X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.h;h=7c4a55f00f4a98b9d864b5c924d3a837951d476c;hp=e3331bd440784c1e2bdec3154012c6f03d2a2c9f;hb=c014444f09ace05e908909d9c5c60127e998b538;hpb=66a1a7748748db63cb4ff6d7dfb5ba1dabfc9d0b diff --git a/src/bitboard.h b/src/bitboard.h index e3331bd4..7c4a55f0 100644 --- a/src/bitboard.h +++ b/src/bitboard.h @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -18,26 +18,44 @@ along with this program. If not, see . */ -#if !defined(BITBOARD_H_INCLUDED) +#ifndef BITBOARD_H_INCLUDED #define BITBOARD_H_INCLUDED +#include + #include "types.h" namespace Bitboards { void init(); -void print(Bitboard b); +const std::string pretty(Bitboard b); } namespace Bitbases { void init_kpk(); -bool probe_kpk(Square wksq, Square wpsq, Square bksq, Color stm); +bool probe_kpk(Square wksq, Square wpsq, Square bksq, Color us); } -CACHE_LINE_ALIGNMENT +const Bitboard FileABB = 0x0101010101010101ULL; +const Bitboard FileBBB = FileABB << 1; +const Bitboard FileCBB = FileABB << 2; +const Bitboard FileDBB = FileABB << 3; +const Bitboard FileEBB = FileABB << 4; +const Bitboard FileFBB = FileABB << 5; +const Bitboard FileGBB = FileABB << 6; +const Bitboard FileHBB = FileABB << 7; + +const Bitboard Rank1BB = 0xFF; +const Bitboard Rank2BB = Rank1BB << (8 * 1); +const Bitboard Rank3BB = Rank1BB << (8 * 2); +const Bitboard Rank4BB = Rank1BB << (8 * 3); +const Bitboard Rank5BB = Rank1BB << (8 * 4); +const Bitboard Rank6BB = Rank1BB << (8 * 5); +const Bitboard Rank7BB = Rank1BB << (8 * 6); +const Bitboard Rank8BB = Rank1BB << (8 * 7); extern Bitboard RMasks[SQUARE_NB]; extern Bitboard RMagics[SQUARE_NB]; @@ -53,16 +71,19 @@ extern Bitboard SquareBB[SQUARE_NB]; extern Bitboard FileBB[FILE_NB]; extern Bitboard RankBB[RANK_NB]; extern Bitboard AdjacentFilesBB[FILE_NB]; -extern Bitboard ThisAndAdjacentFilesBB[FILE_NB]; extern Bitboard InFrontBB[COLOR_NB][RANK_NB]; extern Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB]; extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; +extern Bitboard LineBB[SQUARE_NB][SQUARE_NB]; extern Bitboard DistanceRingsBB[SQUARE_NB][8]; extern Bitboard ForwardBB[COLOR_NB][SQUARE_NB]; extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; -extern Bitboard AttackSpanMask[COLOR_NB][SQUARE_NB]; +extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB]; extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; +extern int SquareDistance[SQUARE_NB][SQUARE_NB]; + +const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL; /// Overloads of bitwise operators between a Bitboard and a Square for testing /// whether a given bit is set in a bitboard, and for setting and clearing bits. @@ -87,13 +108,29 @@ inline Bitboard operator^(Bitboard b, Square s) { return b ^ SquareBB[s]; } - -/// more_than_one() returns true if in 'b' there is more than one bit set - inline bool more_than_one(Bitboard b) { return b & (b - 1); } +template inline int distance(T x, T y) { return x < y ? y - x : x - y; } +template<> inline int distance(Square x, Square y) { return SquareDistance[x][y]; } + +template inline int distance(T2 x, T2 y); +template<> inline int distance(Square x, Square y) { return distance(file_of(x), file_of(y)); } +template<> inline int distance(Square x, Square y) { return distance(rank_of(x), rank_of(y)); } + + +/// shift_bb() moves bitboard one step along direction Delta. Mainly for pawns. + +template +inline Bitboard shift_bb(Bitboard b) { + + return Delta == DELTA_N ? b << 8 : Delta == DELTA_S ? b >> 8 + : Delta == DELTA_NE ? (b & ~FileHBB) << 9 : Delta == DELTA_SE ? (b & ~FileHBB) >> 7 + : Delta == DELTA_NW ? (b & ~FileABB) << 7 : Delta == DELTA_SW ? (b & ~FileABB) >> 9 + : 0; +} + /// rank_bb() and file_bb() take a file or a square as input and return /// a bitboard representing all squares on the given file or rank. @@ -115,7 +152,7 @@ inline Bitboard file_bb(Square s) { } -/// adjacent_files_bb takes a file as input and returns a bitboard representing +/// adjacent_files_bb() takes a file as input and returns a bitboard representing /// all squares on the adjacent files. inline Bitboard adjacent_files_bb(File f) { @@ -123,32 +160,19 @@ inline Bitboard adjacent_files_bb(File f) { } -/// this_and_adjacent_files_bb takes a file as input and returns a bitboard -/// representing all squares on the given and adjacent files. - -inline Bitboard this_and_adjacent_files_bb(File f) { - return ThisAndAdjacentFilesBB[f]; -} - - -/// in_front_bb() takes a color and a rank or square as input, and returns a -/// bitboard representing all the squares on all ranks in front of the rank -/// (or square), from the given color's point of view. For instance, -/// in_front_bb(WHITE, RANK_5) will give all squares on ranks 6, 7 and 8, while -/// in_front_bb(BLACK, SQ_D3) will give all squares on ranks 1 and 2. +/// in_front_bb() takes a color and a rank as input, and returns a bitboard +/// representing all the squares on all ranks in front of the rank, from the +/// given color's point of view. For instance, in_front_bb(BLACK, RANK_3) will +/// give all squares on ranks 1 and 2. inline Bitboard in_front_bb(Color c, Rank r) { return InFrontBB[c][r]; } -inline Bitboard in_front_bb(Color c, Square s) { - return InFrontBB[c][rank_of(s)]; -} - -/// between_bb returns a bitboard representing all squares between two squares. +/// between_bb() returns a bitboard representing all squares between two squares. /// For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with the bits for -/// square d5 and e6 set. If s1 and s2 are not on the same line, file or diagonal, +/// square d5 and e6 set. If s1 and s2 are not on the same rank, file or diagonal, /// 0 is returned. inline Bitboard between_bb(Square s1, Square s2) { @@ -156,7 +180,7 @@ inline Bitboard between_bb(Square s1, Square s2) { } -/// forward_bb takes a color and a square as input, and returns a bitboard +/// forward_bb() takes a color and a square as input, and returns a bitboard /// representing all squares along the line in front of the square, from the /// point of view of the given color. Definition of the table is: /// ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s) @@ -166,41 +190,39 @@ inline Bitboard forward_bb(Color c, Square s) { } -/// passed_pawn_mask takes a color and a square as input, and returns a +/// pawn_attack_span() takes a color and a square as input, and returns a bitboard +/// representing all squares that can be attacked by a pawn of the given color +/// when it moves along its file starting from the given square. Definition is: +/// PawnAttackSpan[c][s] = in_front_bb(c, s) & adjacent_files_bb(s); + +inline Bitboard pawn_attack_span(Color c, Square s) { + return PawnAttackSpan[c][s]; +} + + +/// passed_pawn_mask() takes a color and a square as input, and returns a /// bitboard mask which can be used to test if a pawn of the given color on /// the given square is a passed pawn. Definition of the table is: -/// PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_adjacent_files_bb(s) +/// PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s) inline Bitboard passed_pawn_mask(Color c, Square s) { return PassedPawnMask[c][s]; } -/// attack_span_mask takes a color and a square as input, and returns a bitboard -/// representing all squares that can be attacked by a pawn of the given color -/// when it moves along its file starting from the given square. Definition is: -/// AttackSpanMask[c][s] = in_front_bb(c, s) & adjacent_files_bb(s); +/// squares_of_color() returns a bitboard