X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.h;h=8d748eeed8615628ddd4b044df9c34aef4fcaeff;hp=b962226bfb9e5048f950a2dd954622e48db28f7d;hb=3ef0c3c34a00e6b13d6c96d8c2f0d8d7a6cc25a6;hpb=0fcda095df1caa860e8e3f3a714d5545ec9dc122 diff --git a/src/bitboard.h b/src/bitboard.h index b962226b..8d748eee 100644 --- a/src/bitboard.h +++ b/src/bitboard.h @@ -1,14 +1,14 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. - Stockfish is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the @@ -18,268 +18,373 @@ along with this program. If not, see . */ -#if !defined(BITBOARD_H_INCLUDED) +#ifndef BITBOARD_H_INCLUDED #define BITBOARD_H_INCLUDED +#include + #include "types.h" -const Bitboard EmptyBoardBB = 0; - -const Bitboard FileABB = 0x0101010101010101ULL; -const Bitboard FileBBB = FileABB << 1; -const Bitboard FileCBB = FileABB << 2; -const Bitboard FileDBB = FileABB << 3; -const Bitboard FileEBB = FileABB << 4; -const Bitboard FileFBB = FileABB << 5; -const Bitboard FileGBB = FileABB << 6; -const Bitboard FileHBB = FileABB << 7; - -const Bitboard Rank1BB = 0xFF; -const Bitboard Rank2BB = Rank1BB << (8 * 1); -const Bitboard Rank3BB = Rank1BB << (8 * 2); -const Bitboard Rank4BB = Rank1BB << (8 * 3); -const Bitboard Rank5BB = Rank1BB << (8 * 4); -const Bitboard Rank6BB = Rank1BB << (8 * 5); -const Bitboard Rank7BB = Rank1BB << (8 * 6); -const Bitboard Rank8BB = Rank1BB << (8 * 7); - -extern const Bitboard SquaresByColorBB[2]; -extern const Bitboard FileBB[8]; -extern const Bitboard NeighboringFilesBB[8]; -extern const Bitboard ThisAndNeighboringFilesBB[8]; -extern const Bitboard RankBB[8]; -extern const Bitboard InFrontBB[2][8]; - -extern Bitboard SetMaskBB[65]; -extern Bitboard ClearMaskBB[65]; - -extern Bitboard NonSlidingAttacksBB[16][64]; -extern Bitboard BetweenBB[64][64]; - -extern Bitboard SquaresInFrontMask[2][64]; -extern Bitboard PassedPawnMask[2][64]; -extern Bitboard AttackSpanMask[2][64]; - -extern const uint64_t RMult[64]; -extern const int RShift[64]; -extern Bitboard RMask[64]; -extern int RAttackIndex[64]; -extern Bitboard RAttacks[0x19000]; - -extern const uint64_t BMult[64]; -extern const int BShift[64]; -extern Bitboard BMask[64]; -extern int BAttackIndex[64]; -extern Bitboard BAttacks[0x1480]; - -extern Bitboard BishopPseudoAttacks[64]; -extern Bitboard RookPseudoAttacks[64]; -extern Bitboard QueenPseudoAttacks[64]; - -extern uint8_t BitCount8Bit[256]; - - -/// Functions for testing whether a given bit is set in a bitboard, and for -/// setting and clearing bits. - -inline Bitboard bit_is_set(Bitboard b, Square s) { - return b & SetMaskBB[s]; +namespace Bitbases { + +void init(); +bool probe(Square wksq, Square wpsq, Square bksq, Color us); + } -inline void set_bit(Bitboard *b, Square s) { - *b |= SetMaskBB[s]; +namespace Bitboards { + +void init(); +const std::string pretty(Bitboard b); + } -inline void clear_bit(Bitboard *b, Square s) { - *b &= ClearMaskBB[s]; +constexpr Bitboard AllSquares = ~Bitboard(0); +constexpr Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL; + +constexpr Bitboard FileABB = 0x0101010101010101ULL; +constexpr Bitboard FileBBB = FileABB << 1; +constexpr Bitboard FileCBB = FileABB << 2; +constexpr Bitboard FileDBB = FileABB << 3; +constexpr Bitboard FileEBB = FileABB << 4; +constexpr Bitboard FileFBB = FileABB << 5; +constexpr Bitboard FileGBB = FileABB << 6; +constexpr Bitboard FileHBB = FileABB << 7; + +constexpr Bitboard Rank1BB = 0xFF; +constexpr Bitboard Rank2BB = Rank1BB << (8 * 1); +constexpr Bitboard Rank3BB = Rank1BB << (8 * 2); +constexpr Bitboard Rank4BB = Rank1BB << (8 * 3); +constexpr Bitboard Rank5BB = Rank1BB << (8 * 4); +constexpr Bitboard Rank6BB = Rank1BB << (8 * 5); +constexpr Bitboard Rank7BB = Rank1BB << (8 * 6); +constexpr Bitboard Rank8BB = Rank1BB << (8 * 7); + +constexpr Bitboard QueenSide = FileABB | FileBBB | FileCBB | FileDBB; +constexpr Bitboard CenterFiles = FileCBB | FileDBB | FileEBB | FileFBB; +constexpr Bitboard KingSide = FileEBB | FileFBB | FileGBB | FileHBB; +constexpr Bitboard Center = (FileDBB | FileEBB) & (Rank4BB | Rank5BB); + +constexpr Bitboard KingFlank[FILE_NB] = { + QueenSide ^ FileDBB, QueenSide, QueenSide, + CenterFiles, CenterFiles, + KingSide, KingSide, KingSide ^ FileEBB +}; + +extern uint8_t PopCnt16[1 << 16]; +extern uint8_t SquareDistance[SQUARE_NB][SQUARE_NB]; + +extern Bitboard SquareBB[SQUARE_NB]; +extern Bitboard LineBB[SQUARE_NB][SQUARE_NB]; +extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; +extern Bitboard PawnAttacks[COLOR_NB][SQUARE_NB]; + + +/// Magic holds all magic bitboards relevant data for a single square +struct Magic { + Bitboard mask; + Bitboard magic; + Bitboard* attacks; + unsigned shift; + + // Compute the attack's index using the 'magic bitboards' approach + unsigned index(Bitboard occupied) const { + + if (HasPext) + return unsigned(pext(occupied, mask)); + + if (Is64Bit) + return unsigned(((occupied & mask) * magic) >> shift); + + unsigned lo = unsigned(occupied) & unsigned(mask); + unsigned hi = unsigned(occupied >> 32) & unsigned(mask >> 32); + return (lo * unsigned(magic) ^ hi * unsigned(magic >> 32)) >> shift; + } +}; + +extern Magic RookMagics[SQUARE_NB]; +extern Magic BishopMagics[SQUARE_NB]; + +inline Bitboard square_bb(Square s) { + assert(s >= SQ_A1 && s <= SQ_H8); + return SquareBB[s]; } +/// Overloads of bitwise operators between a Bitboard and a Square for testing +/// whether a given bit is set in a bitboard, and for setting and clearing bits. -/// Functions used to update a bitboard after a move. This is faster -/// then calling a sequence of clear_bit() + set_bit() +inline Bitboard operator&( Bitboard b, Square s) { return b & square_bb(s); } +inline Bitboard operator|( Bitboard b, Square s) { return b | square_bb(s); } +inline Bitboard operator^( Bitboard b, Square s) { return b ^ square_bb(s); } +inline Bitboard& operator|=(Bitboard& b, Square s) { return b |= square_bb(s); } +inline Bitboard& operator^=(Bitboard& b, Square s) { return b ^= square_bb(s); } -inline Bitboard make_move_bb(Square from, Square to) { - return SetMaskBB[from] | SetMaskBB[to]; +inline Bitboard operator&(Square s, Bitboard b) { return b & s; } +inline Bitboard operator|(Square s, Bitboard b) { return b | s; } +inline Bitboard operator^(Square s, Bitboard b) { return b ^ s; } + +inline Bitboard operator|(Square s, Square s2) { return square_bb(s) | square_bb(s2); } + +constexpr bool more_than_one(Bitboard b) { + return b & (b - 1); } -inline void do_move_bb(Bitboard *b, Bitboard move_bb) { - *b ^= move_bb; +inline bool opposite_colors(Square s1, Square s2) { + return bool(DarkSquares & s1) != bool(DarkSquares & s2); } -/// rank_bb() and file_bb() take a file or a square as input and return -/// a bitboard representing all squares on the given file or rank. +/// rank_bb() and file_bb() return a bitboard representing all the squares on +/// the given file or rank. inline Bitboard rank_bb(Rank r) { - return RankBB[r]; + return Rank1BB << (8 * r); } inline Bitboard rank_bb(Square s) { - return RankBB[square_rank(s)]; + return rank_bb(rank_of(s)); } inline Bitboard file_bb(File f) { - return FileBB[f]; + return FileABB << f; } inline Bitboard file_bb(Square s) { - return FileBB[square_file(s)]; + return file_bb(file_of(s)); } -/// neighboring_files_bb takes a file or a square as input and returns a -/// bitboard representing