X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fbitboard.h;h=f361658ae73e54c835fafe3839066c4d1c12e46a;hp=1c8a8c2245bee5a8000016eacf1d3fa3b9b7a2fa;hb=94dd204c3b10ebe0e6c8df5d7c98de5ba4906cad;hpb=5c5af4fa6533e22fb56dd22985cf2b3938efde6c diff --git a/src/bitboard.h b/src/bitboard.h index 1c8a8c22..f361658a 100644 --- a/src/bitboard.h +++ b/src/bitboard.h @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -18,12 +18,26 @@ along with this program. If not, see . */ -#if !defined(BITBOARD_H_INCLUDED) +#ifndef BITBOARD_H_INCLUDED #define BITBOARD_H_INCLUDED +#include + #include "types.h" -const Bitboard EmptyBoardBB = 0; +namespace Bitboards { + +void init(); +const std::string pretty(Bitboard b); + +} + +namespace Bitbases { + +void init_kpk(); +bool probe_kpk(Square wksq, Square wpsq, Square bksq, Color us); + +} const Bitboard FileABB = 0x0101010101010101ULL; const Bitboard FileBBB = FileABB << 1; @@ -43,65 +57,78 @@ const Bitboard Rank6BB = Rank1BB << (8 * 5); const Bitboard Rank7BB = Rank1BB << (8 * 6); const Bitboard Rank8BB = Rank1BB << (8 * 7); -extern Bitboard SquaresByColorBB[2]; -extern Bitboard FileBB[8]; -extern Bitboard NeighboringFilesBB[8]; -extern Bitboard ThisAndNeighboringFilesBB[8]; -extern Bitboard RankBB[8]; -extern Bitboard InFrontBB[2][8]; - -extern Bitboard SetMaskBB[65]; -extern Bitboard ClearMaskBB[65]; - -extern Bitboard StepAttacksBB[16][64]; -extern Bitboard BetweenBB[64][64]; - -extern Bitboard SquaresInFrontMask[2][64]; -extern Bitboard PassedPawnMask[2][64]; -extern Bitboard AttackSpanMask[2][64]; - -extern uint64_t RMagics[64]; -extern int RShifts[64]; -extern Bitboard RMasks[64]; -extern Bitboard* RAttacks[64]; - -extern uint64_t BMagics[64]; -extern int BShifts[64]; -extern Bitboard BMasks[64]; -extern Bitboard* BAttacks[64]; - -extern Bitboard BishopPseudoAttacks[64]; -extern Bitboard RookPseudoAttacks[64]; -extern Bitboard QueenPseudoAttacks[64]; - -extern uint8_t BitCount8Bit[256]; +extern Bitboard RookMasks[SQUARE_NB]; +extern Bitboard RookMagics[SQUARE_NB]; +extern Bitboard* RookAttacks[SQUARE_NB]; +extern unsigned RookShifts[SQUARE_NB]; + +extern Bitboard BishopMasks[SQUARE_NB]; +extern Bitboard BishopMagics[SQUARE_NB]; +extern Bitboard* BishopAttacks[SQUARE_NB]; +extern unsigned BishopShifts[SQUARE_NB]; + +extern Bitboard SquareBB[SQUARE_NB]; +extern Bitboard FileBB[FILE_NB]; +extern Bitboard RankBB[RANK_NB]; +extern Bitboard AdjacentFilesBB[FILE_NB]; +extern Bitboard InFrontBB[COLOR_NB][RANK_NB]; +extern Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB]; +extern Bitboard BetweenBB[SQUARE_NB][SQUARE_NB]; +extern Bitboard LineBB[SQUARE_NB][SQUARE_NB]; +extern Bitboard DistanceRingsBB[SQUARE_NB][8]; +extern Bitboard ForwardBB[COLOR_NB][SQUARE_NB]; +extern Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB]; +extern Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB]; +extern Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB]; + +extern int SquareDistance[SQUARE_NB][SQUARE_NB]; + +const Bitboard DarkSquares = 0xAA55AA55AA55AA55ULL; + +/// Overloads of bitwise operators between a Bitboard and a Square for testing +/// whether a given bit is set in a bitboard, and for setting and clearing bits. + +inline Bitboard operator&(Bitboard b, Square s) { + return b & SquareBB[s]; +} +inline Bitboard& operator|=(Bitboard& b, Square s) { + return b |= SquareBB[s]; +} -/// Functions for testing whether a given bit is set in a bitboard, and for -/// setting and clearing bits. +inline Bitboard& operator^=(Bitboard& b, Square s) { + return b ^= SquareBB[s]; +} -inline Bitboard bit_is_set(Bitboard b, Square s) { - return b & SetMaskBB[s]; +inline Bitboard operator|(Bitboard b, Square s) { + return b | SquareBB[s]; } -inline