X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.h;h=859fc958c88f60b8c88d4375fe1f53503ac3be7b;hp=1aefd8add5a623729652f70fc21a45076aacb5ee;hb=4006f2c9132db034a27a94be33070d6aaab75b24;hpb=c32904f0a049491585a043f95716f5b2c2678825 diff --git a/src/bitboard.h b/src/bitboard.h index 1aefd8ad..afeb40ec 100644 --- a/src/bitboard.h +++ b/src/bitboard.h @@ -1,14 +1,14 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008 Marco Costalba + Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2015-2020 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. - Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the @@ -18,432 +18,427 @@ along with this program. If not, see . */ - -#if !defined(BITBOARD_H_INCLUDED) +#ifndef BITBOARD_H_INCLUDED #define BITBOARD_H_INCLUDED +#include -//// -//// Defines -//// - -// Comment following define if you prefer manually adjust -// platform macros defined below -#define AUTO_CONFIGURATION +#include "types.h" -// Quiet a warning on Intel compiler -#if !defined(__SIZEOF_INT__ ) -#define __SIZEOF_INT__ 0 -#endif +namespace Bitbases { -// Check for 64 bits for different compilers: Intel, MSVC and gcc -#if defined(__x86_64) || defined(_WIN64) || (__SIZEOF_INT__ > 4) -#define IS_64BIT -#endif +void init(); +bool probe(Square wksq, Square wpsq, Square bksq, Color us); -#if !defined(AUTO_CONFIGURATION) || defined(IS_64BIT) +} -//#define USE_COMPACT_ROOK_ATTACKS -//#define USE_32BIT_ATTACKS -#define USE_FOLDED_BITSCAN +namespace Bitboards { -#define BITCOUNT_SWAR_64 -//#define BITCOUNT_SWAR_32 -//#define BITCOUNT_LOOP +void init(); +const std::string pretty(Bitboard b); -#else +} -#define USE_32BIT_ATTACKS -#define USE_FOLDED_BITSCAN -#define BITCOUNT_SWAR_32 +constexpr Bitboard AllSquares = ~Bitboard(0); +constexpr Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL; -#endif +constexpr Bitboard FileABB = 0x0101010101010101ULL; +constexpr Bitboard FileBBB = FileABB << 1; +constexpr Bitboard FileCBB = FileABB << 2; +constexpr Bitboard FileDBB = FileABB << 3; +constexpr Bitboard FileEBB = FileABB << 4; +constexpr Bitboard FileFBB = FileABB << 5; +constexpr Bitboard FileGBB = FileABB << 6; +constexpr Bitboard FileHBB = FileABB << 7; -//// -//// Includes -//// +constexpr Bitboard Rank1BB = 0xFF; +constexpr Bitboard Rank2BB = Rank1BB << (8 * 1); +constexpr Bitboard Rank3BB = Rank1BB << (8 * 2); +constexpr Bitboard Rank4BB = Rank1BB << (8 * 3); +constexpr Bitboard Rank5BB = Rank1BB << (8 * 4); +constexpr Bitboard Rank6BB = Rank1BB << (8 * 5); +constexpr Bitboard Rank7BB = Rank1BB << (8 * 6); +constexpr Bitboard Rank8BB = Rank1BB << (8 * 7); -#include "direction.h" -#include "piece.h" -#include "square.h" -#include "types.h" +constexpr Bitboard QueenSide = FileABB | FileBBB | FileCBB | FileDBB; +constexpr Bitboard CenterFiles = FileCBB | FileDBB | FileEBB | FileFBB; +constexpr Bitboard KingSide = FileEBB | FileFBB | FileGBB | FileHBB; +constexpr Bitboard Center = (FileDBB | FileEBB) & (Rank4BB | Rank5BB); +constexpr Bitboard KingFlank[FILE_NB] = { + QueenSide ^ FileDBB, QueenSide, QueenSide, + CenterFiles, CenterFiles, + KingSide, KingSide, KingSide ^ FileEBB +}; -//// -//// Types -//// +extern uint8_t PopCnt16[1 << 16]; +extern uint8_t SquareDistance[SQUARE_NB][SQUARE_NB]; -typedef uint64_t Bitboard; +extern Bitboard SquareBB[SQUARE_NB]; +extern Bitboard LineBB[SQUARE_NB][SQUARE_NB]; +extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; +extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB]; -//// -//// Constants