X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.h;h=6a1755b662891b26051dad911b1c42bcf2c7de86;hp=bff9846c5eb9d730a4a3e5a0ddd6c67e4d2cfc59;hb=d9caede3249698440b7579e31d92aaa9984a128b;hpb=6080fecf9cba9ac063f8f07bd25004c14016bd33 diff --git a/src/bitboard.h b/src/bitboard.h index bff9846c..6a1755b6 100644 --- a/src/bitboard.h +++ b/src/bitboard.h @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -18,24 +18,26 @@ along with this program. If not, see . */ - -#if !defined(BITBOARD_H_INCLUDED) +#ifndef BITBOARD_H_INCLUDED #define BITBOARD_H_INCLUDED -//// -//// Includes -//// +#include -#include "piece.h" -#include "square.h" #include "types.h" +namespace Bitboards { + +void init(); +const std::string pretty(Bitboard b); + +} + +namespace Bitbases { -//// -//// Constants and variables -//// +void init_kpk(); +bool probe_kpk(Square wksq, Square wpsq, Square bksq, Color us); -const Bitboard EmptyBoardBB = 0; +} const Bitboard FileABB = 0x0101010101010101ULL; const Bitboard FileBBB = FileABB << 1; @@ -55,76 +57,89 @@ const Bitboard Rank6BB = Rank1BB << (8 * 5); const Bitboard Rank7BB = Rank1BB << (8 * 6); const Bitboard Rank8BB = Rank1BB << (8 * 7); -extern const Bitboard SquaresByColorBB[2]; -extern const Bitboard FileBB[8]; -extern const Bitboard NeighboringFilesBB[8]; -extern const Bitboard ThisAndNeighboringFilesBB[8]; -extern const Bitboard RankBB[8]; -extern const Bitboard RelativeRankBB[2][8]; -extern const Bitboard InFrontBB[2][8]; - -extern Bitboard SetMaskBB[65]; -extern Bitboard ClearMaskBB[65]; - -extern Bitboard StepAttackBB[16][64]; -extern Bitboard RayBB[64][8]; -extern Bitboard BetweenBB[64][64]; - -extern Bitboard SquaresInFrontMask[2][64]; -extern Bitboard PassedPawnMask[2][64]; -extern Bitboard AttackSpanMask[2][64]; - -extern const uint64_t RMult[64]; -extern const int RShift[64]; -extern Bitboard RMask[64]; -extern int RAttackIndex[64]; -extern Bitboard RAttacks[0x19000]; - -extern const uint64_t BMult[64]; -extern const int BShift[64]; -extern Bitboard BMask[64]; -extern int BAttackIndex[64]; -extern Bitboard BAttacks[0x1480]; +CACHE_LINE_ALIGNMENT + +extern Bitboard RMasks[SQUARE_NB]; +extern Bitboard RMagics[SQUARE_NB]; +extern Bitboard* RAttacks[SQUARE_NB]; +extern unsigned RShifts[SQUARE_NB]; + +extern Bitboard BMasks[SQUARE_NB]; +extern Bitboard BMagics[SQUARE_NB]; +extern Bitboard* BAttacks[SQUARE_NB]; +extern unsigned BShifts[SQUARE_NB]; + +extern Bitboard SquareBB[SQUARE_NB]; +extern Bitboard FileBB[FILE_NB]; +extern Bitboard RankBB[RANK_NB]; +extern Bitboard AdjacentFilesBB[FILE_NB]; +extern Bitboard InFrontBB[COLOR_NB][RANK_NB]; +extern Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB]; +extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; +extern Bitboard LineBB[SQUARE_NB][SQUARE_NB]; +extern Bitboard DistanceRingsBB[SQUARE_NB][8]; +extern Bitboard ForwardBB[COLOR_NB][SQUARE_NB]; +extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; +extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB]; +extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; + +extern int SquareDistance[SQUARE_NB][SQUARE_NB]; + +const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL; + +/// Overloads of bitwise operators between a Bitboard and a Square for testing +/// whether a given bit is set in a bitboard, and for setting and clearing bits. + +inline Bitboard operator&(Bitboard b, Square s) { + return b & SquareBB[s]; +} -extern Bitboard BishopPseudoAttacks[64]; -extern Bitboard RookPseudoAttacks[64]; -extern Bitboard QueenPseudoAttacks[64]; +inline Bitboard& operator|=(Bitboard& b, Square s) { + return b |= SquareBB[s]; +} -extern uint8_t BitCount8Bit[256]; +inline Bitboard& operator^=(Bitboard& b, Square s) { + return b ^= SquareBB[s]; +} +inline Bitboard operator|(Bitboard b, Square s) { + return b | SquareBB[s]; +} -//// -//// Inline functions -//// +inline Bitboard operator^(Bitboard b, Square s) { + return b ^ SquareBB[s]; +} -/// Functions for testing whether a given bit is set in a bitboard, and for -/// setting and clearing bits. +inline bool more_than_one(Bitboard b) { + return b & (b - 1); +} -inline