X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.h;h=704f4bb4e8a463d3d349bfee9fefcbbf9df63bc6;hp=aa29abf21adc7a98565fac2346dfbe38a13cde0f;hb=4c72c95359e28ea3e5a4357a7679de794ebd3e55;hpb=c8589903777b6e0289640b43fae966ded442af48 diff --git a/src/bitboard.h b/src/bitboard.h index aa29abf2..704f4bb4 100644 --- a/src/bitboard.h +++ b/src/bitboard.h @@ -2,7 +2,7 @@ Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad - Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad + Copyright (C) 2015-2020 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -65,16 +65,19 @@ constexpr Bitboard CenterFiles = FileCBB | FileDBB | FileEBB | FileFBB; constexpr Bitboard KingSide = FileEBB | FileFBB | FileGBB | FileHBB; constexpr Bitboard Center = (FileDBB | FileEBB) & (Rank4BB | Rank5BB); +constexpr Bitboard KingFlank[FILE_NB] = { + QueenSide ^ FileDBB, QueenSide, QueenSide, + CenterFiles, CenterFiles, + KingSide, KingSide, KingSide ^ FileEBB +}; + extern uint8_t PopCnt16[1 << 16]; extern uint8_t SquareDistance[SQUARE_NB][SQUARE_NB]; extern Bitboard SquareBB[SQUARE_NB]; -extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; extern Bitboard LineBB[SQUARE_NB][SQUARE_NB]; -extern Bitboard DistanceRingBB[SQUARE_NB][8]; extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB]; -extern Bitboard KingFlank[FILE_NB]; /// Magic holds all magic bitboards relevant data for a single square @@ -102,27 +105,32 @@ struct Magic { extern Magic RookMagics[SQUARE_NB]; extern Magic BishopMagics[SQUARE_NB]; +inline Bitboard square_bb(Square s) { + assert(is_ok(s)); + return SquareBB[s]; +} /// Overloads of bitwise operators between a Bitboard and a Square for testing /// whether a given bit is set in a bitboard, and for setting and clearing bits. -inline Bitboard square_bb(Square s) { - assert(s >= SQ_A1 && s <= SQ_H8); - return SquareBB[s]; -} - inline Bitboard operator&( Bitboard b, Square s) { return b & square_bb(s); } inline Bitboard operator|( Bitboard b, Square s) { return b | square_bb(s); } inline Bitboard operator^( Bitboard b, Square s) { return b ^ square_bb(s); } inline Bitboard& operator|=(Bitboard& b, Square s) { return b |= square_bb(s); } inline Bitboard& operator^=(Bitboard& b, Square s) { return b ^= square_bb(s); } +inline Bitboard operator&(Square s, Bitboard b) { return b & s; } +inline Bitboard operator|(Square s, Bitboard b) { return b | s; } +inline Bitboard operator^(Square s, Bitboard b) { return b ^ s; } + +inline Bitboard operator|(Square s, Square s2) { return square_bb(s) | s2; } + constexpr bool more_than_one(Bitboard b) { return b & (b - 1); } -inline bool opposite_colors(Square s1, Square s2) { - return bool(DarkSquares & s1) != bool(DarkSquares & s2); +constexpr bool opposite_colors(Square s1, Square s2) { + return (s1 + rank_of(s1) + s2 + rank_of(s2)) & 1; } @@ -146,11 +154,12 @@ inline Bitboard file_bb(Square s) { } -/// shift() moves a bitboard one step along direction D +/// shift() moves a bitboard one or two steps as specified by the direction D template constexpr Bitboard shift(Bitboard b) { return D == NORTH ? b << 8 : D == SOUTH ? b >> 8 + : D == NORTH+NORTH? b <<16 : D == SOUTH+SOUTH? b >>16 : D == EAST ? (b & ~FileHBB) << 1 : D == WEST ? (b & ~FileABB) >> 1 : D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == NORTH_WEST ? (b & ~FileABB) << 7 : D == SOUTH_EAST ? (b & ~FileHBB) >> 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9 @@ -167,6 +176,12 @@ constexpr Bitboard pawn_attacks_bb(Bitboard b) { : shift(b) | shift(b); } +inline Bitboard pawn_attacks_bb(Color c, Square s) { + + assert(is_ok(s)); + return PawnAttacks[c][s]; +} + /// pawn_double_attacks_bb() returns the squares doubly attacked by pawns of the /// given color from the squares in the given bitboard. @@ -181,18 +196,29 @@ constexpr Bitboard pawn_double_attacks_bb(Bitboard b) { /// adjacent_files_bb() returns a bitboard representing all the squares on the /// adjacent files of the given one. -inline Bitboard adjacent_files_bb(File f) { - return shift(file_bb(f)) | shift(file_bb(f)); +inline Bitboard adjacent_files_bb(Square s) { + return shift(file_bb(s)) | shift(file_bb(s)); } +/// line_bb(Square, Square) returns a Bitboard representing an entire line +/// (from board edge to board edge) that intersects the given squares. +/// If the given squares are not on a same file/rank/diagonal, return 0. +/// Ex. line_bb(SQ_C4, SQ_F7) returns a bitboard with the A2-G8 diagonal. + +inline Bitboard line_bb(Square s1, Square s2) { + + assert(is_ok(s1) && is_ok(s2)); + return LineBB[s1][s2]; +} -/// between_bb() returns a bitboard representing all the squares between the two -/// given ones. For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with -/// the bits for square d5 and e6 set. If s1 and s2 are not on the same rank, -/// file or diagonal, 0 is returned. +/// between_bb() returns a Bitboard representing squares that are linearly +/// between the given squares (excluding the given squares). +/// If