and variables -//// +/// Magic holds all magic bitboards relevant data for a single square +struct Magic { + Bitboard mask; + Bitboard magic; + Bitboard* attacks; + unsigned shift; -const Bitboard EmptyBoardBB = 0ULL; + // Compute the attack's index using the 'magic bitboards' approach + unsigned index(Bitboard occupied) const { -const Bitboard WhiteSquaresBB = 0x55AA55AA55AA55AAULL; -const Bitboard BlackSquaresBB = 0xAA55AA55AA55AA55ULL; + if (HasPext) + return unsigned(pext(occupied, mask)); -extern const Bitboard SquaresByColorBB[2]; + if (Is64Bit) + return unsigned(((occupied & mask) * magic) >> shift); -const Bitboard FileABB = 0x0101010101010101ULL; -const Bitboard FileBBB = 0x0202020202020202ULL; -const Bitboard FileCBB = 0x0404040404040404ULL; -const Bitboard FileDBB = 0x0808080808080808ULL; -const Bitboard FileEBB = 0x1010101010101010ULL; -const Bitboard FileFBB = 0x2020202020202020ULL; -const Bitboard FileGBB = 0x4040404040404040ULL; -const Bitboard FileHBB = 0x8080808080808080ULL; + unsigned lo = unsigned(occupied) & unsigned(mask); + unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32); + return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift; + } +}; -extern const Bitboard FileBB[8]; -extern const Bitboard NeighboringFilesBB[8]; -extern const Bitboard ThisAndNeighboringFilesBB[8]; +extern Magic RookMagics[SQUARE_NB]; +extern Magic BishopMagics[SQUARE_NB]; -const Bitboard Rank1BB = 0xFFULL; -const Bitboard Rank2BB = 0xFF00ULL; -const Bitboard Rank3BB = 0xFF0000ULL; -const Bitboard Rank4BB = 0xFF000000ULL; -const Bitboard Rank5BB = 0xFF00000000ULL; -const Bitboard Rank6BB = 0xFF0000000000ULL; -const Bitboard Rank7BB = 0xFF000000000000ULL; -const Bitboard Rank8BB = 0xFF00000000000000ULL; +inline Bitboard square_bb(Square s) { + assert(is_ok(s)); + return SquareBB[s]; +} -extern const Bitboard RankBB[8]; -extern const Bitboard RelativeRankBB[2][8]; -extern const Bitboard InFrontBB[2][8]; -extern Bitboard SetMaskBB[65]; -extern Bitboard ClearMaskBB[65]; +/// Overloads of bitwise operators between a Bitboard and a Square for testing +/// whether a given bit is set in a bitboard, and for setting and clearing bits. -extern Bitboard StepAttackBB[16][64]; -extern Bitboard RayBB[64][8]; -extern Bitboard BetweenBB[64][64]; +inline Bitboard operator&( Bitboard b, Square s) { return b & square_bb(s); } +inline Bitboard operator|( Bitboard b, Square s) { return b | square_bb(s); } +inline Bitboard operator^( Bitboard b, Square s) { return b ^ square_bb(s); } +inline Bitboard& operator|=(Bitboard& b, Square s) { return b |= square_bb(s); } +inline Bitboard& operator^=(Bitboard& b, Square s) { return b ^= square_bb(s); } -extern Bitboard PassedPawnMask[2][64]; -extern Bitboard OutpostMask[2][64]; +inline Bitboard operator&(Square s, Bitboard b) { return b & s; } +inline Bitboard operator|(Square s, Bitboard b) { return b | s; } +inline Bitboard operator^(Square s, Bitboard b) { return b ^ s; } -#if defined(USE_COMPACT_ROOK_ATTACKS) -extern Bitboard RankAttacks[8][64], FileAttacks[8][64]; -#else -extern const uint64_t RMult[64]; -extern const int RShift[64]; -extern Bitboard RMask[64]; -extern int RAttackIndex[64]; -extern Bitboard RAttacks[0x19000]; -#endif // defined(USE_COMPACT_ROOK_ATTACKS) +inline Bitboard operator|(Square s1, Square s2) { return square_bb(s1) | s2; } -extern const uint64_t BMult[64]; -extern const int BShift[64]; -extern