all squares on the neighboring files. +/// shift() moves a bitboard one step along direction D -inline Bitboard neighboring_files_bb(File f) { - return NeighboringFilesBB[f]; +template +constexpr Bitboard shift(Bitboard b) { + return D == NORTH ? b << 8 : D == SOUTH ? b >> 8 + : D == NORTH+NORTH? b <<16 : D == SOUTH+SOUTH? b >>16 + : D == EAST ? (b & ~FileHBB) << 1 : D == WEST ? (b & ~FileABB) >> 1 + : D == NORTH_EAST ? (b & ~FileHBB) << 9 : D == NORTH_WEST ? (b & ~FileABB) << 7 + : D == SOUTH_EAST ? (b & ~FileHBB) >> 7 : D == SOUTH_WEST ? (b & ~FileABB) >> 9 + : 0; } -inline Bitboard neighboring_files_bb(Square s) { - return NeighboringFilesBB[square_file(s)]; + +/// pawn_attacks_bb() returns the squares attacked by pawns of the given color +/// from the squares in the given bitboard. + +template +constexpr Bitboard pawn_attacks_bb(Bitboard b) { + return C == WHITE ? shift(b) | shift(b) + : shift(b) | shift(b); } -/// this_and_neighboring_files_bb takes a file or a square as input and returns -/// a bitboard representing all squares on the given and neighboring files. +/// pawn_double_attacks_bb() returns the squares doubly attacked by pawns of the +/// given color from the squares in the given bitboard. -inline Bitboard this_and_neighboring_files_bb(File f) { - return ThisAndNeighboringFilesBB[f]; +template +constexpr Bitboard pawn_double_attacks_bb(Bitboard b) { + return C == WHITE ? shift(b) & shift(b) + : shift(b) & shift(b); } -inline Bitboard this_and_neighboring_files_bb(Square s) { - return ThisAndNeighboringFilesBB[square_file(s)]; + +/// adjacent_files_bb() returns a bitboard representing all the squares on the +/// adjacent files of the given one. + +inline Bitboard adjacent_files_bb(Square s) { + return shift(file_bb(s)) | shift(file_bb(s)); } -/// in_front_bb() takes a color and a rank or square as input, and returns a -/// bitboard representing all the squares on all ranks in front of the rank -/// (or square), from the given color's point of view. For instance, -/// in_front_bb(WHITE, RANK_5) will give all squares on ranks 6, 7 and 8, while -/// in_front_bb(BLACK, SQ_D3) will give all squares on ranks 1 and 2. +/// between_bb() returns squares that are linearly between the given squares +/// If the given squares are not on a same file/rank/diagonal, return 0. -inline Bitboard in_front_bb(Color c, Rank r) { - return InFrontBB[c][r]; +inline Bitboard between_bb(Square s1, Square s2) { + return LineBB[s1][s2] & ( (AllSquares << (s1 + (s1 < s2))) + ^(AllSquares << (s2 + !(s1 < s2)))); } -inline Bitboard in_front_bb(Color c, Square s) { - return InFrontBB[c][square_rank(s)]; -} +/// forward_ranks_bb() returns a bitboard representing the squares on the ranks +/// in front of the given one, from the point of view of the given color. For instance, +/// forward_ranks_bb(BLACK, SQ_D3) will return the 16 squares on ranks 1 and 2. + +inline Bitboard forward_ranks_bb(Color c, Square s) { + return c == WHITE ? ~Rank1BB << 8 * (rank_of(s) - RANK_1) + : ~Rank8BB >> 8 * (RANK_8 - rank_of(s)); +} -/// Functions for computing sliding attack bitboards. rook_attacks_bb(), -/// bishop_attacks_bb() and queen_attacks_bb() all take a square and a -/// bitboard of occupied squares as input, and return a bitboard representing -/// all squares attacked by a rook, bishop or queen on the given square. -#if defined(IS_64BIT) +/// forward_file_bb() returns a bitboard representing all the squares along the +/// line in front of the given one, from the point of view of the given color. -inline Bitboard rook_attacks_bb(Square s, Bitboard blockers) { - Bitboard b = blockers & RMask[s]; - return RAttacks[RAttackIndex[s] + ((b * RMult[s]) >> RShift[s])]; +inline Bitboard forward_file_bb(Color c, Square s) { + return forward_ranks_bb(c, s) & file_bb(s); } -inline Bitboard bishop_attacks_bb(Square s, Bitboard blockers) { - Bitboard b = blockers & BMask[s]; - return BAttacks[BAttackIndex[s] + ((b * BMult[s]) >> BShift[s])]; + +/// pawn_attack_span() returns a bitboard representing all the squares that can +/// be attacked by a pawn of the given color when it moves along its file, +/// starting from the given square. + +inline Bitboard pawn_attack_span(Color c, Square s) { + return forward_ranks_bb(c, s) & adjacent_files_bb(s); } -#else // if !defined(IS_64BIT) -inline Bitboard rook_attacks_bb(Square s, Bitboard blockers) { - Bitboard b = blockers & RMask[s]; - return RAttacks[RAttackIndex[s] + - (unsigned(int(b) * int(RMult[s]) ^ int(b >> 32) * int(RMult[s] >> 32)) >> RShift[s])]; +/// passed_pawn_span() returns a bitboard which can be used to test if a pawn of +/// the given color and on the given square is a passed pawn. + +inline Bitboard passed_pawn_span(Color c, Square s) { + return forward_ranks_bb(c, s) & (adjacent_files_bb(s) | file_bb(s)); } -inline Bitboard bishop_attacks_bb(Square s, Bitboard blockers) { - Bitboard b = blockers & BMask[s]; - return BAttacks[BAttackIndex[s] + - (unsigned(int(b) * int(BMult[s]) ^ int(b >> 32) * int(BMult[s] >> 32)) >> BShift[s])]; + +/// aligned() returns true if the squares s1, s2 and s3 are aligned either on a +/// straight or on a diagonal line. + +inline bool aligned(Square s1, Square s2, Square s3) { + return LineBB[s1][s2] & s3; } -#endif -inline Bitboard queen_attacks_bb(Square s, Bitboard blockers) { - return rook_attacks_bb(s, blockers) | bishop_attacks_bb(s, blockers); +/// distance() functions return the distance between x and y, defined as the +/// number of steps for a king in x to reach y. + +template inline int distance(Square x, Square y); +template<> inline int distance(Square x, Square y) { return std::abs(file_of(x) - file_of(y)); } +template<> inline int distance(Square x, Square y) { return std::abs(rank_of(x) - rank_of(y)); } +template<> inline int distance(Square x, Square y) { return SquareDistance[x][y]; } + +template constexpr const T& clamp(const T& v, const T& lo, const T& hi) { + return v < lo ? lo : v > hi ? hi : v; } +/// attacks_bb() returns a bitboard representing all the squares attacked by a +/// piece of type Pt (bishop or rook) placed on 's'. -/// squares_between returns a bitboard representing all squares between -/// two squares. For instance, squares_between(SQ_C4, SQ_F7) returns a -/// bitboard with the bits for square d5 and e6 set. If s1 and s2 are not -/// on the same line, file or diagonal, EmptyBoardBB is returned. +template +inline Bitboard attacks_bb(Square s, Bitboard occupied) { -inline Bitboard squares_between(Square s1, Square s2) { - return BetweenBB[s1][s2]; + const Magic& m = Pt == ROOK ? RookMagics[s] : BishopMagics[s]; + return m.attacks[m.index(occupied)]; } +inline Bitboard attacks_bb(PieceType pt, Square s, Bitboard occupied) { -/// squares_in_front_of takes a color and a square as input, and returns a -/// bitboard representing all squares along the line in front of the square, -/// from the point of view of the given color. Definition of the table is: -/// SquaresInFrontOf[c][s] = in_front_bb(c, s) & file_bb(s) + assert(pt != PAWN); -inline Bitboard squares_in_front_of(Color c, Square s) { - return SquaresInFrontMask[c][s]; + switch (pt) + { + case BISHOP: return attacks_bb(s, occupied); + case ROOK : return attacks_bb< ROOK>(s, occupied); + case QUEEN : return attacks_bb(s, occupied) | attacks_bb(s, occupied); + default : return