X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.h;h=6a1755b662891b26051dad911b1c42bcf2c7de86;hp=bdeddbd2def0879bee629e49042643c91fcf3507;hb=d9caede3249698440b7579e31d92aaa9984a128b;hpb=2f6142cb9bd9db2a749fa3faad4d0ef793336ddb diff --git a/src/bitboard.h b/src/bitboard.h index bdeddbd2..6a1755b6 100644 --- a/src/bitboard.h +++ b/src/bitboard.h @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -18,12 +18,26 @@ along with this program. If not, see . */ -#if !defined(BITBOARD_H_INCLUDED) +#ifndef BITBOARD_H_INCLUDED #define BITBOARD_H_INCLUDED +#include + #include "types.h" -const Bitboard EmptyBoardBB = 0; +namespace Bitboards { + +void init(); +const std::string pretty(Bitboard b); + +} + +namespace Bitbases { + +void init_kpk(); +bool probe_kpk(Square wksq, Square wpsq, Square bksq, Color us); + +} const Bitboard FileABB = 0x0101010101010101ULL; const Bitboard FileBBB = FileABB << 1; @@ -43,68 +57,85 @@ const Bitboard Rank6BB = Rank1BB << (8 * 5); const Bitboard Rank7BB = Rank1BB << (8 * 6); const Bitboard Rank8BB = Rank1BB << (8 * 7); -extern Bitboard SquaresByColorBB[2]; -extern Bitboard FileBB[8]; -extern Bitboard NeighboringFilesBB[8]; -extern Bitboard ThisAndNeighboringFilesBB[8]; -extern Bitboard RankBB[8]; -extern Bitboard InFrontBB[2][8]; - -extern Bitboard SetMaskBB[65]; -extern Bitboard ClearMaskBB[65]; - -extern Bitboard StepAttacksBB[16][64]; -extern Bitboard BetweenBB[64][64]; - -extern Bitboard SquaresInFrontMask[2][64]; -extern Bitboard PassedPawnMask[2][64]; -extern Bitboard AttackSpanMask[2][64]; - -extern Bitboard BishopPseudoAttacks[64]; -extern Bitboard RookPseudoAttacks[64]; -extern Bitboard QueenPseudoAttacks[64]; - -extern uint8_t BitCount8Bit[256]; +CACHE_LINE_ALIGNMENT + +extern Bitboard RMasks[SQUARE_NB]; +extern Bitboard RMagics[SQUARE_NB]; +extern Bitboard* RAttacks[SQUARE_NB]; +extern unsigned RShifts[SQUARE_NB]; + +extern Bitboard BMasks[SQUARE_NB]; +extern Bitboard BMagics[SQUARE_NB]; +extern Bitboard* BAttacks[SQUARE_NB]; +extern unsigned BShifts[SQUARE_NB]; + +extern Bitboard SquareBB[SQUARE_NB]; +extern Bitboard FileBB[FILE_NB]; +extern Bitboard RankBB[RANK_NB]; +extern Bitboard AdjacentFilesBB[FILE_NB]; +extern Bitboard InFrontBB[COLOR_NB][RANK_NB]; +extern Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB]; +extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; +extern Bitboard LineBB[SQUARE_NB][SQUARE_NB]; +extern Bitboard DistanceRingsBB[SQUARE_NB][8]; +extern Bitboard ForwardBB[COLOR_NB][SQUARE_NB]; +extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; +extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB]; +extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; + +extern int SquareDistance[SQUARE_NB][SQUARE_NB]; + +const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL; + +/// Overloads of bitwise operators between a Bitboard and a Square for testing +/// whether a given bit is set in a bitboard, and for setting and clearing bits. + +inline Bitboard operator&(Bitboard b, Square s) { + return b & SquareBB[s]; +} -struct Magics { - Bitboard mask; - uint64_t mult; - uint32_t index; - uint32_t shift; -}; +inline Bitboard& operator|=(Bitboard& b, Square s) { + return b |= SquareBB[s]; +} -extern Magics RMagics[64]; -extern Magics BMagics[64]; +inline Bitboard& operator^=(Bitboard& b, Square s) { + return b ^= SquareBB[s]; +} -extern Bitboard RAttacks[0x19000]; -extern Bitboard BAttacks[0x1480]; +inline Bitboard operator|(Bitboard b, Square s) { + return b | SquareBB[s]; +} +inline Bitboard operator^(Bitboard b, Square s) { + return b ^ SquareBB[s]; +} -/// Functions for testing whether a given bit is set in a bitboard, and for -/// setting and clearing bits. +inline bool more_than_one(Bitboard b) { + return b & (b - 1); +} -inline Bitboard