Bitboard BMask[64]; -extern int BAttackIndex[64]; -extern Bitboard BAttacks[0x1480]; +constexpr bool more_than_one(Bitboard b) { + return b & (b - 1); +} -extern Bitboard BishopPseudoAttacks[64]; -extern Bitboard RookPseudoAttacks[64]; -extern Bitboard QueenPseudoAttacks[64]; +constexpr bool opposite_colors(Square s1, Square s2) { + return (s1 + rank_of(s1) + s2 + rank_of(s2)) & 1; +} -//// -//// Inline functions -//// +/// rank_bb() and file_bb() return a bitboard representing all the squares on +/// the given file or rank. -/// Functions for testing whether a given bit is set in a bitboard, and for -/// setting and clearing bits. +constexpr Bitboard rank_bb(Rank r) { + return Rank1BB << (8 * r); +} -inline Bitboard bit_is_set(Bitboard b, Square s) { - return b & SetMaskBB[s]; +constexpr Bitboard rank_bb(Square s) { + return rank_bb(rank_of(s)); } -inline void set_bit(Bitboard *b, Square s) { - *b |= SetMaskBB[s]; +constexpr Bitboard file_bb(File f) { + return FileABB << f; } -inline void clear_bit(Bitboard *b, Square s) { - *b &= ClearMaskBB[s]; +constexpr Bitboard file_bb(Square s) { + return file_bb(file_of(s)); } -/// rank_bb() and file_bb() gives a bitboard containing all squares on a given -/// file or rank. It is also possible to pass a square as input to these -/// functions. +/// shift() moves a bitboard one or two steps as specified by the direction D -inline Bitboard rank_bb(Rank r) { - return RankBB[r]; +template +constexpr Bitboard shift(Bitboard b) { + return D == NORTH ? b << 8 : D == SOUTH ? b >> 8 + : D == NORTH+NORTH? b <<16 : D == SOUTH+SOUTH? b >>16 + : D == EAST ? (b & ~FileHBB) << 1 : D == WEST ? (b & ~FileABB) >> 1 + : D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == NORTH_WEST ? (b & ~FileABB) << 7 + : D == SOUTH_EAST ? (b & ~FileHBB) >> 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9 + : 0; } -inline Bitboard rank_bb(Square s) { - return rank_bb(square_rank(s)); -} -inline Bitboard file_bb(File f) { - return FileBB[f]; -} +/// pawn_attacks_bb() returns the squares attacked by pawns of the given color +/// from the squares in the given bitboard. -inline Bitboard file_bb(Square s) { - return file_bb(square_file(s)); +template +constexpr Bitboard pawn_attacks_bb(Bitboard b) { + return C == WHITE ? shift(b) | shift(b) + : shift(b) | shift(b); } +inline Bitboard pawn_attacks_bb(Color c, Square s) { -/// neighboring_files_bb takes a file or a square as input, and returns a -/// bitboard representing all squares on the neighboring files. - -inline Bitboard neighboring_files_bb(File f) { - return NeighboringFilesBB[f]; + assert(is_ok(s)); + return PawnAttacks[c][s]; } -inline Bitboard neighboring_files_bb(Square s) { - return neighboring_files_bb(square_file(s)); + +/// pawn_double_attacks_bb() returns the squares doubly attacked by pawns of the +/// given color from the squares in the given bitboard. + +template +constexpr Bitboard pawn_double_attacks_bb(Bitboard b) { + return C == WHITE ? shift(b) & shift(b) + : shift(b) & shift(b); } -/// this_and_neighboring_files_bb takes a file or a square as input, and -/// returns a bitboard representing all squares on the given and neighboring -/// files. +/// adjacent_files_bb() returns a bitboard representing all the squares on the +/// adjacent files of a given square. -inline Bitboard this_and_neighboring_files_bb(File f) { - return ThisAndNeighboringFilesBB[f]; +constexpr Bitboard adjacent_files_bb(Square s) { + return