X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fmaterial.cpp;h=f77972e352c0d9395054750bca0ebe93aef3e73c;hp=3a05f3faf6b374aee5bd72ea221dd12fce3281b4;hb=d706ae62d73d90c0f80cdccd58384a347295d549;hpb=4a7b8180ecaef7d164fa53a1d545372df1173596 diff --git a/src/material.cpp b/src/material.cpp index 3a05f3fa..f77972e3 100644 --- a/src/material.cpp +++ b/src/material.cpp @@ -1,8 +1,6 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 - Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad - Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad + Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -27,31 +25,34 @@ using namespace std; namespace { + #define S(mg, eg) make_score(mg, eg) // Polynomial material imbalance parameters - constexpr int QuadraticOurs[][PIECE_TYPE_NB] = { + constexpr Score QuadraticOurs[][PIECE_TYPE_NB] = { // OUR PIECES // pair pawn knight bishop rook queen - {1438 }, // Bishop pair - { 40, 38 }, // Pawn - { 32, 255, -62 }, // Knight OUR PIECES - { 0, 104, 4, 0 }, // Bishop - { -26, -2, 47, 105, -208 }, // Rook - {-189, 24, 117, 133, -134, -6 } // Queen + {S(1419, 1455) }, // Bishop pair + {S( 101, 28), S( 37, 39) }, // Pawn + {S( 57, 64), S(249, 187), S(-49, -62) }, // Knight OUR PIECES + {S( 0, 0), S(118, 137), S( 10, 27), S( 0, 0) }, // Bishop + {S( -63, -68), S( -5, 3), S(100, 81), S(132, 118), S(-246, -244) }, // Rook + {S(-210, -211), S( 37, 14), S(147, 141), S(161, 105), S(-158, -174), S(-9,-31) } // Queen }; - constexpr int QuadraticTheirs[][PIECE_TYPE_NB] = { + constexpr Score QuadraticTheirs[][PIECE_TYPE_NB] = { // THEIR PIECES // pair pawn knight bishop rook queen - { 0 }, // Bishop pair - { 36, 0 }, // Pawn - { 9, 63, 0 }, // Knight OUR PIECES - { 59, 65, 42, 0 }, // Bishop - { 46, 39, 24, -24, 0 }, // Rook - { 97, 100, -42, 137, 268, 0 } // Queen + { }, // Bishop pair + {S( 33, 30) }, // Pawn + {S( 46, 18), S(106, 84) }, // Knight OUR PIECES + {S( 75, 35), S( 59, 44), S( 60, 15) }, // Bishop + {S( 26, 35), S( 6, 22), S( 38, 39), S(-12, -2) }, // Rook + {S( 97, 93), S(100, 163), S(-58, -91), S(112, 192), S(276, 225) } // Queen }; + #undef S + // Endgame evaluation and scaling functions are accessed directly and not through // the function maps because they correspond to more than one material hash key. Endgame EvaluateKXK[] = { Endgame(WHITE), Endgame(BLACK) }; @@ -79,14 +80,16 @@ namespace { && pos.count(~us) >= 1; } + /// imbalance() calculates the imbalance by comparing the piece count of each /// piece type for both colors. + template - int imbalance(const int pieceCount[][PIECE_TYPE_NB]) { + Score imbalance(const int pieceCount[][PIECE_TYPE_NB]) { - constexpr Color Them = (Us == WHITE ? BLACK : WHITE); + constexpr Color Them = ~Us; - int bonus = 0; + Score bonus = SCORE_ZERO; // Second-degree polynomial material imbalance, by Tord Romstad for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1) @@ -94,9 +97,9 @@ namespace { if (!pieceCount[Us][pt1]) continue; - int v = 0; + int v = QuadraticOurs[pt1][pt1] * pieceCount[Us][pt1]; - for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2) + for (int pt2 = NO_PIECE_TYPE; pt2 < pt1; ++pt2) v += QuadraticOurs[pt1][pt2] * pieceCount[Us][pt2] + QuadraticTheirs[pt1][pt2] * pieceCount[Them][pt2]; @@ -110,6 +113,7 @@ namespace { namespace Material { + /// Material::probe() looks up the current position's material configuration in /// the material hash table. It returns a pointer to the Entry if the position /// is found. Otherwise a new Entry is computed and stored there, so we don't @@ -129,7 +133,7 @@ Entry* probe(const Position& pos) { Value npm_w = pos.non_pawn_material(WHITE); Value npm_b = pos.non_pawn_material(BLACK); - Value npm = clamp(npm_w + npm_b, EndgameLimit, MidgameLimit); + Value npm = std::clamp(npm_w + npm_b, EndgameLimit, MidgameLimit); // Map total non-pawn material into [PHASE_ENDGAME, PHASE_MIDGAME] e->gamePhase = Phase(((npm - EndgameLimit) * PHASE_MIDGAME) / (MidgameLimit - EndgameLimit)); @@ -140,7 +144,7 @@ Entry* probe(const Position& pos) { if ((e->evaluationFunction = Endgames::probe(key)) != nullptr) return e; - for (Color c = WHITE; c <= BLACK; ++c) + for (Color c : { WHITE, BLACK }) if (is_KXK(pos, c)) { e->evaluationFunction = &EvaluateKXK[c]; @@ -160,7 +164,7 @@ Entry* probe(const Position& pos) { // We didn't find any specialized scaling function, so fall back on generic // ones that refer to more than one material distribution. Note that in this // case we don't return after setting the function. - for (Color c = WHITE; c <= BLACK; ++c) + for (Color c : { WHITE, BLACK }) { if (is_KBPsK(pos, c)) e->scalingFunction[c] = &ScaleKBPsK[c]; @@ -212,7 +216,7 @@ Entry* probe(const Position& pos) { { pos.count(BLACK) > 1, pos.count(BLACK), pos.count(BLACK), pos.count(BLACK) , pos.count(BLACK), pos.count(BLACK) } }; - e->value = int16_t((imbalance(pieceCount) - imbalance(pieceCount)) / 16); + e->score = (imbalance(pieceCount) - imbalance(pieceCount)) / 16; return e; }