bit_is_set(Bitboard b, Square s) { - return b & SetMaskBB[s]; +inline int square_distance(Square s1, Square s2) { + return SquareDistance[s1][s2]; } -inline void set_bit(Bitboard *b, Square s) { - *b |= SetMaskBB[s]; +inline int file_distance(Square s1, Square s2) { + return abs(file_of(s1) - file_of(s2)); } -inline void clear_bit(Bitboard *b, Square s) { - *b &= ClearMaskBB[s]; +inline int rank_distance(Square s1, Square s2) { + return abs(rank_of(s1) - rank_of(s2)); } -/// Functions used to update a bitboard after a move. This is faster -/// then calling a sequence of clear_bit() + set_bit() +/// shift_bb() moves bitboard one step along direction Delta. Mainly for pawns. -inline Bitboard make_move_bb(Square from, Square to) { - return SetMaskBB[from] | SetMaskBB[to]; -} +template +inline Bitboard shift_bb(Bitboard b) { -inline void do_move_bb(Bitboard *b, Bitboard move_bb) { - *b ^= move_bb; + return Delta == DELTA_N ? b << 8 : Delta == DELTA_S ? b >> 8 + : Delta == DELTA_NE ? (b & ~FileHBB) << 9 : Delta == DELTA_SE ? (b & ~FileHBB) >> 7 + : Delta == DELTA_NW ? (b & ~FileABB) << 7 : Delta == DELTA_SW ? (b & ~FileABB) >> 9 + : 0; } @@ -116,7 +147,7 @@ inline Bitboard rank_bb(Rank r) { } inline Bitboard rank_bb(Square s) { - return RankBB[square_rank(s)]; + return RankBB[rank_of(s)]; } inline Bitboard file_bb(File f) { @@ -124,175 +155,189 @@ inline Bitboard file_bb(File f) { } inline Bitboard file_bb(Square s) { - return FileBB[square_file(s)]; + return FileBB[file_of(s)]; } -/// neighboring_files_bb takes a file or a square as input and returns a -/// bitboard representing all squares on the neighboring files. - -inline Bitboard neighboring_files_bb(File f) { - return NeighboringFilesBB[f]; -} +/// adjacent_files_bb() takes a file as input and returns a bitboard representing +/// all squares on the adjacent files. -inline Bitboard neighboring_files_bb(Square s) { - return NeighboringFilesBB[square_file(s)]; +inline Bitboard adjacent_files_bb(File f) { + return AdjacentFilesBB[f]; } -/// this_and_neighboring_files_bb takes a file or a square as input and returns -/// a bitboard representing all squares on the given and neighboring files. +/// in_front_bb() takes a color and a rank as input, and returns a bitboard +/// representing all the squares on all ranks in front of the rank, from the +/// given color's point of view. For instance, in_front_bb(BLACK, RANK_3) will +/// give all squares on ranks 1 and 2. -inline Bitboard this_and_neighboring_files_bb(File f) { - return ThisAndNeighboringFilesBB[f]; +inline Bitboard in_front_bb(Color c, Rank r) { + return InFrontBB[c][r]; } -inline Bitboard this_and_neighboring_files_bb(Square s) { - return ThisAndNeighboringFilesBB[square_file(s)]; + +/// between_bb() returns a bitboard representing all squares between two squares. +/// For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with the bits for +/// square d5 and e6 set. If s1 and s2 are not on the same rank, file or diagonal, +/// 0 is returned. + +inline Bitboard between_bb(Square s1, Square s2) { + return BetweenBB[s1][s2]; } -/// in_front_bb() takes a color and a rank or square as input, and returns a -/// bitboard representing all the squares on all ranks in front of the rank -/// (or square), from the given color's point of view. For instance, -/// in_front_bb(WHITE, RANK_5) will give all squares on ranks 6, 7 and 8, while -/// in_front_bb(BLACK, SQ_D3) will give all squares on ranks 1 and 2. +/// forward_bb() takes a color and a square as input, and returns a bitboard +/// representing all squares along the line in front of the square, from the +/// point of view of the given color. Definition of the table is: +/// ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s) -inline Bitboard in_front_bb(Color