X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fpawns.cpp;h=3634f95746796afef7ab904856629b59d2c970fa;hp=3aede5adfa7f111b42ddef9332e9182a5dfba8f5;hb=d3091971b789b4be4c56fdf608eae33c5c54bbd4;hpb=a44c5cf4f77b05a0385c127b7c26cf086a73120e diff --git a/src/pawns.cpp b/src/pawns.cpp index 3aede5ad..3634f957 100644 --- a/src/pawns.cpp +++ b/src/pawns.cpp @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -17,6 +17,7 @@ along with this program. If not, see . */ +#include #include #include "bitboard.h" @@ -26,216 +27,270 @@ namespace { + #define V Value #define S(mg, eg) make_score(mg, eg) - // Doubled pawn penalty by opposed flag and file - const Score DoubledPawnPenalty[2][8] = { - { S(13, 43), S(20, 48), S(23, 48), S(23, 48), - S(23, 48), S(23, 48), S(20, 48), S(13, 43) }, - { S(13, 43), S(20, 48), S(23, 48), S(23, 48), - S(23, 48), S(23, 48), S(20, 48), S(13, 43) }}; + // Doubled pawn penalty by file + const Score Doubled[FILE_NB] = { + S(13, 43), S(20, 48), S(23, 48), S(23, 48), + S(23, 48), S(23, 48), S(20, 48), S(13, 43) }; // Isolated pawn penalty by opposed flag and file - const Score IsolatedPawnPenalty[2][8] = { + const Score Isolated[2][FILE_NB] = { { S(37, 45), S(54, 52), S(60, 52), S(60, 52), S(60, 52), S(60, 52), S(54, 52), S(37, 45) }, { S(25, 30), S(36, 35), S(40, 35), S(40, 35), - S(40, 35), S(40, 35), S(36, 35), S(25, 30) }}; + S(40, 35), S(40, 35), S(36, 35), S(25, 30) } }; // Backward pawn penalty by opposed flag and file - const Score BackwardPawnPenalty[2][8] = { + const Score Backward[2][FILE_NB] = { { S(30, 42), S(43, 46), S(49, 46), S(49, 46), S(49, 46), S(49, 46), S(43, 46), S(30, 42) }, { S(20, 28), S(29, 31), S(33, 31), S(33, 31), - S(33, 31), S(33, 31), S(29, 31), S(20, 28) }}; + S(33, 31), S(33, 31), S(29, 31), S(20, 28) } }; - // Pawn chain membership bonus by file - const Score ChainBonus[8] = { - S(11,-1), S(13,-1), S(13,-1), S(14,-1), - S(14,-1), S(13,-1), S(13,-1), S(11,-1) - }; + // Connected pawn bonus by opposed, phalanx flags and rank + Score Connected[2][2][RANK_NB]; - // Candidate passed pawn bonus by rank - const Score CandidateBonus[8] = { - S( 0, 0), S( 6, 13), S(6,13), S(14,29), - S(34,68), S(83,166), S(0, 0), S( 0, 0) - }; + // Levers bonus by rank + const Score Lever[RANK_NB] = { + S( 0, 0), S( 0, 0), S(0, 0), S(0, 0), + S(20,20), S(40,40), S(0, 0), S(0, 0) }; - const Score PawnStructureWeight = S(233, 201); + // Unsupported pawn penalty + const Score UnsupportedPawnPenalty = S(20, 10); - #undef S + // Weakness of our pawn shelter in front of the king indexed by [rank] + const Value ShelterWeakness[RANK_NB] = + { V(100), V(0), V(27), V(73), V(92), V(101), V(101) }; + + // Danger of enemy pawns moving toward our king indexed by + // [no friendly pawn | pawn unblocked | pawn blocked][rank of enemy pawn] + const Value StormDanger[][RANK_NB] = { + { V( 0), V(64), V(128), V(51), V(26) }, + { V(26), V(32), V( 96), V(38), V(20) }, + { V( 0), V( 0), V(160), V(25), V(13) } }; + + // Max bonus for king safety. Corresponds to start position with all the pawns + // in front of the king and no enemy pawn on the horizon. + const Value MaxSafetyBonus = V(263); - inline Score apply_weight(Score v, Score w) { - return make_score((int(mg_value(v)) * mg_value(w)) / 0x100, - (int(eg_value(v)) * eg_value(w)) / 0x100); + #undef S + #undef V + + template + Score evaluate(const Position& pos, Pawns::Entry* e) { + + const Color Them = (Us == WHITE ? BLACK : WHITE); + const Square Up = (Us == WHITE ? DELTA_N : DELTA_S); + const Square Right = (Us == WHITE ? DELTA_NE : DELTA_SW); + const Square Left = (Us == WHITE ? DELTA_NW : DELTA_SE); + + Bitboard b, p, doubled, connected; + Square s; + bool passed, isolated, opposed, phalanx, backward, unsupported, lever; + Score value = SCORE_ZERO; + const Square* pl = pos.list(Us); + const