X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fmaterial.cpp;h=323611779963de5f62baf564e8ae98e920a9160b;hp=27a88f86e67527c5d8851af6d4af9fb5583183cd;hb=55bd27b8f08a151128d7065fa2819aa3e9605299;hpb=14df99130f53a2a5f57260eb830b4c0029bd4e99 diff --git a/src/material.cpp b/src/material.cpp index 27a88f86..32361177 100644 --- a/src/material.cpp +++ b/src/material.cpp @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -17,9 +17,9 @@ along with this program. If not, see . */ +#include #include #include -#include #include "material.h" @@ -63,11 +63,11 @@ namespace { const Color Them = (Us == WHITE ? BLACK : WHITE); return pos.non_pawn_material(Them) == VALUE_ZERO && pos.piece_count(Them, PAWN) == 0 - && pos.non_pawn_material(Us) >= RookValueMidgame; + && pos.non_pawn_material(Us) >= RookValueMg; } template bool is_KBPsKs(const Position& pos) { - return pos.non_pawn_material(Us) == BishopValueMidgame + return pos.non_pawn_material(Us) == BishopValueMg && pos.piece_count(Us, BISHOP) == 1 && pos.piece_count(Us, PAWN) >= 1; } @@ -75,7 +75,7 @@ namespace { template bool is_KQKRPs(const Position& pos) { const Color Them = (Us == WHITE ? BLACK : WHITE); return pos.piece_count(Us, PAWN) == 0 - && pos.non_pawn_material(Us) == QueenValueMidgame + && pos.non_pawn_material(Us) == QueenValueMg && pos.piece_count(Us, QUEEN) == 1 && pos.piece_count(Them, ROOK) == 1 && pos.piece_count(Them, PAWN) >= 1; @@ -84,67 +84,57 @@ namespace { } // namespace -/// MaterialInfoTable c'tor and d'tor allocate and free the space for Endgames - -void MaterialInfoTable::init() { Base::init(); if (!funcs) funcs = new Endgames(); } -MaterialInfoTable::~MaterialInfoTable() { delete funcs; } +/// MaterialTable::probe() takes a position object as input, looks up a MaterialEntry +/// object, and returns a pointer to it. If the material configuration is not +/// already present in the table, it is computed and stored there, so we don't +/// have to recompute everything when the same material configuration occurs again. +MaterialEntry* MaterialTable::probe(const Position& pos) { -/// MaterialInfoTable::get_material_info() takes a position object as input, -/// computes or looks up a MaterialInfo object, and returns a pointer to it. -/// If the material configuration is not already present in the table, it -/// is stored there, so we don't have to recompute everything when the -/// same material configuration occurs again. + Key key = pos.material_key(); + MaterialEntry* e = entries[key]; -MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const { - - Key key = pos.get_material_key(); - MaterialInfo* mi = probe(key); - - // If mi->key matches the position's material hash key, it means that we + // If e->key matches the position's material hash key, it means that we // have analysed this material configuration before, and we can simply // return the information we found the last time instead of recomputing it. - if (mi->key == key) - return mi; - - // Initialize MaterialInfo entry - memset(mi, 0, sizeof(MaterialInfo)); - mi->key = key; - mi->factor[WHITE] = mi->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL; + if (e->key == key) + return e; - // Store game phase - mi->gamePhase = MaterialInfoTable::game_phase(pos); + memset(e, 0, sizeof(MaterialEntry)); + e->key = key; + e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL; + e->gamePhase = MaterialTable::game_phase(pos); // Let's