shift(file_bb(s)) | shift(file_bb(s)); } -inline Bitboard this_and_neighboring_files_bb(Square s) { - return this_and_neighboring_files_bb(square_file(s)); -} +/// line_bb() returns a bitboard representing an entire line (from board edge +/// to board edge) that intersects the two given squares. If the given squares +/// are not on a same file/rank/diagonal, the function returns 0. For instance, +/// line_bb(SQ_C4, SQ_F7) will return a bitboard with the A2-G8 diagonal. -/// relative_rank_bb() takes a color and a rank as input, and returns a bitboard -/// representing all squares on the given rank from the given color's point of -/// view. For instance, relative_rank_bb(WHITE, 7) gives all squares on the -/// 7th rank, while relative_rank_bb(BLACK, 7) gives all squares on the 2nd -/// rank. +inline Bitboard line_bb(Square s1, Square s2) { -inline Bitboard relative_rank_bb(Color c, Rank r) { - return RelativeRankBB[c][r]; + assert(is_ok(s1) && is_ok(s2)); + return LineBB[s1][s2]; } -/// in_front_bb() takes a color and a rank or square as input, and returns a -/// bitboard representing all the squares on all ranks in front of the rank -/// (or square), from the given color's point of view. For instance, -/// in_front_bb(WHITE, RANK_5) will give all squares on ranks 6, 7 and 8, while -/// in_front_bb(BLACK, SQ_D3) will give all squares on ranks 1 and 2. +/// between_bb() returns a bitboard representing squares that are linearly +/// between the two given squares (excluding the given squares). If the given +/// squares are not on a same file/rank/diagonal, we return 0. For instance, +/// between_bb(SQ_C4, SQ_F7) will return a bitboard with squares D5 and E6. -inline Bitboard in_front_bb(Color c, Rank r) { - return InFrontBB[c][r]; +inline Bitboard between_bb(Square s1, Square s2) { + Bitboard b = line_bb(s1, s2) & ((AllSquares << s1) ^ (AllSquares << s2)); + return b & (b - 1); //exclude lsb } -inline Bitboard in_front_bb(Color c, Square s) { - return in_front_bb(c, square_rank(s)); + +/// forward_ranks_bb() returns a bitboard representing the squares on the ranks +/// in front of the given one, from the point of view of the given color. For instance, +/// forward_ranks_bb(BLACK, SQ_D3) will return the 16 squares on ranks 1 and 2. + +constexpr Bitboard forward_ranks_bb(Color c, Square s) { + return c == WHITE ? ~Rank1BB << 8 * relative_rank(WHITE, s) + : ~Rank8BB >> 8 * relative_rank(BLACK, s); } -/// behind_bb() takes a color and a rank or square as input, and returns a -/// bitboard representing all the squares on all ranks behind of the rank -/// (or square), from the given color's point of view. +/// forward_file_bb() returns a bitboard representing all the squares along the +/// line in front of the given one, from the point of view of the given color. -inline Bitboard behind_bb(Color c, Rank r) { - return InFrontBB[opposite_color(c)][r]; +constexpr Bitboard forward_file_bb(Color c, Square s) { + return forward_ranks_bb(c, s) & file_bb(s); } -inline Bitboard behind_bb(Color c, Square s) { - return in_front_bb(opposite_color(c), square_rank(s)); + +/// pawn_attack_span() returns a bitboard representing all the squares that can +/// be attacked by a pawn of the given color when it moves along its file, starting +/// from the given square. + +constexpr Bitboard pawn_attack_span(Color c, Square s) { + return forward_ranks_bb(c, s) & adjacent_files_bb(s); } -/// ray_bb() gives a bitboard representing all