X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fmaterial.cpp;h=e22942128f4a98974f856ecefb836c15b091ff8a;hp=7047afb1522511e6affde31d09e56282372f0f87;hb=f7d8ea3866c26df10617e97513e906d1f5a5b833;hpb=6933f05f4b1b7b1bd2c072029bf5a06cbeac5b0b diff --git a/src/material.cpp b/src/material.cpp index 7047afb1..e2294212 100644 --- a/src/material.cpp +++ b/src/material.cpp @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -17,11 +17,12 @@ along with this program. If not, see . */ -#include // For std::min +#include // For std::min #include -#include +#include // For std::memset #include "material.h" +#include "thread.h" using namespace std; @@ -32,7 +33,7 @@ namespace { // pair pawn knight bishop rook queen const int Linear[6] = { 1852, -162, -1122, -183, 249, -154 }; - const int QuadraticSameSide[][PIECE_TYPE_NB] = { + const int QuadraticOurs[][PIECE_TYPE_NB] = { // OUR PIECES // pair pawn knight bishop rook queen { 0 }, // Bishop pair @@ -43,7 +44,7 @@ namespace { {-177, 25, 129, 142, -137, 0 } // Queen }; - const int QuadraticOppositeSide[][PIECE_TYPE_NB] = { + const int QuadraticTheirs[][PIECE_TYPE_NB] = { // THEIR PIECES // pair pawn knight bishop rook queen { 0 }, // Bishop pair @@ -56,7 +57,7 @@ namespace { // Endgame evaluation and scaling functions are accessed directly and not through // the function maps because they correspond to more than one material hash key. - Endgame EvaluateKXK[] = { Endgame(WHITE), Endgame(BLACK) }; + Endgame EvaluateKXK[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame ScaleKBPsK[] = { Endgame(WHITE), Endgame(BLACK) }; Endgame ScaleKQKRPs[] = { Endgame(WHITE), Endgame(BLACK) }; @@ -104,8 +105,8 @@ namespace { int v = Linear[pt1]; for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2) - v += QuadraticSameSide[pt1][pt2] * pieceCount[Us][pt2] - + QuadraticOppositeSide[pt1][pt2] * pieceCount[Them][pt2]; + v += QuadraticOurs[pt1][pt2] * pieceCount[Us][pt2] + + QuadraticTheirs[pt1][pt2] * pieceCount[Them][pt2]; bonus += pieceCount[Us][pt1] * v; } @@ -117,19 +118,16 @@ namespace { namespace Material { -/// Material::probe() takes a position object as input, looks up a MaterialEntry -/// object, and returns a pointer to it. If the material configuration is not -/// already present in the table, it is computed and stored there, so we don't -/// have to recompute everything when the same material configuration occurs again. +/// Material::probe() looks up the current position's material configuration in +/// the material hash table. It returns a pointer to the Entry if the position +/// is found. Otherwise a new Entry is computed and stored there, so we don't +/// have to recompute all when the same material configuration occurs again. -Entry* probe(const Position& pos, Table& entries, Endgames& endgames) { +Entry* probe(const Position& pos) { Key key = pos.material_key(); - Entry* e = entries[key]; + Entry* e = pos.this_thread()->materialTable[key]; - // If e->key matches the position's material hash key, it means that we - // have analysed this material configuration before, and we can simply - // return the information we found the last time instead of recomputing it. if (e->key == key) return e; @@ -141,7 +139,7 @@ Entry* probe(const Position& pos, Table& entries, Endgames& endgames) { // Let's look if we have a specialized evaluation function for this particular // material configuration. Firstly we look for a fixed configuration one, then // for a generic one if the previous search failed. - if (endgames.probe(key, e->evaluationFunction)) + if ((e->evaluationFunction = pos.this_thread()->endgames.probe(key)) != nullptr) return e; if (is_KXK(pos)) @@ -156,22 +154,19 @@ Entry* probe(const Position& pos, Table& entries, Endgames& endgames) { return e; } - // OK, we didn't find any special evaluation function for the current - // material configuration. Is there a suitable scaling function? - // - // We face problems when there are several