Bitboard bit_is_set(Bitboard b, Square s) { - return b & SetMaskBB[s]; +inline int square_distance(Square s1, Square s2) { + return SquareDistance[s1][s2]; } -inline void set_bit(Bitboard *b, Square s) { - *b |= SetMaskBB[s]; +inline int file_distance(Square s1, Square s2) { + return abs(file_of(s1) - file_of(s2)); } -inline void clear_bit(Bitboard *b, Square s) { - *b &= ClearMaskBB[s]; +inline int rank_distance(Square s1, Square s2) { + return abs(rank_of(s1) - rank_of(s2)); } -/// Functions used to update a bitboard after a move. This is faster -/// then calling a sequence of clear_bit() + set_bit() +/// shift_bb() moves bitboard one step along direction Delta. Mainly for pawns. -inline Bitboard make_move_bb(Square from, Square to) { - return SetMaskBB[from] | SetMaskBB[to]; -} +template +inline Bitboard shift_bb(Bitboard b) { -inline void do_move_bb(Bitboard *b, Bitboard move_bb) { - *b ^= move_bb; + return Delta == DELTA_N ? b << 8 : Delta == DELTA_S ? b >> 8 + : Delta == DELTA_NE ? (b & ~FileHBB) << 9 : Delta == DELTA_SE ? (b & ~FileHBB) >> 7 + : Delta == DELTA_NW ? (b & ~FileABB) << 7 : Delta == DELTA_SW ? (b & ~FileABB) >> 9 + : 0; } -/// rank_bb() and file_bb() take a file or a square as input, and return + +/// rank_bb() and file_bb() take a file or a square as input and return /// a bitboard representing all squares on the given file or rank. inline Bitboard rank_bb(Rank r) { @@ -132,7 +147,7 @@ inline Bitboard rank_bb(Rank r) { } inline Bitboard rank_bb(Square s) { - return rank_bb(square_rank(s)); + return RankBB[rank_of(s)]; } inline Bitboard file_bb(File f) { @@ -140,204 +155,189 @@ inline Bitboard file_bb(File f) { } inline Bitboard file_bb(Square s) { - return file_bb(square_file(s)); + return FileBB[file_of(s)]; } -/// neighboring_files_bb takes a file or a square as input, and returns a -/// bitboard representing all squares on the neighboring files. +/// adjacent_files_bb() takes a file as input and returns a bitboard representing +/// all squares on the adjacent files. -inline Bitboard neighboring_files_bb(File f) { - return NeighboringFilesBB[f]; -} - -inline Bitboard neighboring_files_bb(Square s) { - return NeighboringFilesBB[square_file(s)]; +inline Bitboard adjacent_files_bb(File f) { + return AdjacentFilesBB[f]; } -/// this_and_neighboring_files_bb takes a file or a square as input, and -/// returns a bitboard representing all squares on the given and neighboring -/// files. - -inline Bitboard this_and_neighboring_files_bb(File f) { - return ThisAndNeighboringFilesBB[f]; -} +/// in_front_bb() takes a color and a rank as input, and returns a bitboard +/// representing all the squares on all ranks in front of the rank, from the +/// given color's point of view. For instance, in_front_bb(BLACK, RANK_3) will +/// give all squares on ranks 1 and 2. -inline Bitboard this_and_neighboring_files_bb(Square s) { - return ThisAndNeighboringFilesBB[square_file(s)]; +inline Bitboard in_front_bb(Color c, Rank r) { + return InFrontBB[c][r]; } -/// relative_rank_bb() takes a color and a rank as input, and returns a bitboard -/// representing all squares on the given rank from the given color's point of -/// view. For instance, relative_rank_bb(WHITE, 7) gives all squares on the -/// 7th rank, while relative_rank_bb(BLACK, 7) gives all squares on the 2nd -/// rank. +/// between_bb() returns a bitboard representing all squares between two squares. +/// For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with the bits for +/// square d5 and e6 set. If s1 and s2 are not on the same rank, file or diagonal, +/// 0 is returned. -inline Bitboard relative_rank_bb(Color c, Rank r) { - return RelativeRankBB[c][r]; +inline Bitboard between_bb(Square s1, Square s2) { + return BetweenBB[s1][s2]; } -/// in_front_bb() takes a color and a rank or square as input, and returns a -/// bitboard representing all the squares on all ranks in front of the rank -/// (or square), from the given color's point of view. For instance, -/// in_front_bb(WHITE, RANK_5) will give all squares on ranks 6, 7 and 8, while -/// in_front_bb(BLACK, SQ_D3) will