representing all squares with the same +/// color of the given square. -inline Bitboard attack_span_mask(Color c, Square s) { - return AttackSpanMask[c][s]; +inline Bitboard squares_of_color(Square s) { + return DarkSquares & s ? DarkSquares : ~DarkSquares; } -/// squares_aligned returns true if the squares s1, s2 and s3 are aligned +/// aligned() returns true if the squares s1, s2 and s3 are aligned /// either on a straight or on a diagonal line. -inline bool squares_aligned(Square s1, Square s2, Square s3) { - return (BetweenBB[s1][s2] | BetweenBB[s1][s3] | BetweenBB[s2][s3]) - & ( SquareBB[s1] | SquareBB[s2] | SquareBB[s3]); -} - - -/// same_color_squares() returns a bitboard representing all squares with -/// the same color of the given square. - -inline Bitboard same_color_squares(Square s) { - return Bitboard(0xAA55AA55AA55AA55ULL) & s ? 0xAA55AA55AA55AA55ULL - : ~0xAA55AA55AA55AA55ULL; +inline bool aligned(Square s1, Square s2, Square s3) { + return LineBB[s1][s2] & s3; } @@ -214,6 +236,9 @@ FORCE_INLINE unsigned magic_index(Square s, Bitboard occ) { Bitboard* const Magics = Pt == ROOK ? RMagics : BMagics; unsigned* const Shifts = Pt == ROOK ? RShifts : BShifts; + if (HasPext) + return unsigned(_pext_u64(occ, Masks[s])); + if (Is64Bit) return unsigned(((occ & Masks[s]) * Magics[s]) >> Shifts[s]); @@ -227,24 +252,34 @@ inline Bitboard attacks_bb(Square s, Bitboard occ) { return (Pt == ROOK ? RAttacks : BAttacks)[s][magic_index(s, occ)]; } +inline Bitboard attacks_bb(Piece pc, Square s, Bitboard occ) { -/// lsb()/msb() finds the least/most significant bit in a nonzero bitboard. -/// pop_lsb() finds and clears the least significant bit in a nonzero bitboard. + switch (type_of(pc)) + { + case BISHOP: return attacks_bb(s, occ); + case ROOK : return attacks_bb(s, occ); + case QUEEN : return attacks_bb(s, occ) | attacks_bb(s, occ); + default : return StepAttacksBB[pc][s]; + } +} + +/// lsb()/msb() finds the least/most significant bit in a non-zero bitboard. +/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard. -#if defined(USE_BSFQ) +#ifdef USE_BSFQ # if defined(_MSC_VER) && !defined(__INTEL_COMPILER) FORCE_INLINE Square lsb(Bitboard b) { - unsigned long index; - _BitScanForward64(&index, b); - return (Square) index; + unsigned long idx; + _BitScanForward64(&idx, b); + return (Square) idx; } FORCE_INLINE Square msb(Bitboard b) { - unsigned long index; - _BitScanReverse64(&index, b); - return (Square) index; + unsigned long idx; + _BitScanReverse64(&idx, b); + return (Square) idx; } # elif defined(__arm__) @@ -265,15 +300,15 @@ FORCE_INLINE Square lsb(Bitboard b) { # else FORCE_INLINE Square lsb(Bitboard b) { // Assembly code by Heinz van Saanen - Bitboard index; - __asm__("bsfq %1, %0": "=r"(index): "rm"(b) ); - return (Square) index; + Bitboard idx; + __asm__("bsfq %1, %0": "=r"(idx): "rm"(b) ); + return (Square) idx; } FORCE_INLINE Square msb(Bitboard b) { - Bitboard index; - __asm__("bsrq %1, %0": "=r"(index): "rm"(b) ); - return (Square) index; + Bitboard idx; + __asm__("bsrq %1, %0": "=r"(idx): "rm"(b) ); + return (Square) idx; } # endif @@ -284,7 +319,7 @@ FORCE_INLINE Square pop_lsb(Bitboard* b) { return s; } -#else // if !defined(USE_BSFQ) +#else // if defined(USE_BSFQ) extern Square msb(Bitboard b); extern Square lsb(Bitboard b); @@ -292,4 +327,10 @@ extern Square pop_lsb(Bitboard* b); #endif -#endif // !defined(BITBOARD_H_INCLUDED) +/// frontmost_sq() and backmost_sq() find the square corresponding to the +/// most/least advanced bit relative to the given color. + +inline Square frontmost_sq(Color c, Bitboard b) { return c == WHITE ? msb(b) : lsb(b); } +inline Square backmost_sq(Color c, Bitboard b) { return c == WHITE ? lsb(b) : msb(b); } + +#endif // #ifndef BITBOARD_H_INCLUDED