the given squares are not on a same file/rank/diagonal, return 0. +/// Ex. between_bb(SQ_C4, SQ_F7) returns a bitboard with squares D5 and E6. inline Bitboard between_bb(Square s1, Square s2) { - return BetweenBB[s1][s2]; + Bitboard b = line_bb(s1, s2) & ((AllSquares << s1) ^ (AllSquares << s2)); + return b & (b - 1); //exclude lsb } @@ -201,8 +227,8 @@ inline Bitboard between_bb(Square s1, Square s2) { /// forward_ranks_bb(BLACK, SQ_D3) will return the 16 squares on ranks 1 and 2. inline Bitboard forward_ranks_bb(Color c, Square s) { - return c == WHITE ? ~Rank1BB << 8 * (rank_of(s) - RANK_1) - : ~Rank8BB >> 8 * (RANK_8 - rank_of(s)); + return c == WHITE ? ~Rank1BB << 8 * relative_rank(WHITE, s) + : ~Rank8BB >> 8 * relative_rank(BLACK, s); } @@ -219,7 +245,7 @@ inline Bitboard forward_file_bb(Color c, Square s) { /// starting from the given square. inline Bitboard pawn_attack_span(Color c, Square s) { - return forward_ranks_bb(c, s) & adjacent_files_bb(file_of(s)); + return forward_ranks_bb(c, s) & adjacent_files_bb(s); } @@ -227,7 +253,7 @@ inline Bitboard pawn_attack_span(Color c, Square s) { /// the given color and on the given square is a passed pawn. inline Bitboard passed_pawn_span(Color c, Square s) { - return forward_ranks_bb(c, s) & (adjacent_files_bb(file_of(s)) | file_bb(s)); + return forward_ranks_bb(c, s) & (adjacent_files_bb(s) | file_bb(s)); } @@ -235,37 +261,61 @@ inline Bitboard passed_pawn_span(Color c, Square s) { /// straight or on a diagonal line. inline bool aligned(Square s1, Square s2, Square s3) { - return LineBB[s1][s2] & s3; + return line_bb(s1, s2) & s3; } /// distance() functions return the distance between x and y, defined as the -/// number of steps for a king in x to reach y. Works with squares, ranks, files. +/// number of steps for a king in x to reach y. -template inline int distance(T x, T y) { return std::abs(x - y); } +template inline int distance(Square x, Square y); +template<> inline int distance(Square x, Square y) { return std::abs(file_of(x) - file_of(y)); } +template<> inline int distance(Square x, Square y) { return std::abs(rank_of(x) - rank_of(y)); } template<> inline int distance(Square x, Square y) { return SquareDistance[x][y]; } -template inline int distance(T2 x, T2 y); -template<> inline int distance(Square x, Square y) { return distance(file_of(x), file_of(y)); } -template<> inline int distance(Square x, Square y) { return distance(rank_of(x), rank_of(y)); } +inline int edge_distance(File f) { return std::min(f, File(FILE_H - f)); } +inline int edge_distance(Rank r) { return std::min(r, Rank(RANK_8 - r)); } + +/// Return the target square bitboard if we do not step off the board, empty otherwise + +inline Bitboard safe_destination(Square s, int step) +{ + Square to = Square(s + step); + return is_ok(to) && distance(s, to) <= 2 ? square_bb(to) : Bitboard(0); +} + +/// attacks_bb(Square) returns the pseudo attacks of the give piece type +/// assuming an empty board. + +template +inline Bitboard attacks_bb(Square s) { + + assert((Pt != PAWN) && (is_ok(s))); -template constexpr const T& clamp(const T& v, const T& lo, const T& hi) { - return v < lo ? lo : v > hi ? hi : v; + return PseudoAttacks[Pt][s]; } -/// attacks_bb() returns a bitboard representing all the squares attacked by a -/// piece of type Pt (bishop or rook) placed on 's'. +/// attacks_bb(Square, Bitboard) returns the attacks by the given piece +/// assuming the board is occupied according to the passed Bitboard. +/// Sliding piece attacks do not continue passed an occupied square. template inline Bitboard attacks_bb(Square s, Bitboard occupied) { - const Magic& m = Pt == ROOK ? RookMagics[s] : BishopMagics[s]; - return m.attacks[m.index(occupied)]; + assert((Pt != PAWN) && (is_ok(s))); + + switch (Pt) + { + case BISHOP: return BishopMagics[s].attacks[BishopMagics[s].index(occupied)]; + case ROOK : return RookMagics[s].attacks[ RookMagics[s].index(occupied)]; + case QUEEN : return attacks_bb(s, occupied) | attacks_bb(s, occupied); + default : return PseudoAttacks[Pt][s]; + } } inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) { - assert(pt != PAWN); + assert((pt != PAWN) && (is_ok(s))); switch (pt) { @@ -370,16 +420,18 @@ inline Square msb(Bitboard b) { /// pop_lsb() finds and clears the least significant bit in a non-zero bitboard inline Square pop_lsb(Bitboard* b) { + assert(*b); const Square s = lsb(*b); *b &= *b - 1; return s; } -/// frontmost_sq() and backmost_sq() return the square corresponding to the -/// most/least advanced bit relative to the given color. - -inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); } -inline Square backmost_sq(Color c, Bitboard b) { return c == WHITE ? lsb(b) : msb(b); } +/// frontmost_sq() returns the most advanced square for the given color, +/// requires a non-zero bitboard. +inline Square frontmost_sq(Color c, Bitboard b) { + assert(b); + return c == WHITE ? msb(b) : lsb(b); +} #endif // #ifndef BITBOARD_H_INCLUDED