawnMask[c][s]; -} +/// attacks_bb() returns a bitboard representing all the squares attacked by a +/// piece of type Pt (bishop or rook) placed on 's'. The helper magic_index() +/// looks up the index using the 'magic bitboards' approach. +template +inline unsigned magic_index(Square s, Bitboard occupied) { + extern Bitboard RookMasks[SQUARE_NB]; + extern Bitboard RookMagics[SQUARE_NB]; + extern unsigned RookShifts[SQUARE_NB]; + extern Bitboard BishopMasks[SQUARE_NB]; + extern Bitboard BishopMagics[SQUARE_NB]; + extern unsigned BishopShifts[SQUARE_NB]; -/// attack_span_mask takes a color and a square as input, and returns a bitboard -/// representing all squares that can be attacked by a pawn of the given color -/// when it moves along its file starting from the given square. Definition is: -/// AttackSpanMask[c][s] = in_front_bb(c, s) & adjacent_files_bb(s); + Bitboard* const Masks = Pt == ROOK ? RookMasks : BishopMasks; + Bitboard* const Magics = Pt == ROOK ? RookMagics : BishopMagics; + unsigned* const Shifts = Pt == ROOK ? RookShifts : BishopShifts; -inline Bitboard attack_span_mask(Color c, Square s) { - return AttackSpanMask[c][s]; + if (HasPext) + return unsigned(pext(occupied, Masks[s])); + + if (Is64Bit) + return unsigned(((occupied & Masks[s]) * Magics[s]) >> Shifts[s]); + + unsigned lo = unsigned(occupied) & unsigned(Masks[s]); + unsigned hi = unsigned(occupied >> 32) & unsigned(Masks[s] >> 32); + return (lo * unsigned(Magics[s]) ^ hi * unsigned(Magics[s] >> 32)) >> Shifts[s]; } +template +inline Bitboard attacks_bb(Square s, Bitboard occupied) { -/// squares_aligned returns true if the squares s1, s2 and s3 are aligned -/// either on a straight or on a diagonal line. + extern Bitboard* RookAttacks[SQUARE_NB]; + extern Bitboard* BishopAttacks[SQUARE_NB]; -inline bool squares_aligned(Square s1, Square s2, Square s3) { - return (BetweenBB[s1][s2] | BetweenBB[s1][s3] | BetweenBB[s2][s3]) - & ( SquareBB[s1] | SquareBB[s2] | SquareBB[s3]); + return (Pt == ROOK ? RookAttacks : BishopAttacks)[s][magic_index(s, occupied)]; } +inline Bitboard attacks_bb(Piece pc, Square s, Bitboard occupied) { -/// same_color_squares() returns a bitboard representing all squares with -/// the same color of the given square. - -inline Bitboard same_color_squares(Square s) { - return Bitboard(0xAA55AA55AA55AA55ULL) & s ? 0xAA55AA55AA55AA55ULL - : ~0xAA55AA55AA55AA55ULL; + switch (type_of(pc)) + { + case BISHOP: return attacks_bb(s, occupied); + case ROOK : return attacks_bb(s, occupied); + case QUEEN : return attacks_bb(s, occupied) | attacks_bb(s, occupied); + default : return StepAttacksBB[pc][s]; + } } -/// single_bit() returns true if in the 'b' bitboard is set a single bit (or if -/// b == 0). +/// popcount() counts the number of non-zero bits in a bitboard -inline bool single_bit(Bitboard b) { - return !(b & (b - 1)); -} +inline int popcount(Bitboard b) { + +#ifndef USE_POPCNT -/// first_1() finds the least significant nonzero bit in a nonzero bitboard. -/// pop_1st_bit() finds and clears the least significant nonzero bit in a -/// nonzero bitboard. + extern uint8_t PopCnt16[1 << 16]; + union { Bitboard bb; uint16_t u[4]; } v = { b }; + return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]]; -#if defined(USE_BSFQ) +#elif defined(_MSC_VER) || defined(__INTEL_COMPILER) -#if defined(_MSC_VER) && !defined(__INTEL_COMPILER) + return (int)_mm_popcnt_u64(b); -FORCE_INLINE Square first_1(Bitboard b) { - unsigned long index; - _BitScanForward64(&index, b); - return (Square) index; +#else // Assumed gcc or compatible compiler + + return __builtin_popcountll(b); + +#endif } -FORCE_INLINE Square last_1(Bitboard b) { - unsigned long index; - _BitScanReverse64(&index, b); - return (Square) index; + +/// lsb() and msb() return the least/most significant bit in a non-zero bitboard + +#if defined(__GNUC__) + +inline Square lsb(Bitboard b) { + assert(b); + return Square(__builtin_ctzll(b)); } -#else -FORCE_INLINE Square first_1(Bitboard b) { // Assembly code by Heinz van Saanen - Bitboard dummy; - __asm__("bsfq %1, %0": "=r"(dummy): "rm"(b) ); - return (Square) dummy; +inline Square msb(Bitboard b) { + assert(b); + return Square(63 - __builtin_clzll(b)); } -FORCE_INLINE Square last_1(Bitboard b) { - Bitboard dummy; - __asm__("bsrq %1, %0": "=r"(dummy): "rm"(b) ); - return (Square) dummy; +#elif defined(_WIN64) && defined(_MSC_VER) + +inline Square lsb(Bitboard b) { + assert(b); + unsigned long idx; + _BitScanForward64(&idx, b); + return (Square) idx; } -#endif -FORCE_INLINE Square pop_1st_bit(Bitboard* b) { - const Square s = first_1(*b); - *b &= ~(1ULL< -inline Rank relative_rank(Bitboard b) { - Square s = Us == WHITE ? first_1(b) - : ~last_1(b); - return rank_of(s); +/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard + +inline Square pop_lsb(Bitboard* b) { + const Square s = lsb(*b); + *b &= *b - 1; + return s; } -extern void print_bitboard(Bitboard b); -extern void bitboards_init(); -#endif // !defined(BITBOARD_H_INCLUDED) +/// frontmost_sq() and backmost_sq() return the square corresponding to the +/// most/least advanced bit relative to the given color. + +inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); } +inline Square backmost_sq(Color c, Bitboard b) { return c == WHITE ? lsb(b) : msb(b); } + +#endif // #ifndef BITBOARD_H_INCLUDED