squares along the ray in a -/// given direction from a given square. +/// passed_pawn_span() returns a bitboard which can be used to test if a pawn of +/// the given color and on the given square is a passed pawn. -inline Bitboard ray_bb(Square s, SignedDirection d) { - return RayBB[s][d]; +constexpr Bitboard passed_pawn_span(Color c, Square s) { + return pawn_attack_span(c, s) | forward_file_bb(c, s); } -/// Functions for computing sliding attack bitboards. rook_attacks_bb(), -/// bishop_attacks_bb() and queen_attacks_bb() all take a square and a -/// bitboard of occupied squares as input, and return a bitboard representing -/// all squares attacked by a rook, bishop or queen on the given square. +/// aligned() returns true if the squares s1, s2 and s3 are aligned either on a +/// straight or on a diagonal line. -#if defined(USE_COMPACT_ROOK_ATTACKS) - -inline Bitboard file_attacks_bb(Square s, Bitboard blockers) { - Bitboard b = (blockers >> square_file(s)) & 0x01010101010100ULL; - return - FileAttacks[square_rank(s)][(b*0xd6e8802041d0c441ULL)>>58] & file_bb(s); +inline bool aligned(Square s1, Square s2, Square s3) { + return line_bb(s1, s2) & s3; } -inline Bitboard rank_attacks_bb(Square s, Bitboard blockers) { - Bitboard b = (blockers >> ((s & 56) + 1)) & 63; - return RankAttacks[square_file(s)][b] & rank_bb(s); -} -inline Bitboard rook_attacks_bb(Square s, Bitboard blockers) { - return file_attacks_bb(s, blockers) | rank_attacks_bb(s, blockers); -} +/// distance() functions return the distance between x and y, defined as the +/// number of steps for a king in x to reach y. -#elif defined(USE_32BIT_ATTACKS) +template inline int distance(Square x, Square y); +template<> inline int distance(Square x, Square y) { return std::abs(file_of(x) - file_of(y)); } +template<> inline int distance(Square x, Square y) { return std::abs(rank_of(x) - rank_of(y)); } +template<> inline int distance(Square x, Square y) { return SquareDistance[x][y]; } + +inline int edge_distance(File f) { return std::min(f, File(FILE_H - f)); } +inline int edge_distance(Rank r) { return std::min(r, Rank(RANK_8 - r)); } -inline Bitboard rook_attacks_bb(Square s, Bitboard blockers) { - Bitboard b = blockers & RMask[s]; - return RAttacks[RAttackIndex[s] + - (unsigned(int(b) * int(RMult[s]) ^ - int(b >> 32) * int(RMult[s] >> 32)) - >> RShift[s])]; -} -#else +/// safe_destination() returns the bitboard of target square for the given step +/// from the given square. If the step is off the board, returns empty bitboard. -inline Bitboard rook_attacks_bb(Square s, Bitboard blockers) { - Bitboard b = blockers & RMask[s]; - return RAttacks[RAttackIndex[s] + ((b * RMult[s]) >> RShift[s])]; +inline Bitboard safe_destination(Square s, int step) +{ + Square to = Square(s + step); + return is_ok(to) && distance(s, to) <= 2 ? square_bb(to) : Bitboard(0); } -#endif -#if defined(USE_32BIT_ATTACKS) +/// attacks_bb(Square) returns the pseudo attacks of the give piece type +/// assuming an empty board. -inline Bitboard bishop_attacks_bb(Square s, Bitboard blockers) { - Bitboard b = blockers & BMask[s]; - return BAttacks[BAttackIndex[s] + - (unsigned(int(b) * int(BMult[s]) ^ - int(b >> 32) * int(BMult[s] >> 32)) - >> BShift[s])]; -} +template +inline Bitboard attacks_bb(Square s) { -#else // defined(USE_32BIT_ATTACKS) + assert((Pt != PAWN) && (is_ok(s))); -inline Bitboard bishop_attacks_bb(Square s, Bitboard blockers) { - Bitboard b = blockers & BMask[s]; - return BAttacks[BAttackIndex[s] + ((b * BMult[s]) >> BShift[s])]; + return PseudoAttacks[Pt][s]; } -#endif // defined(USE_32BIT_ATTACKS) -inline Bitboard queen_attacks_bb(Square s, Bitboard blockers) { - return rook_attacks_bb(s, blockers) | bishop_attacks_bb(s, blockers); -} +/// attacks_bb(Square, Bitboard) returns the attacks by the given piece +/// assuming the board is occupied according to the passed Bitboard. +/// Sliding piece attacks do not continue passed an occupied square. +template +inline Bitboard attacks_bb(Square s, Bitboard occupied) { -/// squares_between returns a bitboard representing all squares between -/// two squares. For instance, squares_between(SQ_C4, SQ_F7) returns a -/// bitboard with the bits for square d5 and e6 set. If s1 and s2 are not -/// on the same line, file or diagonal, EmptyBoardBB is returned. + assert((Pt != PAWN) && (is_ok(s))); -inline Bitboard squares_between(Square s1, Square s2) { - return BetweenBB[s1][s2]; + switch (Pt) + { + case BISHOP: return BishopMagics[s].attacks[BishopMagics[s].index(occupied)]; + case ROOK : return RookMagics[s].attacks[ RookMagics[s].index(occupied)]; + case QUEEN : return attacks_bb(s, occupied) | attacks_bb(s, occupied); + default : return PseudoAttacks[Pt][s]; + } } +inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) { -/// squares_in_front_of takes a color and a square as input, and returns a -/// bitboard representing all squares along the line in front of the square, -/// from the point of view of the given color. For instance, -/// squares_in_front_of(BLACK, SQ_E4) returns a bitboard with the squares -/// e3, e2 and e1 set. + assert((pt != PAWN) && (is_ok(s))); -inline Bitboard squares_in_front_of(Color c, Square s) { - return in_front_bb(c, s) & file_bb(s); + switch (pt) + { + case BISHOP: return attacks_bb(s, occupied); + case ROOK : return attacks_bb< ROOK>(s, occupied); + case QUEEN : return attacks_bb(s, occupied) | attacks_bb(s, occupied); + default : return PseudoAttacks[pt][s]; + } } -/// squares_behind is similar to squares_in_front, but returns the squares -/// behind the square instead of in front of the square. +/// popcount() counts the number of non-zero bits in a bitboard -inline Bitboard squares_behind(Color c, Square s) { - return in_front_bb(opposite_color(c), s) & file_bb(s); -} +inline int popcount(Bitboard b) { +#ifndef USE_POPCNT -/// passed_pawn_mask takes a color and a square as input, and returns a -/// bitboard mask which can be used to test if a pawn of the given color on -/// the given square is a passed pawn. + union { Bitboard bb; uint16_t u[4]; } v = { b }; + return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]]; -inline Bitboard passed_pawn_mask(Color c, Square s) { - return PassedPawnMask[c][s]; -} +#elif defined(_MSC_VER) || defined(__INTEL_COMPILER) + + return (int)_mm_popcnt_u64(b); +#else // Assumed gcc or compatible compiler -/// outpost_mask takes a color and a square as input, and returns a bitboard -/// mask which can be used to test whether a piece on the square can possibly -/// be driven away by an enemy pawn. + return __builtin_popcountll(b); -inline Bitboard outpost_mask(Color c, Square s) { - return OutpostMask[c][s]; +#endif } -/// isolated_pawn_mask takes a square as input, and returns a bitboard mask -/// which can be used to test whether a pawn on the given square is isolated. +/// lsb() and msb() return the least/most significant bit in a non-zero