X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.h;h=7c4a55f00f4a98b9d864b5c924d3a837951d476c;hp=033964b75b3d9c657e997d5e9b9b566284303172;hb=6fb0a1bc4050dd9b15e9c163c46c60f25c48137d;hpb=8cff4862a65bdbf156609fea14f47ea4bdf42df3 diff --git a/src/bitboard.h b/src/bitboard.h index 033964b7..7c4a55f0 100644 --- a/src/bitboard.h +++ b/src/bitboard.h @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2013 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -18,15 +18,17 @@ along with this program. If not, see . */ -#if !defined(BITBOARD_H_INCLUDED) +#ifndef BITBOARD_H_INCLUDED #define BITBOARD_H_INCLUDED +#include + #include "types.h" namespace Bitboards { void init(); -void print(Bitboard b); +const std::string pretty(Bitboard b); } @@ -55,8 +57,6 @@ const Bitboard Rank6BB = Rank1BB << (8 * 5); const Bitboard Rank7BB = Rank1BB << (8 * 6); const Bitboard Rank8BB = Rank1BB << (8 * 7); -CACHE_LINE_ALIGNMENT - extern Bitboard RMasks[SQUARE_NB]; extern Bitboard RMagics[SQUARE_NB]; extern Bitboard* RAttacks[SQUARE_NB]; @@ -74,6 +74,7 @@ extern Bitboard AdjacentFilesBB[FILE_NB]; extern Bitboard InFrontBB[COLOR_NB][RANK_NB]; extern Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB]; extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; +extern Bitboard LineBB[SQUARE_NB][SQUARE_NB]; extern Bitboard DistanceRingsBB[SQUARE_NB][8]; extern Bitboard ForwardBB[COLOR_NB][SQUARE_NB]; extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; @@ -82,7 +83,7 @@ extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; extern int SquareDistance[SQUARE_NB][SQUARE_NB]; -const Bitboard BlackSquares = 0xAA55AA55AA55AA55ULL; +const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL; /// Overloads of bitwise operators between a Bitboard and a Square for testing /// whether a given bit is set in a bitboard, and for setting and clearing bits. @@ -111,17 +112,12 @@ inline bool more_than_one(Bitboard b) { return b & (b - 1); } -inline int square_distance(Square s1, Square s2) { - return SquareDistance[s1][s2]; -} +template inline int distance(T x, T y) { return x < y ? y - x : x - y; } +template<> inline int distance(Square x, Square y) { return SquareDistance[x][y]; } -inline int file_distance(Square s1, Square s2) { - return abs(file_of(s1) - file_of(s2)); -} - -inline int rank_distance(Square s1, Square s2) { - return abs(rank_of(s1) - rank_of(s2)); -} +template inline int distance(T2 x, T2 y); +template<> inline int distance(Square x, Square y) { return distance(file_of(x), file_of(y)); } +template<> inline int distance(Square x, Square y) { return distance(rank_of(x), rank_of(y)); } /// shift_bb() moves bitboard one step along direction Delta. Mainly for pawns. @@ -156,7 +152,7 @@ inline Bitboard file_bb(Square s) { } -/// adjacent_files_bb takes a file as input and returns a bitboard representing +/// adjacent_files_bb() takes a file as input and returns a bitboard representing /// all squares on the adjacent files. inline Bitboard adjacent_files_bb(File f) { @@ -174,9 +170,9 @@ inline Bitboard in_front_bb(Color c, Rank r) { } -/// between_bb returns a bitboard representing all squares between two squares. +/// between_bb() returns a bitboard representing all squares between two squares. /// For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with the bits for -/// square d5 and e6 set. If s1 and s2 are not on the same line, file or diagonal, +/// square d5 and e6 set. If s1 and s2 are not on the same rank, file or diagonal, /// 0 is returned. inline Bitboard between_bb(Square s1, Square s2) { @@ -184,7 +180,7 @@ inline Bitboard between_bb(Square s1, Square s2) { } -/// forward_bb takes a color and a square as input, and returns a bitboard +/// forward_bb() takes a color and a square as input, and returns a bitboard /// representing all squares along the line in front of the square, from the /// point of view of the given color. Definition of the table is: /// ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s) @@ -194,40 +190,39 @@ inline Bitboard forward_bb(Color c, Square s) { } -/// passed_pawn_mask takes a color and a square as input, and returns a +/// pawn_attack_span() takes a color and a square as input, and returns a bitboard +/// representing all squares that can be attacked by a pawn of the given color +/// when it moves along its file starting from the given square. Definition is: +/// PawnAttackSpan[c][s] = in_front_bb(c, s) & adjacent_files_bb(s); + +inline Bitboard pawn_attack_span(Color c, Square s) { + return PawnAttackSpan[c][s]; +} + + +/// passed_pawn_mask() takes a color and a square as input, and returns a /// bitboard mask which can be used to test if a pawn of the given color on /// the given square is a passed pawn. Definition of the table is: -/// PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_adjacent_files_bb(s) +/// PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s) inline Bitboard passed_pawn_mask(Color c, Square s) { return PassedPawnMask[c][s]; } -/// attack_span_mask takes a color and a square as input, and returns a bitboard -/// representing all squares that can be attacked by a pawn of the given color -/// when it moves along its file starting from the given square. Definition is: -/// AttackSpanMask[c][s] = in_front_bb(c, s) & adjacent_files_bb(s); +/// squares_of_color() returns a bitboard representing all squares with the same +/// color of the given square. -inline Bitboard pawn_attack_span(Color c, Square s) { - return PawnAttackSpan[c][s]; +inline Bitboard squares_of_color(Square s) { + return DarkSquares & s ? DarkSquares : ~DarkSquares; } -/// squares_aligned returns true if the squares s1, s2 and s3 are aligned +/// aligned() returns true if the squares s1, s2 and s3 are aligned /// either on a straight or on a diagonal line. -inline bool squares_aligned(Square s1, Square s2, Square s3) { - return (BetweenBB[s1][s2] | BetweenBB[s1][s3] | BetweenBB[s2][s3]) - & ( SquareBB[s1] | SquareBB[s2] | SquareBB[s3]); -} - - -/// same_color_squares() returns a bitboard representing all squares with -/// the same color of the given square. - -inline Bitboard same_color_squares(Square s) { - return BlackSquares & s ? BlackSquares : ~BlackSquares; +inline bool aligned(Square s1, Square s2, Square s3) { + return LineBB[s1][s2] & s3; } @@ -241,6 +236,9 @@ FORCE_INLINE unsigned magic_index(Square s, Bitboard occ) { Bitboard* const Magics = Pt == ROOK ? RMagics : BMagics; unsigned* const Shifts = Pt == ROOK ? RShifts : BShifts; + if (HasPext) + return unsigned(_pext_u64(occ, Masks[s])); + if (Is64Bit) return unsigned(((occ & Masks[s]) * Magics[s]) >> Shifts[s]); @@ -254,24 +252,34 @@ inline Bitboard attacks_bb(Square s, Bitboard occ) { return (Pt == ROOK ? RAttacks : BAttacks)[s][magic_index(s, occ)]; } +inline Bitboard attacks_bb(Piece pc, Square s, Bitboard occ) { + + switch (type_of(pc)) + { + case BISHOP: return attacks_bb(s, occ); + case ROOK : return attacks_bb(s, occ); + case QUEEN : return attacks_bb(s, occ) | attacks_bb(s, occ); + default : return StepAttacksBB[pc][s]; + } +} -/// lsb()/msb() finds the least/most significant bit in a nonzero bitboard. -/// pop_lsb() finds and clears the least significant bit in a nonzero bitboard. +/// lsb()/msb() finds the least/most significant bit in a non-zero bitboard. +/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard. -#if defined(USE_BSFQ) +#ifdef USE_BSFQ # if defined(_MSC_VER) && !defined(__INTEL_COMPILER) FORCE_INLINE Square lsb(Bitboard b) { - unsigned long index; - _BitScanForward64(&index, b); - return (Square) index; + unsigned long idx; + _BitScanForward64(&idx, b); + return (Square) idx; } FORCE_INLINE Square msb(Bitboard b) { - unsigned long index; - _BitScanReverse64(&index, b); - return (Square) index; + unsigned long idx; + _BitScanReverse64(&idx, b); + return (Square) idx; } # elif defined(__arm__) @@ -292,15 +300,15 @@ FORCE_INLINE Square lsb(Bitboard b) { # else FORCE_INLINE Square lsb(Bitboard b) { // Assembly code by Heinz van Saanen - Bitboard index; - __asm__("bsfq %1, %0": "=r"(index): "rm"(b) ); - return (Square) index; + Bitboard idx; + __asm__("bsfq %1, %0": "=r"(idx): "rm"(b) ); + return (Square) idx; } FORCE_INLINE Square msb(Bitboard b) { - Bitboard index; - __asm__("bsrq %1, %0": "=r"(index): "rm"(b) ); - return (Square) index; + Bitboard idx; + __asm__("bsrq %1, %0": "=r"(idx): "rm"(b) ); + return (Square) idx; } # endif @@ -311,7 +319,7 @@ FORCE_INLINE Square pop_lsb(Bitboard* b) { return s; } -#else // if !defined(USE_BSFQ) +#else // if defined(USE_BSFQ) extern Square msb(Bitboard b); extern Square lsb(Bitboard b); @@ -319,4 +327,10 @@ extern Square pop_lsb(Bitboard* b); #endif -#endif // !defined(BITBOARD_H_INCLUDED) +/// frontmost_sq() and backmost_sq() find the square corresponding to the +/// most/least advanced bit relative to the given color. + +inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); } +inline Square backmost_sq(Color c, Bitboard b) { return c == WHITE ? lsb(b) : msb(b); } + +#endif // #ifndef BITBOARD_H_INCLUDED