X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.h;h=847132c499fdc41df9cddf97e44f01c90dd4bb7f;hp=8c6a7007e7263b069ebea469ac687c0e327d7fc6;hb=c97104e8540b72ee2c6c9c13d3773d2c0f9ec32f;hpb=5dc23121215039938a9ef4e59ae934312774571c diff --git a/src/bitboard.h b/src/bitboard.h index 8c6a7007..847132c4 100644 --- a/src/bitboard.h +++ b/src/bitboard.h @@ -7,12 +7,13 @@ it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. - + + Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. - + You should have received a copy of the GNU General Public License along with this program. If not, see . */ @@ -30,6 +31,10 @@ // platform macros defined below #define AUTO_CONFIGURATION +// Quiet a warning on Intel compiler +#if !defined(__SIZEOF_INT__ ) +#define __SIZEOF_INT__ 0 +#endif // Check for 64 bits for different compilers: Intel, MSVC and gcc #if defined(__x86_64) || defined(_WIN64) || (__SIZEOF_INT__ > 4) @@ -39,7 +44,7 @@ #if !defined(AUTO_CONFIGURATION) || defined(IS_64BIT) //#define USE_COMPACT_ROOK_ATTACKS -//#define USE_32BIT_ATTACKS +//#define USE_32BIT_ATTACKS #define USE_FOLDED_BITSCAN #define BITCOUNT_SWAR_64 @@ -48,7 +53,7 @@ #else -#define USE_32BIT_ATTACKS +#define USE_32BIT_ATTACKS #define USE_FOLDED_BITSCAN #define BITCOUNT_SWAR_32 @@ -93,7 +98,7 @@ const Bitboard FileHBB = 0x8080808080808080ULL; extern const Bitboard FileBB[8]; extern const Bitboard NeighboringFilesBB[8]; -extern const Bitboard ThisAndNeighboringFilesBB[8]; +extern const Bitboard ThisAndNeighboringFilesBB[8]; const Bitboard Rank1BB = 0xFFULL; const Bitboard Rank2BB = 0xFF00ULL; @@ -108,8 +113,8 @@ extern const Bitboard RankBB[8]; extern const Bitboard RelativeRankBB[2][8]; extern const Bitboard InFrontBB[2][8]; -extern Bitboard SetMaskBB[64]; -extern Bitboard ClearMaskBB[64]; +extern Bitboard SetMaskBB[65]; +extern Bitboard ClearMaskBB[65]; extern Bitboard StepAttackBB[16][64]; extern Bitboard RayBB[64][8]; @@ -128,7 +133,7 @@ extern int RAttackIndex[64]; extern Bitboard RAttacks[0x19000]; #endif // defined(USE_COMPACT_ROOK_ATTACKS) -extern const uint64_t BMult[64]; +extern const uint64_t BMult[64]; extern const int BShift[64]; extern Bitboard BMask[64]; extern int BAttackIndex[64]; @@ -143,29 +148,19 @@ extern Bitboard QueenPseudoAttacks[64]; //// Inline functions //// -/// Functions for testing whether a given bit is set in a bitboard, and for +/// Functions for testing whether a given bit is set in a bitboard, and for /// setting and clearing bits. -inline Bitboard set_mask_bb(Square s) { - // return 1ULL << s; - return SetMaskBB[s]; -} - -inline Bitboard clear_mask_bb(Square s) { - // return ~set_mask_bb(s); - return ClearMaskBB[s]; -} - inline Bitboard bit_is_set(Bitboard b, Square s) { - return b & set_mask_bb(s); + return b & SetMaskBB[s]; } inline void set_bit(Bitboard *b, Square s) { - *b |= set_mask_bb(s); + *b |= SetMaskBB[s]; } inline void clear_bit(Bitboard *b, Square s) { - *b &= clear_mask_bb(s); + *b &= ClearMaskBB[s]; } @@ -200,7 +195,7 @@ inline Bitboard neighboring_files_bb(File f) { inline Bitboard neighboring_files_bb(Square s) { return neighboring_files_bb(square_file(s)); } - + /// this_and_neighboring_files_bb takes a file or a square as input, and /// returns a bitboard representing all squares on the given and neighboring @@ -241,6 +236,19 @@ inline Bitboard in_front_bb(Color c, Square s) { } +/// behind_bb() takes a color and a rank or square as input, and returns a +/// bitboard representing all the squares on all ranks behind of the rank +/// (or square), from the given color's point of view. + +inline Bitboard behind_bb(Color c, Rank r) { + return InFrontBB[opposite_color(c)][r]; +} + +inline Bitboard behind_bb(Color c, Square s) { + return in_front_bb(opposite_color(c), square_rank(s)); +} + + /// ray_bb() gives a bitboard representing all squares along the ray in a /// given direction from a given square. @@ -275,9 +283,9 @@ inline Bitboard rook_attacks_bb(Square s, Bitboard blockers) { inline Bitboard rook_attacks_bb(Square s, Bitboard blockers) { Bitboard b = blockers & RMask[s]; - return RAttacks[RAttackIndex[s] + + return RAttacks[RAttackIndex[s] + (unsigned(int(b) * int(RMult[s]) ^ - int(b >> 32) * int(RMult[s] >> 32)) + int(b >> 32) * int(RMult[s] >> 32)) >> RShift[s])]; } @@ -294,9 +302,9 @@ inline Bitboard rook_attacks_bb(Square s, Bitboard blockers) { inline Bitboard bishop_attacks_bb(Square s, Bitboard blockers) { Bitboard b = blockers & BMask[s]; - return BAttacks[BAttackIndex[s] + + return BAttacks[BAttackIndex[s] + (unsigned(int(b) * int(BMult[s]) ^ - int(b >> 32) * int(BMult[s] >> 32)) + int(b >> 32) * int(BMult[s] >> 32)) >> BShift[s])]; } @@ -324,9 +332,9 @@ inline Bitboard squares_between(Square s1, Square s2) { } -/// squares_in_front_of takes a color and a square as input, and returns a +/// squares_in_front_of takes a color and a square as input, and returns a /// bitboard representing all squares along the line in front of the square, -/// from the point of view of the given color. For instance, +/// from the point of view of the given color. For instance, /// squares_in_front_of(BLACK, SQ_E4) returns a bitboard with the squares /// e3, e2 and e1 set. @@ -343,8 +351,8 @@ inline Bitboard squares_behind(Color c, Square s) { } -/// passed_pawn_mask takes a color and a square as input, and returns a -/// bitboard mask which can be used to test if a pawn of the given color on +/// passed_pawn_mask takes a color and a square as input, and returns a +/// bitboard mask which can be used to test if a pawn of the given color on /// the given square is a passed pawn. inline Bitboard passed_pawn_mask(Color c, Square s) { @@ -361,7 +369,7 @@ inline Bitboard outpost_mask(Color c, Square s) { } -/// isolated_pawn_mask takes a square as input, and returns a bitboard mask +/// isolated_pawn_mask takes a square as input, and returns a bitboard mask /// which can be used to test whether a pawn on the given square is isolated. inline Bitboard isolated_pawn_mask(Square s) {