PseudoAttacks[pt][s]; + } } -/// passed_pawn_mask takes a color and a square as input, and returns a -/// bitboard mask which can be used to test if a pawn of the given color on -/// the given square is a passed pawn. Definition of the table is: -/// PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(s) +/// popcount() counts the number of non-zero bits in a bitboard + +inline int popcount(Bitboard b) { + +#ifndef USE_POPCNT + + union { Bitboard bb; uint16_t u[4]; } v = { b }; + return PopCnt16[v.u[0]] + PopCnt16[v.u[1]] + PopCnt16[v.u[2]] + PopCnt16[v.u[3]]; + +#elif defined(_MSC_VER) || defined(__INTEL_COMPILER) + + return (int)_mm_popcnt_u64(b); -inline Bitboard passed_pawn_mask(Color c, Square s) { - return PassedPawnMask[c][s]; +#else // Assumed gcc or compatible compiler + + return __builtin_popcountll(b); + +#endif } -/// attack_span_mask takes a color and a square as input, and returns a bitboard -/// representing all squares that can be attacked by a pawn of the given color -/// when it moves along its file starting from the given square. Definition is: -/// AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(s); +/// lsb() and msb() return the least/most significant bit in a non-zero bitboard + +#if defined(__GNUC__) // GCC, Clang, ICC + +inline Square lsb(Bitboard b) { + assert(b); + return Square(__builtin_ctzll(b)); +} -inline Bitboard attack_span_mask(Color c, Square s) { - return AttackSpanMask[c][s]; +inline Square msb(Bitboard b) { + assert(b); + return Square(63 ^ __builtin_clzll(b)); } +#elif defined(_MSC_VER) // MSVC -/// squares_aligned returns true if the squares s1, s2 and s3 are aligned -/// either on a straight or on a diagonal line. +#ifdef _WIN64 // MSVC, WIN64 -inline bool squares_aligned(Square s1, Square s2, Square s3) { - return (BetweenBB[s1][s2] | BetweenBB[s1][s3] | BetweenBB[s2][s3]) - & ((1ULL << s1) | (1ULL << s2) | (1ULL << s3)); +inline Square lsb(Bitboard b) { + assert(b); + unsigned long idx; + _BitScanForward64(&idx, b); + return (Square) idx; } +inline Square msb(Bitboard b) { + assert(b); + unsigned long idx; + _BitScanReverse64(&idx, b); + return (Square) idx; +} -/// first_1() finds the least significant nonzero bit in a nonzero bitboard. -/// pop_1st_bit() finds and clears the least significant nonzero bit in a -/// nonzero bitboard. +#else // MSVC, WIN32 -#if defined(USE_BSFQ) // Assembly code by Heinz van Saanen +inline Square lsb(Bitboard b) { + assert(b); + unsigned long idx; -inline Square first_1(Bitboard b) { - Bitboard dummy; - __asm__("bsfq %1, %0": "=r"(dummy): "rm"(b) ); - return (Square)(dummy); + if (b & 0xffffffff) { + _BitScanForward(&idx, int32_t(b)); + return Square(idx); + } else { + _BitScanForward(&idx, int32_t(b >> 32)); + return Square(idx + 32); + } } -inline Square pop_1st_bit(Bitboard* b) { - const Square s = first_1(*b); - *b &= ~(1ULL<> 32) { + _BitScanReverse(&idx, int32_t(b >> 32)); + return Square(idx + 32); + } else { + _BitScanReverse(&idx, int32_t(b)); + return Square(idx); + } } -#else // if !defined(USE_BSFQ) +#endif + +#else // Compiler is neither GCC nor MSVC compatible -extern Square first_1(Bitboard b); -extern Square pop_1st_bit(Bitboard* b); +#error "Compiler not supported." #endif -extern void print_bitboard(Bitboard b); -extern void init_bitboards(); +/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard + +inline Square pop_lsb(Bitboard* b) { + const Square s = lsb(*b); + *b &= *b - 1; + return s; +} + + +/// frontmost_sq() returns the most advanced square for the given color +inline Square frontmost_sq(Color c, Bitboard b) { + return c == WHITE ? msb(b) : lsb(b); +} -#endif // !defined(BITBOARD_H_INCLUDED) +#endif // #ifndef BITBOARD_H_INCLUDED