look if we have a specialized evaluation function for this // particular material configuration. First we look for a fixed // configuration one, then a generic one if previous search failed. - if ((mi->evaluationFunction = funcs->get(key)) != NULL) - return mi; + if (endgames.probe(key, e->evaluationFunction)) + return e; if (is_KXK(pos)) { - mi->evaluationFunction = &EvaluateKXK[WHITE]; - return mi; + e->evaluationFunction = &EvaluateKXK[WHITE]; + return e; } if (is_KXK(pos)) { - mi->evaluationFunction = &EvaluateKXK[BLACK]; - return mi; + e->evaluationFunction = &EvaluateKXK[BLACK]; + return e; } if (!pos.pieces(PAWN) && !pos.pieces(ROOK) && !pos.pieces(QUEEN)) { // Minor piece endgame with at least one minor piece per side and // no pawns. Note that the case KmmK is already handled by KXK. - assert((pos.pieces(KNIGHT, WHITE) | pos.pieces(BISHOP, WHITE))); - assert((pos.pieces(KNIGHT, BLACK) | pos.pieces(BISHOP, BLACK))); + assert((pos.pieces(WHITE, KNIGHT) | pos.pieces(WHITE, BISHOP))); + assert((pos.pieces(BLACK, KNIGHT) | pos.pieces(BLACK, BISHOP))); if ( pos.piece_count(WHITE, BISHOP) + pos.piece_count(WHITE, KNIGHT) <= 2 && pos.piece_count(BLACK, BISHOP) + pos.piece_count(BLACK, KNIGHT) <= 2) { - mi->evaluationFunction = &EvaluateKmmKm[pos.side_to_move()]; - return mi; + e->evaluationFunction = &EvaluateKmmKm[pos.side_to_move()]; + return e; } } @@ -155,26 +145,26 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const { // scaling functions and we need to decide which one to use. EndgameBase* sf; - if ((sf = funcs->get(key)) != NULL) + if (endgames.probe(key, sf)) { - mi->scalingFunction[sf->color()] = sf; - return mi; + e->scalingFunction[sf->color()] = sf; + return e; } // Generic scaling functions that refer to more then one material // distribution. Should be probed after the specialized ones. // Note that these ones don't return after setting the function. if (is_KBPsKs(pos)) - mi->scalingFunction[WHITE] = &ScaleKBPsK[WHITE]; + e->scalingFunction[WHITE] = &ScaleKBPsK[WHITE]; if (is_KBPsKs(pos)) - mi->scalingFunction[BLACK] = &ScaleKBPsK[BLACK]; + e->scalingFunction[BLACK] = &ScaleKBPsK[BLACK]; if (is_KQKRPs(pos)) - mi->scalingFunction[WHITE] = &ScaleKQKRPs[WHITE]; + e->scalingFunction[WHITE] = &ScaleKQKRPs[WHITE]; else if (is_KQKRPs(pos)) - mi->scalingFunction[BLACK] = &ScaleKQKRPs[BLACK]; + e->scalingFunction[BLACK] = &ScaleKQKRPs[BLACK]; Value npm_w = pos.non_pawn_material(WHITE); Value npm_b = pos.non_pawn_material(BLACK); @@ -184,42 +174,42 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const { if (pos.piece_count(BLACK, PAWN) == 0) { assert(pos.piece_count(WHITE, PAWN) >= 2); - mi->scalingFunction[WHITE] = &ScaleKPsK[WHITE]; + e->scalingFunction[WHITE] = &ScaleKPsK[WHITE]; } else if (pos.piece_count(WHITE, PAWN) == 0) { assert(pos.piece_count(BLACK, PAWN) >= 2); - mi->scalingFunction[BLACK] = &ScaleKPsK[BLACK]; + e->scalingFunction[BLACK] = &ScaleKPsK[BLACK]; } else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1) { // This is a special case because we set scaling functions // for both colors instead of only one. - mi->scalingFunction[WHITE] = &ScaleKPKP[WHITE]; - mi->scalingFunction[BLACK] = &ScaleKPKP[BLACK]; + e->scalingFunction[WHITE] = &ScaleKPKP[WHITE]; + e->scalingFunction[BLACK] = &ScaleKPKP[BLACK]; } } // No pawns makes it difficult to win, even with a material advantage - if (pos.piece_count(WHITE, PAWN) == 0 && npm_w - npm_b <= BishopValueMidgame) + if (pos.piece_count(WHITE, PAWN) == 0 && npm_w - npm_b <= BishopValueMg) { - mi->factor[WHITE] = uint8_t - (npm_w == npm_b || npm_w < RookValueMidgame ? 