give all squares on ranks 1 and 2. - -inline Bitboard in_front_bb(Color c, Rank r) { - return InFrontBB[c][r]; -} +/// forward_bb() takes a color and a square as input, and returns a bitboard +/// representing all squares along the line in front of the square, from the +/// point of view of the given color. Definition of the table is: +/// ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s) -inline Bitboard in_front_bb(Color c, Square s) { - return InFrontBB[c][square_rank(s)]; +inline Bitboard forward_bb(Color c, Square s) { + return ForwardBB[c][s]; } -/// behind_bb() takes a color and a rank or square as input, and returns a -/// bitboard representing all the squares on all ranks behind of the rank -/// (or square), from the given color's point of view. - -inline Bitboard behind_bb(Color c, Rank r) { - return InFrontBB[opposite_color(c)][r]; -} +/// pawn_attack_span() takes a color and a square as input, and returns a bitboard +/// representing all squares that can be attacked by a pawn of the given color +/// when it moves along its file starting from the given square. Definition is: +/// PawnAttackSpan[c][s] = in_front_bb(c, s) & adjacent_files_bb(s); -inline Bitboard behind_bb(Color c, Square s) { - return InFrontBB[opposite_color(c)][square_rank(s)]; +inline Bitboard pawn_attack_span(Color c, Square s) { + return PawnAttackSpan[c][s]; } -/// ray_bb() gives a bitboard representing all squares along the ray in a -/// given direction from a given square. +/// passed_pawn_mask() takes a color and a square as input, and returns a +/// bitboard mask which can be used to test if a pawn of the given color on +/// the given square is a passed pawn. Definition of the table is: +/// PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s) -inline Bitboard ray_bb(Square s, SignedDirection d) { - return RayBB[s][d]; +inline Bitboard passed_pawn_mask(Color c, Square s) { + return PassedPawnMask[c][s]; } -/// Functions for computing sliding attack bitboards. rook_attacks_bb(), -/// bishop_attacks_bb() and queen_attacks_bb() all take a square and a -/// bitboard of occupied squares as input, and return a bitboard representing -/// all squares attacked by a rook, bishop or queen on the given square. +/// squares_of_color() returns a bitboard representing all squares with the same +/// color of the given square. -#if defined(IS_64BIT) - -inline Bitboard rook_attacks_bb(Square s, Bitboard blockers) { - Bitboard b = blockers & RMask[s]; - return RAttacks[RAttackIndex[s] + ((b * RMult[s]) >> RShift[s])]; +inline Bitboard squares_of_color(Square s) { + return DarkSquares & s ? DarkSquares : ~DarkSquares; } -inline Bitboard bishop_attacks_bb(Square s, Bitboard blockers) { - Bitboard b = blockers & BMask[s]; - return BAttacks[BAttackIndex[s] + ((b * BMult[s]) >> BShift[s])]; -} -#else // if !defined(IS_64BIT) +/// aligned() returns true if the squares s1, s2 and s3 are aligned +/// either on a straight or on a diagonal line. -inline Bitboard rook_attacks_bb(Square s, Bitboard blockers) { - Bitboard b = blockers & RMask[s]; - return RAttacks[RAttackIndex[s] + - (unsigned(int(b) * int(RMult[s]) ^ - int(b >> 32) * int(RMult[s] >> 32)) - >> RShift[s])]; +inline bool aligned(Square s1, Square s2, Square s3) { + return LineBB[s1][s2] & s3; } -inline Bitboard bishop_attacks_bb(Square s, Bitboard blockers) { - Bitboard b = blockers & BMask[s]; - return BAttacks[BAttackIndex[s] + - (unsigned(int(b) * int(BMult[s]) ^ - int(b >> 32) * int(BMult[s] >> 32)) - >> BShift[s])]; -} -#endif +/// Functions for computing sliding attack bitboards. Function attacks_bb() takes +/// a square and a bitboard of occupied squares as input, and returns a bitboard +/// representing all squares attacked by Pt (bishop or rook) on the given square. +template +FORCE_INLINE unsigned magic_index(Square s, Bitboard occ) { -inline Bitboard queen_attacks_bb(Square s, Bitboard blockers) { - return rook_attacks_bb(s, blockers) | bishop_attacks_bb(s, blockers); -} + Bitboard* const Masks = Pt == ROOK ? RMasks : BMasks; + Bitboard* const Magics = Pt == ROOK ? RMagics : BMagics; + unsigned* const