c, Rank r) { - return InFrontBB[c][r]; +inline Bitboard forward_bb(Color c, Square s) { + return ForwardBB[c][s]; } -inline Bitboard in_front_bb(Color c, Square s) { - return InFrontBB[c][square_rank(s)]; -} +/// pawn_attack_span() takes a color and a square as input, and returns a bitboard +/// representing all squares that can be attacked by a pawn of the given color +/// when it moves along its file starting from the given square. Definition is: +/// PawnAttackSpan[c][s] = in_front_bb(c, s) & adjacent_files_bb(s); -/// Functions for computing sliding attack bitboards. rook_attacks_bb(), -/// bishop_attacks_bb() and queen_attacks_bb() all take a square and a -/// bitboard of occupied squares as input, and return a bitboard representing -/// all squares attacked by a rook, bishop or queen on the given square. +inline Bitboard pawn_attack_span(Color c, Square s) { + return PawnAttackSpan[c][s]; +} -#if defined(IS_64BIT) -inline Bitboard rook_attacks_bb(Square s, Bitboard occ) { - const Magics& m = RMagics[s]; - return RAttacks[m.index + (((occ & m.mask) * m.mult) >> m.shift)]; -} +/// passed_pawn_mask() takes a color and a square as input, and returns a +/// bitboard mask which can be used to test if a pawn of the given color on +/// the given square is a passed pawn. Definition of the table is: +/// PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s) -inline Bitboard bishop_attacks_bb(Square s, Bitboard occ) { - const Magics& m = BMagics[s]; - return BAttacks[m.index + (((occ & m.mask) * m.mult) >> m.shift)]; +inline Bitboard passed_pawn_mask(Color c, Square s) { + return PassedPawnMask[c][s]; } -#else // if !defined(IS_64BIT) -inline Bitboard rook_attacks_bb(Square s, Bitboard occ) { - const Magics& m = RMagics[s]; - Bitboard b = occ & m.mask; - return RAttacks[m.index + - ((unsigned(b) * unsigned(m.mult) ^ unsigned(b >> 32) * unsigned(m.mult >> 32)) >> m.shift)]; -} +/// squares_of_color() returns a bitboard representing all squares with the same +/// color of the given square. -inline Bitboard bishop_attacks_bb(Square s, Bitboard occ) { - const Magics& m = BMagics[s]; - Bitboard b = occ & m.mask; - return BAttacks[m.index + - ((unsigned(b) * unsigned(m.mult) ^ unsigned(b >> 32) * unsigned(m.mult >> 32)) >> m.shift)]; +inline Bitboard squares_of_color(Square s) { + return DarkSquares & s ? DarkSquares : ~DarkSquares; } -#endif -inline Bitboard queen_attacks_bb(Square s, Bitboard blockers) { - return rook_attacks_bb(s, blockers) | bishop_attacks_bb(s, blockers); +/// aligned() returns true if the squares s1, s2 and s3 are aligned +/// either on a straight or on a diagonal line. + +inline bool aligned(Square s1, Square s2, Square s3) { + return LineBB[s1][s2] & s3; } -/// squares_between returns a bitboard representing all squares between -/// two squares. For instance, squares_between(SQ_C4, SQ_F7) returns a -/// bitboard with the bits for square d5 and e6 set. If s1 and s2 are not -/// on the same line, file or diagonal, EmptyBoardBB is returned. +/// Functions for computing sliding attack bitboards. Function attacks_bb() takes +/// a square and a bitboard of occupied squares as input, and returns a bitboard +/// representing all squares attacked by Pt (bishop or rook) on the given square. +template +FORCE_INLINE unsigned magic_index(Square s, Bitboard occ) { -inline Bitboard squares_between(Square s1, Square s2) { - return BetweenBB[s1][s2]; -} + Bitboard* const Masks = Pt == ROOK ? RMasks : BMasks; + Bitboard* const Magics = Pt == ROOK ? RMagics : BMagics; + unsigned* const Shifts = Pt == ROOK ? RShifts : BShifts; + if (HasPext) + return unsigned(_pext_u64(occ, Masks[s])); -/// squares_in_front_of takes a color and a square as input, and returns a -/// bitboard representing all squares along the