0 : NoPawnsSF[std::min(pos.piece_count(WHITE, BISHOP), 2)]); + e->factor[WHITE] = (uint8_t) + (npm_w == npm_b || npm_w < RookValueMg ? 0 : NoPawnsSF[std::min(pos.piece_count(WHITE, BISHOP), 2)]); } - if (pos.piece_count(BLACK, PAWN) == 0 && npm_b - npm_w <= BishopValueMidgame) + if (pos.piece_count(BLACK, PAWN) == 0 && npm_b - npm_w <= BishopValueMg) { - mi->factor[BLACK] = uint8_t - (npm_w == npm_b || npm_b < RookValueMidgame ? 0 : NoPawnsSF[std::min(pos.piece_count(BLACK, BISHOP), 2)]); + e->factor[BLACK] = (uint8_t) + (npm_w == npm_b || npm_b < RookValueMg ? 0 : NoPawnsSF[std::min(pos.piece_count(BLACK, BISHOP), 2)]); } // Compute the space weight - if (npm_w + npm_b >= 2 * QueenValueMidgame + 4 * RookValueMidgame + 2 * KnightValueMidgame) + if (npm_w + npm_b >= 2 * QueenValueMg + 4 * RookValueMg + 2 * KnightValueMg) { int minorPieceCount = pos.piece_count(WHITE, KNIGHT) + pos.piece_count(WHITE, BISHOP) + pos.piece_count(BLACK, KNIGHT) + pos.piece_count(BLACK, BISHOP); - mi->spaceWeight = minorPieceCount * minorPieceCount; + e->spaceWeight = minorPieceCount * minorPieceCount; } // Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder @@ -231,16 +221,16 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const { { pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT), pos.piece_count(BLACK, BISHOP) , pos.piece_count(BLACK, ROOK), pos.piece_count(BLACK, QUEEN) } }; - mi->value = int16_t((imbalance(pieceCount) - imbalance(pieceCount)) / 16); - return mi; + e->value = (int16_t)((imbalance(pieceCount) - imbalance(pieceCount)) / 16); + return e; } -/// MaterialInfoTable::imbalance() calculates imbalance comparing piece count of each +/// MaterialTable::imbalance() calculates imbalance comparing piece count of each /// piece type for both colors. template -int MaterialInfoTable::imbalance(const int pieceCount[][8]) { +int MaterialTable::imbalance(const int pieceCount[][8]) { const Color Them = (Us == WHITE ? BLACK : WHITE); @@ -254,7 +244,7 @@ int MaterialInfoTable::imbalance(const int pieceCount[][8]) { + RedundantQueenPenalty * pieceCount[Us][QUEEN]; // Second-degree polynomial material imbalance by Tord Romstad - for (pt1 = PIECE_TYPE_NONE; pt1 <= QUEEN; pt1++) + for (pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++) { pc = pieceCount[Us][pt1]; if (!pc) @@ -262,7 +252,7 @@ int MaterialInfoTable::imbalance(const int pieceCount[][8]) { v = LinearCoefficients[pt1]; - for (pt2 = PIECE_TYPE_NONE; pt2 <= pt1; pt2++) + for (pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++) v += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2] + QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2]; @@ -272,11 +262,11 @@ int MaterialInfoTable::imbalance(const int pieceCount[][8]) { } -/// MaterialInfoTable::game_phase() calculates the phase given the current +/// MaterialTable::game_phase() calculates the phase given the current /// position. Because the phase is strictly a function of the material, it -/// is stored in MaterialInfo. +/// is stored in MaterialEntry. -Phase MaterialInfoTable::game_phase(const Position& pos) { +Phase MaterialTable::game_phase(const Position& pos) { Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK);