X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fmaterial.cpp;h=f77972e352c0d9395054750bca0ebe93aef3e73c;hp=e5b8ddf2ac819cf6b11a71926eab3946d6d26c36;hb=d706ae62d73d90c0f80cdccd58384a347295d549;hpb=b48439e90643cb6f65f9e34d1421976883c12efc diff --git a/src/material.cpp b/src/material.cpp index e5b8ddf2..f77972e3 100644 --- a/src/material.cpp +++ b/src/material.cpp @@ -1,8 +1,6 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 - Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad - Copyright (C) 2015-2017 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad + Copyright (C) 2004-2020 The Stockfish developers (see AUTHORS file) Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -18,7 +16,6 @@ along with this program. If not, see . */ -#include // For std::min #include #include // For std::memset @@ -28,35 +25,33 @@ using namespace std; namespace { + #define S(mg, eg) make_score(mg, eg) // Polynomial material imbalance parameters - const int QuadraticOurs[][PIECE_TYPE_NB] = { + constexpr Score QuadraticOurs[][PIECE_TYPE_NB] = { // OUR PIECES // pair pawn knight bishop rook queen - {1667 }, // Bishop pair - { 40, 0 }, // Pawn - { 32, 255, -3 }, // Knight OUR PIECES - { 0, 104, 4, 0 }, // Bishop - { -26, -2, 47, 105, -149 }, // Rook - {-185, 24, 122, 137, -134, 0 } // Queen + {S(1419, 1455) }, // Bishop pair + {S( 101, 28), S( 37, 39) }, // Pawn + {S( 57, 64), S(249, 187), S(-49, -62) }, // Knight OUR PIECES + {S( 0, 0), S(118, 137), S( 10, 27), S( 0, 0) }, // Bishop + {S( -63, -68), S( -5, 3), S(100, 81), S(132, 118), S(-246, -244) }, // Rook + {S(-210, -211), S( 37, 14), S(147, 141), S(161, 105), S(-158, -174), S(-9,-31) } // Queen }; - const int QuadraticTheirs[][PIECE_TYPE_NB] = { + constexpr Score QuadraticTheirs[][PIECE_TYPE_NB] = { // THEIR PIECES // pair pawn knight bishop rook queen - { 0 }, // Bishop pair - { 36, 0 }, // Pawn - { 9, 63, 0 }, // Knight OUR PIECES - { 59, 65, 42, 0 }, // Bishop - { 46, 39, 24, -24, 0 }, // Rook - { 101, 100, -37, 141, 268, 0 } // Queen + { }, // Bishop pair + {S( 33, 30) }, // Pawn + {S( 46, 18), S(106, 84) }, // Knight OUR PIECES + {S( 75, 35), S( 59, 44), S( 60, 15) }, // Bishop + {S( 26, 35), S( 6, 22), S( 38, 39), S(-12, -2) }, // Rook + {S( 97, 93), S(100, 163), S(-58, -91), S(112, 192), S(276, 225) } // Queen }; - // PawnSet[pawn count] contains a bonus/malus indexed by number of pawns - const int PawnSet[] = { - 24, -32, 107, -51, 117, -9, -126, -21, 31 - }; + #undef S // Endgame evaluation and scaling functions are accessed directly and not through // the function maps because they correspond to more than one material hash key. @@ -73,38 +68,38 @@ namespace { && pos.non_pawn_material(us) >= RookValueMg; } - bool is_KBPsKs(const Position& pos, Color us) { + bool is_KBPsK(const Position& pos, Color us) { return pos.non_pawn_material(us) == BishopValueMg - && pos.count(us) == 1 && pos.count(us) >= 1; } bool is_KQKRPs(const Position& pos, Color us) { return !pos.count(us) && pos.non_pawn_material(us) == QueenValueMg - && pos.count(us) == 1 && pos.count(~us) == 1 && pos.count(~us) >= 1; } + /// imbalance() calculates the imbalance by comparing the piece count of each /// piece type for both colors. + template - int imbalance(const int pieceCount[][PIECE_TYPE_NB]) { + Score imbalance(const int pieceCount[][PIECE_TYPE_NB]) { - const Color Them = (Us == WHITE ? BLACK : WHITE); + constexpr Color Them = ~Us; - int bonus = PawnSet[pieceCount[Us][PAWN]]; + Score bonus = SCORE_ZERO; - // Second-degree polynomial material imbalance by Tord Romstad + // Second-degree polynomial material imbalance, by Tord Romstad for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1) { if (!pieceCount[Us][pt1]) continue; - int v = 0; + int v = QuadraticOurs[pt1][pt1] * pieceCount[Us][pt1]; - for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2) + for (int pt2 = NO_PIECE_TYPE; pt2 < pt1; ++pt2) v += QuadraticOurs[pt1][pt2] * pieceCount[Us][pt2] + QuadraticTheirs[pt1][pt2] * pieceCount[Them][pt2]; @@ -118,6 +113,7 @@ namespace { namespace Material { + /// Material::probe() looks up the current position's material configuration in /// the material hash table. It returns a pointer to the Entry if the position /// is found. Otherwise a new Entry is computed and stored there, so we don't @@ -134,15 +130,21 @@ Entry* probe(const Position& pos) { std::memset(e, 0, sizeof(Entry)); e->key = key; e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL; - e->gamePhase = pos.game_phase(); + + Value npm_w = pos.non_pawn_material(WHITE); + Value npm_b = pos.non_pawn_material(BLACK); + Value npm = std::clamp(npm_w + npm_b, EndgameLimit, MidgameLimit); + + // Map total non-pawn material into [PHASE_ENDGAME, PHASE_MIDGAME] + e->gamePhase = Phase(((npm - EndgameLimit) * PHASE_MIDGAME) / (MidgameLimit - EndgameLimit)); // Let's look if we have a specialized evaluation function for this particular // material configuration. Firstly we look for a fixed configuration one, then // for a generic one if the previous search failed. - if ((e->evaluationFunction = pos.this_thread()->endgames.probe(key)) != nullptr) + if ((e->evaluationFunction = Endgames::probe(key)) != nullptr) return e; - for (Color c = WHITE; c <= BLACK; ++c) + for (Color c : { WHITE, BLACK }) if (is_KXK(pos, c)) { e->evaluationFunction = &EvaluateKXK[c]; @@ -151,29 +153,26 @@ Entry* probe(const Position& pos) { // OK, we didn't find any special evaluation function for the current material // configuration. Is there a suitable specialized scaling function? - EndgameBase* sf; + const auto* sf = Endgames::probe(key); - if ((sf = pos.this_thread()->endgames.probe(key)) != nullptr) + if (sf) { - e->scalingFunction[sf->strong_side()] = sf; // Only strong color assigned + e->scalingFunction[sf->strongSide] = sf; // Only strong color assigned return e; } // We didn't find any specialized scaling function, so fall back on generic // ones that refer to more than one material distribution. Note that in this // case we don't return after setting the function. - for (Color c = WHITE; c <= BLACK; ++c) + for (Color c : { WHITE, BLACK }) { - if (is_KBPsKs(pos, c)) + if (is_KBPsK(pos, c)) e->scalingFunction[c] = &ScaleKBPsK[c]; else if (is_KQKRPs(pos, c)) e->scalingFunction[c] = &ScaleKQKRPs[c]; } - Value npm_w = pos.non_pawn_material(WHITE); - Value npm_b = pos.non_pawn_material(BLACK); - if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) // Only pawns on the board { if (!pos.count(BLACK)) @@ -208,22 +207,16 @@ Entry* probe(const Position& pos) { e->factor[BLACK] = uint8_t(npm_b < RookValueMg ? SCALE_FACTOR_DRAW : npm_w <= BishopValueMg ? 4 : 14); - if (pos.count(WHITE) == 1 && npm_w - npm_b <= BishopValueMg) - e->factor[WHITE] = (uint8_t) SCALE_FACTOR_ONEPAWN; - - if (pos.count(BLACK) == 1 && npm_b - npm_w <= BishopValueMg) - e->factor[BLACK] = (uint8_t) SCALE_FACTOR_ONEPAWN; - // Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder // for the bishop pair "extended piece", which allows us to be more flexible // in defining bishop pair bonuses. - const int PieceCount[COLOR_NB][PIECE_TYPE_NB] = { + const int pieceCount[COLOR_NB][PIECE_TYPE_NB] = { { pos.count(WHITE) > 1, pos.count(WHITE), pos.count(WHITE), pos.count(WHITE) , pos.count(WHITE), pos.count(WHITE) }, { pos.count(BLACK) > 1, pos.count(BLACK), pos.count(BLACK), pos.count(BLACK) , pos.count(BLACK), pos.count(BLACK) } }; - e->value = int16_t((imbalance(PieceCount) - imbalance(PieceCount)) / 16); + e->score = (imbalance(pieceCount) - imbalance(pieceCount)) / 16; return e; }