bitboard -inline Bitboard isolated_pawn_mask(Square s) { - return neighboring_files_bb(s); +#if defined(__GNUC__) // GCC, Clang, ICC + +inline Square lsb(Bitboard b) { + assert(b); + return Square(__builtin_ctzll(b)); } +inline Square msb(Bitboard b) { + assert(b); + return Square(63 ^ __builtin_clzll(b)); +} -/// count_1s() counts the number of nonzero bits in a bitboard. +#elif defined(_MSC_VER) // MSVC -#if defined(BITCOUNT_LOOP) +#ifdef _WIN64 // MSVC, WIN64 -inline int count_1s(Bitboard b) { - int r; - for(r = 0; b; r++, b &= b - 1); - return r; +inline Square lsb(Bitboard b) { + assert(b); + unsigned long idx; + _BitScanForward64(&idx, b); + return (Square) idx; } -inline int count_1s_max_15(Bitboard b) { - return count_1s(b); +inline Square msb(Bitboard b) { + assert(b); + unsigned long idx; + _BitScanReverse64(&idx, b); + return (Square) idx; } -#elif defined(BITCOUNT_SWAR_32) +#else // MSVC, WIN32 -inline int count_1s(Bitboard b) { - unsigned w = unsigned(b >> 32), v = unsigned(b); - v -= (v >> 1) & 0x55555555; // 0-2 in 2 bits - w -= (w >> 1) & 0x55555555; - v = ((v >> 2) & 0x33333333) + (v & 0x33333333); // 0-4 in 4 bits - w = ((w >> 2) & 0x33333333) + (w & 0x33333333); - v = ((v >> 4) + v) & 0x0F0F0F0F; // 0-8 in 8 bits - v += (((w >> 4) + w) & 0x0F0F0F0F); // 0-16 in 8 bits - v *= 0x01010101; // mul is fast on amd procs - return int(v >> 24); -} +inline Square lsb(Bitboard b) { + assert(b); + unsigned long idx; -inline int count_1s_max_15(Bitboard b) { - unsigned w = unsigned(b >> 32), v = unsigned(b); - v -= (v >> 1) & 0x55555555; // 0-2 in 2 bits - w -= (w >> 1) & 0x55555555; - v = ((v >> 2) & 0x33333333) + (v & 0x33333333); // 0-4 in 4 bits - w = ((w >> 2) & 0x33333333) + (w & 0x33333333); - v += w; // 0-8 in 4 bits - v *= 0x11111111; - return int(v >> 28); + if (b & 0xffffffff) { + _BitScanForward(&idx, int32_t(b)); + return Square(idx); + } else { + _BitScanForward(&idx, int32_t(b >> 32)); + return Square(idx + 32); + } } -#elif defined(BITCOUNT_SWAR_64) +inline Square msb(Bitboard b) { + assert(b); + unsigned long idx; -inline int count_1s(Bitboard b) { - b -= ((b>>1) & 0x5555555555555555ULL); - b = ((b>>2) & 0x3333333333333333ULL) + (b & 0x3333333333333333ULL); - b = ((b>>4) + b) & 0x0F0F0F0F0F0F0F0FULL; - b *= 0x0101010101010101ULL; - return int(b >> 56); + if (b >> 32) { + _BitScanReverse(&idx, int32_t(b >> 32)); + return Square(idx + 32); + } else { + _BitScanReverse(&idx, int32_t(b)); + return Square(idx); + } } -inline int count_1s_max_15(Bitboard b) { - b -= (b>>1) & 0x5555555555555555ULL; - b = ((b>>2) & 0x3333333333333333ULL) + (b & 0x3333333333333333ULL); - b *= 0x1111111111111111ULL; - return int(b >> 60); -} +#endif -#endif // BITCOUNT +#else // Compiler is neither GCC nor MSVC compatible +#error "Compiler not supported." -//// -//// Prototypes -//// +#endif -extern void print_bitboard(Bitboard b); -extern void init_bitboards(); -extern Square first_1(Bitboard b); -extern Square pop_1st_bit(Bitboard *b); +/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard + +inline Square pop_lsb(Bitboard* b) { + assert(*b); + const Square s = lsb(*b); + *b &= *b - 1; + return s; +} + + +/// frontmost_sq() returns the most advanced square for the given color, +/// requires a non-zero bitboard. +inline Square frontmost_sq(Color c, Bitboard b) { + assert(b); + return c == WHITE ? msb(b) : lsb(b); +} -#endif // !defined(BITBOARD_H_INCLUDED) +#endif // #ifndef BITBOARD_H_INCLUDED