Shifts = Pt == ROOK ? RShifts : BShifts; + if (HasPext) + return unsigned(_pext_u64(occ, Masks[s])); -/// squares_between returns a bitboard representing all squares between -/// two squares. For instance, squares_between(SQ_C4, SQ_F7) returns a -/// bitboard with the bits for square d5 and e6 set. If s1 and s2 are not -/// on the same line, file or diagonal, EmptyBoardBB is returned. + if (Is64Bit) + return unsigned(((occ & Masks[s]) * Magics[s]) >> Shifts[s]); -inline Bitboard squares_between(Square s1, Square s2) { - return BetweenBB[s1][s2]; + unsigned lo = unsigned(occ) & unsigned(Masks[s]); + unsigned hi = unsigned(occ >> 32) & unsigned(Masks[s] >> 32); + return (lo * unsigned(Magics[s]) ^ hi * unsigned(Magics[s] >> 32)) >> Shifts[s]; } +template +inline Bitboard attacks_bb(Square s, Bitboard occ) { + return (Pt == ROOK ? RAttacks : BAttacks)[s][magic_index(s, occ)]; +} -/// squares_in_front_of takes a color and a square as input, and returns a -/// bitboard representing all squares along the line in front of the square, -/// from the point of view of the given color. Definition of the table is: -/// SquaresInFrontOf[c][s] = in_front_bb(c, s) & file_bb(s) +inline Bitboard attacks_bb(Piece pc, Square s, Bitboard occ) { -inline Bitboard squares_in_front_of(Color c, Square s) { - return SquaresInFrontMask[c][s]; + switch (type_of(pc)) + { + case BISHOP: return attacks_bb(s, occ); + case ROOK : return attacks_bb(s, occ); + case QUEEN : return attacks_bb(s, occ) | attacks_bb(s, occ); + default : return StepAttacksBB[pc][s]; + } } +/// lsb()/msb() finds the least/most significant bit in a non-zero bitboard. +/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard. -/// squares_behind is similar to squares_in_front, but returns the squares -/// behind the square instead of in front of the square. - -inline Bitboard squares_behind(Color c, Square s) { - return SquaresInFrontMask[opposite_color(c)][s]; -} +#ifdef USE_BSFQ +# if defined(_MSC_VER) && !defined(__INTEL_COMPILER) -/// passed_pawn_mask takes a color and a square as input, and returns a -/// bitboard mask which can be used to test if a pawn of the given color on -/// the given square is a passed pawn. Definition of the table is: -/// PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(s) +FORCE_INLINE Square lsb(Bitboard b) { + unsigned long idx; + _BitScanForward64(&idx, b); + return (Square) idx; +} -inline Bitboard passed_pawn_mask(Color c, Square s) { - return PassedPawnMask[c][s]; +FORCE_INLINE Square msb(Bitboard b) { + unsigned long idx; + _BitScanReverse64(&idx, b); + return (Square) idx; } +# elif defined(__arm__) -/// attack_span_mask takes a color and a square as input, and returns a bitboard -/// representing all squares that can be attacked by a pawn of the given color -/// when it moves along its file starting from the given square. Definition is: -/// AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(s); +FORCE_INLINE int lsb32(uint32_t v) { + __asm__("rbit %0, %1" : "=r"(v) : "r"(v)); + return __builtin_clz(v); +} -inline Bitboard attack_span_mask(Color c, Square s) { - return AttackSpanMask[c][s]; +FORCE_INLINE Square msb(Bitboard b) { + return (Square) (63 - __builtin_clzll(b)); } +FORCE_INLINE Square lsb(Bitboard b) { + return (Square) (uint32_t(b) ? lsb32(uint32_t(b)) : 32 + lsb32(uint32_t(b >> 32))); +} -/// first_1() finds the least significant nonzero bit in a nonzero bitboard. -/// pop_1st_bit() finds and clears the least significant nonzero bit in a -/// nonzero bitboard. +# else -#if defined(USE_BSFQ) // Assembly code by Heinz van Saanen +FORCE_INLINE Square lsb(Bitboard b) { // Assembly code by Heinz van Saanen + Bitboard idx; + __asm__("bsfq %1, %0": "=r"(idx): "rm"(b) ); + return (Square) idx; +} -inline Square first_1(Bitboard b) { - Bitboard dummy; - __asm__("bsfq %1, %0": "=r"(dummy): "rm"(b) ); - return (Square)(dummy); +FORCE_INLINE Square msb(Bitboard b) { + Bitboard idx; + __asm__("bsrq %1, %0": "=r"(idx): "rm"(b) ); + return (Square) idx; } -inline Square pop_1st_bit(Bitboard* b) { - const Square s = first_1(*b); - *b &= ~(1ULL<