line in front of the square, -/// from the point of view of the given color. Definition of the table is: -/// SquaresInFrontOf[c][s] = in_front_bb(c, s) & file_bb(s) + if (Is64Bit) + return unsigned(((occ & Masks[s]) * Magics[s]) >> Shifts[s]); -inline Bitboard squares_in_front_of(Color c, Square s) { - return SquaresInFrontMask[c][s]; + unsigned lo = unsigned(occ) & unsigned(Masks[s]); + unsigned hi = unsigned(occ >> 32) & unsigned(Masks[s] >> 32); + return (lo * unsigned(Magics[s]) ^ hi * unsigned(Magics[s] >> 32)) >> Shifts[s]; } +template +inline Bitboard attacks_bb(Square s, Bitboard occ) { + return (Pt == ROOK ? RAttacks : BAttacks)[s][magic_index(s, occ)]; +} -/// passed_pawn_mask takes a color and a square as input, and returns a -/// bitboard mask which can be used to test if a pawn of the given color on -/// the given square is a passed pawn. Definition of the table is: -/// PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(s) +inline Bitboard attacks_bb(Piece pc, Square s, Bitboard occ) { -inline Bitboard passed_pawn_mask(Color c, Square s) { - return PassedPawnMask[c][s]; + switch (type_of(pc)) + { + case BISHOP: return attacks_bb(s, occ); + case ROOK : return attacks_bb(s, occ); + case QUEEN : return attacks_bb(s, occ) | attacks_bb(s, occ); + default : return StepAttacksBB[pc][s]; + } } +/// lsb()/msb() finds the least/most significant bit in a non-zero bitboard. +/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard. -/// attack_span_mask takes a color and a square as input, and returns a bitboard -/// representing all squares that can be attacked by a pawn of the given color -/// when it moves along its file starting from the given square. Definition is: -/// AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(s); +#ifdef USE_BSFQ + +# if defined(_MSC_VER) && !defined(__INTEL_COMPILER) -inline Bitboard attack_span_mask(Color c, Square s) { - return AttackSpanMask[c][s]; +FORCE_INLINE Square lsb(Bitboard b) { + unsigned long idx; + _BitScanForward64(&idx, b); + return (Square) idx; } +FORCE_INLINE Square msb(Bitboard b) { + unsigned long idx; + _BitScanReverse64(&idx, b); + return (Square) idx; +} -/// squares_aligned returns true if the squares s1, s2 and s3 are aligned -/// either on a straight or on a diagonal line. +# elif defined(__arm__) -inline bool squares_aligned(Square s1, Square s2, Square s3) { - return (BetweenBB[s1][s2] | BetweenBB[s1][s3] | BetweenBB[s2][s3]) - & ((1ULL << s1) | (1ULL << s2) | (1ULL << s3)); +FORCE_INLINE int lsb32(uint32_t v) { + __asm__("rbit %0, %1" : "=r"(v) : "r"(v)); + return __builtin_clz(v); } +FORCE_INLINE Square msb(Bitboard b) { + return (Square) (63 - __builtin_clzll(b)); +} -/// first_1() finds the least significant nonzero bit in a nonzero bitboard. -/// pop_1st_bit() finds and clears the least significant nonzero bit in a -/// nonzero bitboard. - -#if defined(USE_BSFQ) +FORCE_INLINE Square lsb(Bitboard b) { + return (Square) (uint32_t(b) ? lsb32(uint32_t(b)) : 32 + lsb32(uint32_t(b >> 32))); +} -#if defined(_MSC_VER) && !defined(__INTEL_COMPILER) +# else -FORCE_INLINE Square first_1(Bitboard b) { - unsigned long index; - _BitScanForward64(&index, b); - return (Square) index; +FORCE_INLINE Square lsb(Bitboard b) { // Assembly code by Heinz van Saanen + Bitboard idx; + __asm__("bsfq %1, %0": "=r"(idx): "rm"(b) ); + return (Square) idx; } -#else -FORCE_INLINE Square first_1(Bitboard b) { // Assembly code by Heinz van Saanen - Bitboard dummy; - __asm__("bsfq %1, %0": "=r"(dummy): "rm"(b) ); - return (Square) dummy; +FORCE_INLINE Square msb(Bitboard b) { + Bitboard idx; + __asm__("bsrq %1, %0": "=r"(idx): "rm"(b) ); + return (Square) idx; } -#endif -FORCE_INLINE Square pop_1st_bit(Bitboard* b) { - const Square s = first_1(*b); - *b &= ~(1ULL<