conflicting applicable - // scaling functions and we need to decide which one to use. + // OK, we didn't find any special evaluation function for the current material + // configuration. Is there a suitable specialized scaling function? EndgameBase* sf; - if (endgames.probe(key, sf)) + if ((sf = pos.this_thread()->endgames.probe(key)) != nullptr) { - e->scalingFunction[sf->color()] = sf; + e->scalingFunction[sf->strong_side()] = sf; // Only strong color assigned return e; } - // Generic scaling functions that refer to more than one material - // distribution. They should be probed after the specialized ones. - // Note that these ones don't return after setting the function. + // We didn't find any specialized scaling function, so fall back on generic + // ones that refer to more than one material distribution. Note that in this + // case we don't return after setting the function. if (is_KBPsKs(pos)) e->scalingFunction[WHITE] = &ScaleKBPsK[WHITE]; @@ -187,16 +182,18 @@ Entry* probe(const Position& pos, Table& entries, Endgames& endgames) { Value npm_w = pos.non_pawn_material(WHITE); Value npm_b = pos.non_pawn_material(BLACK); - if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) + if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) // Only pawns on the board { if (!pos.count(BLACK)) { assert(pos.count(WHITE) >= 2); + e->scalingFunction[WHITE] = &ScaleKPsK[WHITE]; } else if (!pos.count(WHITE)) { assert(pos.count(BLACK) >= 2); + e->scalingFunction[BLACK] = &ScaleKPsK[BLACK]; } else if (pos.count(WHITE) == 1 && pos.count(BLACK) == 1) @@ -208,14 +205,16 @@ Entry* probe(const Position& pos, Table& entries, Endgames& endgames) { } } - // No pawns makes it difficult to win, even with a material advantage. This - // catches some trivial draws like KK, KBK and KNK and gives a very drawish - // scale factor for cases such as KRKBP and KmmKm (except for KBBKN). + // Zero or just one pawn makes it difficult to win, even with a small material + // advantage. This catches some trivial draws like KK, KBK and KNK and gives a + // drawish scale factor for cases such as KRKBP and KmmKm (except for KBBKN). if (!pos.count(WHITE) && npm_w - npm_b <= BishopValueMg) - e->factor[WHITE] = uint8_t(npm_w < RookValueMg ? SCALE_FACTOR_DRAW : npm_b <= BishopValueMg ? 4 : 12); + e->factor[WHITE] = uint8_t(npm_w < RookValueMg ? SCALE_FACTOR_DRAW : + npm_b <= BishopValueMg ? 4 : 12); if (!pos.count(BLACK) && npm_b - npm_w <= BishopValueMg) - e->factor[BLACK] = uint8_t(npm_b < RookValueMg ? SCALE_FACTOR_DRAW : npm_w <= BishopValueMg ? 4 : 12); + e->factor[BLACK] = uint8_t(npm_b < RookValueMg ? SCALE_FACTOR_DRAW : + npm_w <= BishopValueMg ? 4 : 12); if (pos.count(WHITE) == 1 && npm_w - npm_b <= BishopValueMg) e->factor[WHITE] = (uint8_t) SCALE_FACTOR_ONEPAWN; @@ -223,25 +222,16 @@ Entry* probe(const Position& pos, Table& entries, Endgames& endgames) { if (pos.count(BLACK) == 1 && npm_b - npm_w <= BishopValueMg) e->factor[BLACK] = (uint8_t) SCALE_FACTOR_ONEPAWN; - // Compute the space weight - if (npm_w + npm_b >= 2 * QueenValueMg + 4 * RookValueMg + 2 * KnightValueMg) - { - int minorPieceCount = pos.count(WHITE) + pos.count(WHITE) - + pos.count(BLACK) + pos.count(BLACK); - - e->spaceWeight = make_score(minorPieceCount * minorPieceCount, 0); - } - // Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder // for the bishop pair "extended piece", which allows us to be more flexible // in defining bishop pair bonuses. - const int pieceCount[COLOR_NB][PIECE_TYPE_NB] = { + const int PieceCount[COLOR_NB][PIECE_TYPE_NB] = { { pos.count(WHITE) > 1, pos.count(WHITE), pos.count(WHITE), pos.count(WHITE) , pos.count(WHITE), pos.count(WHITE) }, { pos.count(BLACK) > 1, pos.count(BLACK), pos.count(BLACK), pos.count(BLACK) , pos.count(BLACK), pos.count(BLACK) } }; - e->value = (int16_t)((imbalance(pieceCount) - imbalance(pieceCount)) / 16); + e->value = int16_t((imbalance(PieceCount) - imbalance(PieceCount)) / 16); return e; }