void set_bit(Bitboard* b, Square s) { - *b |= SetMaskBB[s]; +inline Bitboard operator^(Bitboard b, Square s) { + return b ^ SquareBB[s]; } -inline void clear_bit(Bitboard* b, Square s) { - *b &= ClearMaskBB[s]; +inline bool more_than_one(Bitboard b) { + return b & (b - 1); } +template inline int distance(T x, T y) { return x < y ? y - x : x - y; } +template<> inline int distance(Square x, Square y) { return SquareDistance[x][y]; } -/// Functions used to update a bitboard after a move. This is faster -/// then calling a sequence of clear_bit() + set_bit() +template inline int distance(T2 x, T2 y); +template<> inline int distance(Square x, Square y) { return distance(file_of(x), file_of(y)); } +template<> inline int distance(Square x, Square y) { return distance(rank_of(x), rank_of(y)); } -inline Bitboard make_move_bb(Square from, Square to) { - return SetMaskBB[from] | SetMaskBB[to]; -} -inline void do_move_bb(Bitboard* b, Bitboard move_bb) { - *b ^= move_bb; +/// shift_bb() moves bitboard one step along direction Delta. Mainly for pawns. + +template +inline Bitboard shift_bb(Bitboard b) { + + return Delta == DELTA_N ? b << 8 : Delta == DELTA_S ? b >> 8 + : Delta == DELTA_NE ? (b & ~FileHBB) << 9 : Delta == DELTA_SE ? (b & ~FileHBB) >> 7 + : Delta == DELTA_NW ? (b & ~FileABB) << 7 : Delta == DELTA_SW ? (b & ~FileABB) >> 9 + : 0; } @@ -125,164 +152,185 @@ inline Bitboard file_bb(Square s) { } -/// neighboring_files_bb takes a file as input and returns a bitboard representing -/// all squares on the neighboring files. +/// adjacent_files_bb() takes a file as input and returns a bitboard representing +/// all squares on the adjacent files. -inline Bitboard neighboring_files_bb(File f) { - return NeighboringFilesBB[f]; +inline Bitboard adjacent_files_bb(File f) { + return AdjacentFilesBB[f]; } -/// this_and_neighboring_files_bb takes a file as input and returns a bitboard -/// representing all squares on the given and neighboring files. +/// in_front_bb() takes a color and a rank as input, and returns a bitboard +/// representing all the squares on all ranks in front of the rank, from the +/// given color's point of view. For instance, in_front_bb(BLACK, RANK_3) will +/// give all squares on ranks 1 and 2. -inline Bitboard this_and_neighboring_files_bb(File f) { - return ThisAndNeighboringFilesBB[f]; +inline Bitboard in_front_bb(Color c, Rank r) { + return InFrontBB[c][r]; } -/// in_front_bb() takes a color and a rank or square as input, and returns a -/// bitboard representing all the squares on all ranks in front of the rank -/// (or square), from the given color's point of view. For instance, -/// in_front_bb(WHITE, RANK_5) will give all squares on ranks 6, 7 and 8, while -/// in_front_bb(BLACK, SQ_D3) will give all squares on ranks 1 and 2. +/// between_bb() returns a bitboard representing all squares between two squares. +/// For instance, between_bb(SQ_C4, SQ_F7) returns a bitboard with the bits for +/// square d5 and e6 set. If s1 and s2 are not on the same rank, file or diagonal, +/// 0 is returned. -inline Bitboard in_front_bb(Color c, Rank r) { - return InFrontBB[c][r]; +inline Bitboard between_bb(Square s1, Square s2) { + return BetweenBB[s1][s2]; } -inline Bitboard in_front_bb(Color c, Square s) { - return InFrontBB[c][rank_of(s)]; -} +/// forward_bb() takes a color and a square as input, and returns a bitboard +/// representing all squares along the line in front of the square, from the +/// point of view of the given color. Definition of the table is: +/// ForwardBB[c][s] = in_front_bb(c, s) & file_bb(s) -/// Functions for computing sliding attack bitboards. rook_attacks_bb(), -/// bishop_attacks_bb() and queen_attacks_bb() all take a square and a -/// bitboard of occupied squares as input, and return a bitboard representing -/// all squares attacked by a rook, bishop or queen on the given square. +inline Bitboard forward_bb(Color c, Square s) { + return ForwardBB[c][s]; +} -#if defined(IS_64BIT) -FORCE_INLINE unsigned rook_index(Square s, Bitboard occ) { - return unsigned(((occ & RMasks[s]) * RMagics[s]) >> RShifts[s]); -} +/// pawn_attack_span() takes a color and a square as input, and returns a bitboard +/// representing all squares that can be attacked by a pawn of the given color +/// when it moves along its file starting from the given square. Definition is: +/// PawnAttackSpan[c][s] = in_front_bb(c, s) & adjacent_files_bb(s); -FORCE_INLINE unsigned bishop_index(Square s, Bitboard occ) { - return unsigned(((occ & BMasks[s]) * BMagics[s]) >> BShifts[s]); +inline Bitboard pawn_attack_span(Color c, Square s) { + return PawnAttackSpan[c][s]; } -#else // if !defined(IS_64BIT) -FORCE_INLINE unsigned rook_index(Square s, Bitboard occ) { - Bitboard b = occ & RMasks[s]; - return unsigned(int(b) * int(RMagics[s]) ^ int(b >> 32) * int(RMagics[s] >> 32)) >> RShifts[s]; -} +/// passed_pawn_mask() takes a color and a square as input, and returns a +/// bitboard mask which can be used to test if a pawn of the given color on +/// the given square is a passed pawn. Definition of the table is: +/// PassedPawnMask[c][s] = pawn_attack_span(c, s) | forward_bb(c, s) -FORCE_INLINE unsigned bishop_index(Square s, Bitboard occ) { - Bitboard b = occ & BMasks[s]; - return unsigned(int(b) * int(BMagics[s]) ^ int(b >> 32) * int(BMagics[s] >> 32)) >> BShifts[s]; +inline Bitboard passed_pawn_mask(Color c, Square s) { + return PassedPawnMask[c][s]; } -#endif -inline Bitboard rook_attacks_bb(Square s, Bitboard occ) { - return RAttacks[s][rook_index(s, occ)]; -} -inline Bitboard bishop_attacks_bb(Square s, Bitboard occ) { - return BAttacks[s][bishop_index(s, occ)]; -} +/// squares_of_color() returns a bitboard representing all squares with the same +/// color of the given square. -inline Bitboard queen_attacks_bb(Square s, Bitboard blockers) { - return rook_attacks_bb(s, blockers) | bishop_attacks_bb(s, blockers); +inline Bitboard squares_of_color(Square s) { + return DarkSquares & s ? DarkSquares : ~DarkSquares; } -/// squares_between returns a bitboard representing all squares between -/// two squares. For instance, squares_between(SQ_C4, SQ_F7) returns a -/// bitboard with the bits for square d5 and e6 set. If s1 and s2 are not -/// on the same line, file or diagonal, EmptyBoardBB is returned. +/// aligned() returns true if the squares s1, s2 and s3 are aligned +/// either on a straight or on a diagonal line. -inline Bitboard squares_between(Square s1, Square s2) { - return BetweenBB[s1][s2]; +inline bool aligned(Square s1, Square s2, Square s3) { + return LineBB[s1][s2] & s3; } -/// squares_in_front_of takes a color and a square as input, and returns a -/// bitboard representing all squares along the line in front of the square, -/// from the point of view of the given color. Definition of the table is: -/// SquaresInFrontOf[c][s] = in_front_bb(c, s) & file_bb(s) +/// Functions for computing sliding attack bitboards. Function attacks_bb() takes +/// a square and a bitboard of occupied squares as input, and returns a bitboard +/// representing all squares attacked by Pt (bishop or rook) on the given square. +template +FORCE_INLINE unsigned magic_index(Square s, Bitboard occupied) { -inline Bitboard squares_in_front_of(Color c, Square s) { - return SquaresInFrontMask[c][s]; -} + Bitboard* const Masks = Pt == ROOK ? RookMasks : BishopMasks; + Bitboard* const Magics = Pt == ROOK ? RookMagics : BishopMagics; + unsigned* const Shifts = Pt == ROOK ? RookShifts : BishopShifts; + if (HasPext) + return unsigned(_pext_u64(occupied, Masks[s])); -/// passed_pawn_mask takes a color and a square as input, and returns a -/// bitboard mask which can be used to test if a pawn of the given color on -/// the given square is a passed pawn. Definition of the table is: -/// PassedPawnMask[c][s] = in_front_bb(c, s) & this_and_neighboring_files_bb(s) + if (Is64Bit) + return unsigned(((occupied & Masks[s]) * Magics[s]) >> Shifts[s]); -inline Bitboard passed_pawn_mask(Color c, Square s) { - return PassedPawnMask[c][s]; + unsigned lo = unsigned(occupied) & unsigned(Masks[s]); + unsigned hi = unsigned(occupied >> 32) & unsigned(Masks[s] >> 32); + return (lo * unsigned(Magics[s]) ^ hi * unsigned(Magics[s] >> 32)) >> Shifts[s]; } +template +inline Bitboard attacks_bb(Square s, Bitboard occupied) { + return (Pt == ROOK ? RookAttacks : BishopAttacks)[s][magic_index(s, occupied)]; +} -/// attack_span_mask takes a color and a square as input, and returns a bitboard -/// representing all squares that can be attacked by a pawn of the given color -/// when it moves along its file starting from the given square. Definition is: -/// AttackSpanMask[c][s] = in_front_bb(c, s) & neighboring_files_bb(s); +inline Bitboard attacks_bb(Piece pc, Square s, Bitboard occupied) { -inline Bitboard attack_span_mask(Color c, Square s) { - return AttackSpanMask[c][s]; + switch (type_of(pc)) + { + case BISHOP: return attacks_bb(s, occupied); + case ROOK : return attacks_bb(s, occupied); + case QUEEN : return attacks_bb(s, occupied) | attacks_bb(s, occupied); + default : return StepAttacksBB[pc][s]; + } } +/// lsb()/msb() finds the least/most significant bit in a non-zero bitboard. +/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard. -/// squares_aligned returns true if the squares s1, s2 and s3 are aligned -/// either on a straight or on a diagonal line. +#ifdef USE_BSFQ + +# if defined(_MSC_VER) && !defined(__INTEL_COMPILER) + +FORCE_INLINE Square lsb(Bitboard b) { + unsigned long idx; + _BitScanForward64(&idx, b); + return (Square) idx; +} -inline bool squares_aligned(Square s1, Square s2, Square s3) { - return (BetweenBB[s1][s2] | BetweenBB[s1][s3] | BetweenBB[s2][s3]) - & ( SetMaskBB[s1] | SetMaskBB[s2] | SetMaskBB[s3]); +FORCE_INLINE Square msb(Bitboard b) { + unsigned long idx; + _BitScanReverse64(&idx, b); + return (Square) idx; } +# elif defined(__arm__) -/// first_1() finds the least significant nonzero bit in a nonzero bitboard. -/// pop_1st_bit() finds and clears the least significant nonzero bit in a -/// nonzero bitboard. +FORCE_INLINE int lsb32(uint32_t v) { + __asm__("rbit %0, %1" : "=r"(v) : "r"(v)); + return __builtin_clz(v); +} -#if defined(USE_BSFQ) +FORCE_INLINE Square msb(Bitboard b) { + return (Square) (63 - __builtin_clzll(b)); +} -#if defined(_MSC_VER) && !defined(__INTEL_COMPILER) +FORCE_INLINE Square lsb(Bitboard b) { + return (Square) (uint32_t(b) ? lsb32(uint32_t(b)) : 32 + lsb32(uint32_t(b >> 32))); +} -FORCE_INLINE Square first_1(Bitboard b) { - unsigned long index; - _BitScanForward64(&index, b); - return (Square) index; +# else + +FORCE_INLINE Square lsb(Bitboard b) { // Assembly code by Heinz van Saanen + Bitboard idx; + __asm__("bsfq %1, %0": "=r"(idx): "rm"(b) ); + return (Square) idx; } -#else -FORCE_INLINE Square first_1(Bitboard b) { // Assembly code by Heinz van Saanen - Bitboard dummy; - __asm__("bsfq %1, %0": "=r"(dummy): "rm"(b) ); - return (Square) dummy; +FORCE_INLINE Square msb(Bitboard b) { + Bitboard idx; + __asm__("bsrq %1, %0": "=r"(idx): "rm"(b) ); + return (Square) idx; } -#endif -FORCE_INLINE Square pop_1st_bit(Bitboard* b) { - const Square s = first_1(*b); - *b &= ~(1ULL<