Bitboard* pawnAttacksBB = StepAttacksBB[make_piece(Us, PAWN)]; + + Bitboard ourPawns = pos.pieces(Us , PAWN); + Bitboard theirPawns = pos.pieces(Them, PAWN); + + e->passedPawns[Us] = 0; + e->kingSquares[Us] = SQ_NONE; + e->semiopenFiles[Us] = 0xFF; + e->pawnAttacks[Us] = shift_bb(ourPawns) | shift_bb(ourPawns); + e->pawnsOnSquares[Us][BLACK] = popcount(ourPawns & DarkSquares); + e->pawnsOnSquares[Us][WHITE] = pos.count(Us) - e->pawnsOnSquares[Us][BLACK]; + + // Loop through all pawns of the current color and score each pawn + while ((s = *pl++) != SQ_NONE) + { + assert(pos.piece_on(s) == make_piece(Us, PAWN)); + + File f = file_of(s); + + // This file cannot be semi-open + e->semiopenFiles[Us] &= ~(1 << f); + + // Previous rank + p = rank_bb(s - pawn_push(Us)); + + // Flag the pawn as passed, isolated, doubled, + // unsupported or connected (but not the backward one). + connected = ourPawns & adjacent_files_bb(f) & (rank_bb(s) | p); + phalanx = connected & rank_bb(s); + unsupported = !(ourPawns & adjacent_files_bb(f) & p); + isolated = !(ourPawns & adjacent_files_bb(f)); + doubled = ourPawns & forward_bb(Us, s); + opposed = theirPawns & forward_bb(Us, s); + passed = !(theirPawns & passed_pawn_mask(Us, s)); + lever = theirPawns & pawnAttacksBB[s]; + + // Test for backward pawn. + // If the pawn is passed, isolated, or connected it cannot be + // backward. If there are friendly pawns behind on adjacent files + // or if it can capture an enemy pawn it cannot be backward either. + if ( (passed | isolated | connected) + || (ourPawns & pawn_attack_span(Them, s)) + || (pos.attacks_from(s, Us) & theirPawns)) + backward = false; + else + { + // We now know that there are no friendly pawns beside or behind this + // pawn on adjacent files. We now check whether the pawn is + // backward by looking in the forward direction on the adjacent + // files, and picking the closest pawn there. + b = pawn_attack_span(Us, s) & (ourPawns | theirPawns); + b = pawn_attack_span(Us, s) & rank_bb(backmost_sq(Us, b)); + + // If we have an enemy pawn in the same or next rank, the pawn is + // backward because it cannot advance without being captured. + backward = (b | shift_bb(b)) & theirPawns; + } + + assert(opposed | passed | (pawn_attack_span(Us, s) & theirPawns)); + + // Passed pawns will be properly scored in evaluation because we need + // full attack info to evaluate passed pawns. Only the frontmost passed + // pawn on each file is considered a true passed pawn. + if (passed && !doubled) + e->passedPawns[Us] |= s; + + // Score this pawn + if (isolated) + value -= Isolated[opposed][f]; + + if (unsupported && !isolated) + value -= UnsupportedPawnPenalty; + + if (doubled) + value -= Doubled[f] / rank_distance(s, lsb(doubled)); + + if (backward) + value -= Backward[opposed][f]; + + if (connected) + value += Connected[opposed][phalanx][relative_rank(Us, s)]; + + if (lever) + value += Lever[relative_rank(Us, s)]; + } + + b = e->semiopenFiles[Us] ^ 0xFF; + e->pawnSpan[Us] = b ? int(msb(b) - lsb(b)) : 0; + + return value; } -} +} // namespace -/// PawnInfoTable::get_pawn_info() takes a position object as input, computes -/// a PawnInfo object, and returns a pointer to it. The result is also stored -/// in an hash table, so we don't have to recompute everything when the same -/// pawn structure occurs again. +namespace Pawns { -PawnInfo* PawnInfoTable::get_pawn_info(const Position& pos) const { +/// init() initializes some tables used by evaluation. Instead of hard-coded +/// tables, when makes sense, we prefer to calculate them with a formula to +/// reduce independent parameters and to allow easier tuning and better insight. - Key key = pos.get_pawn_key(); - PawnInfo* pi = probe(key); +void init() +{ + static const int Seed[RANK_NB] = { 0, 6, 15, 10, 57, 75, 135, 258 }; + + for (int opposed = 0; opposed <= 1; ++opposed) + for (int phalanx = 0; phalanx <= 1; ++phalanx) + for (Rank r = RANK_2; r < RANK_8; ++r) + { + int bonus = Seed[r] + (phalanx ? (Seed[r + 1] - Seed[r]) / 2 : 0); + Connected[opposed][phalanx][r] = make_score(bonus / 2, bonus >> opposed); + } +} - // If pi->key matches the position's pawn hash key, it means that we - // have analysed this pawn structure before, and we can simply return - // the information we found the last time instead of recomputing it. - if (pi->key == key) - return pi; - // Initialize PawnInfo entry - pi->key = key; - pi->passedPawns[WHITE] = pi->passedPawns[BLACK] = 0; - pi->kingSquares[WHITE] = pi->kingSquares[BLACK] = SQ_NONE; - pi->halfOpenFiles[WHITE] = pi->halfOpenFiles[BLACK] = 0xFF; +/// probe() takes a position as input, computes a Entry object, and returns a +/// pointer to it. The result is also stored in a hash table, so we don't have +/// to recompute everything when the same pawn structure occurs again. - // Calculate pawn attacks - Bitboard wPawns = pos.pieces(PAWN, WHITE); - Bitboard bPawns = pos.pieces(PAWN, BLACK); - pi->pawnAttacks[WHITE] = ((wPawns << 9) & ~FileABB) | ((wPawns << 7) & ~FileHBB); - pi->pawnAttacks[BLACK] = ((bPawns >> 7) & ~FileABB) | ((bPawns >> 9) & ~FileHBB); +Entry* probe(const Position& pos, Table& entries) { - // Evaluate pawns for both colors and weight the result - pi->value = evaluate_pawns(pos, wPawns, bPawns, pi) - - evaluate_pawns(pos, bPawns, wPawns, pi); + Key key = pos.pawn_key(); + Entry* e = entries[key]; - pi->value = apply_weight(pi->value, PawnStructureWeight); + if (e->key == key) + return e; - return pi; + e->key = key; + e->value = evaluate(pos, e) - evaluate(pos, e); + return e; } -/// PawnInfoTable::evaluate_pawns() evaluates each pawn of the given color +/// Entry::shelter_storm() calculates shelter and storm penalties for the file +/// the king is on, as well as the two adjacent files. template -Score PawnInfoTable::evaluate_pawns(const Position& pos, Bitboard ourPawns, - Bitboard theirPawns, PawnInfo* pi) { +Value Entry::shelter_storm(const Position& pos, Square ksq) { - const BitCountType Max15 = CpuIs64Bit ? CNT64_MAX15 : CNT32_MAX15; const Color Them = (Us == WHITE ? BLACK : WHITE); + const Bitboard Edges = (FileABB | FileHBB) & (Rank2BB | Rank3BB); - Bitboard b; - Square s; - File f; - Rank r; - bool passed, isolated, doubled, opposed, chain, backward, candidate; - Score value = SCORE_ZERO; - const Square* pl = pos.piece_list(Us, PAWN); + Bitboard b = pos.pieces(PAWN) & (in_front_bb(Us, rank_of(ksq)) | rank_bb(ksq)); + Bitboard ourPawns = b & pos.pieces(Us); + Bitboard theirPawns = b & pos.pieces(Them); + Value safety = MaxSafetyBonus; + File kf = std::max(FILE_B, std::min(FILE_G, file_of(ksq))); - // Loop through all pawns of the current color and score each pawn - while ((s = *pl++) != SQ_NONE) + for (File f = kf - File(1); f <= kf + File(1); ++f) { - assert(pos.piece_on(s) == make_piece(Us, PAWN)); - - f = file_of(s); - r = rank_of(s); - - // This file cannot be half open - pi->halfOpenFiles[Us] &= ~(1 << f); - - // Our rank plus previous one. Used for chain detection - b = rank_bb(r) | rank_bb(Us == WHITE ? r - Rank(1) : r + Rank(1)); - - // Flag the pawn as passed, isolated, doubled or member of a pawn - // chain (but not the backward one). - passed = !(theirPawns & passed_pawn_mask(Us, s)); - doubled = ourPawns & squares_in_front_of(Us, s); - opposed = theirPawns & squares_in_front_of(Us, s); - isolated = !(ourPawns & neighboring_files_bb(f)); - chain = ourPawns & neighboring_files_bb(f) & b; - - // Test for backward pawn - backward = false; - - // If the pawn is passed, isolated, or member of a pawn chain it cannot - // be backward. If there are friendly pawns behind on neighboring files - // or if can capture an enemy pawn it cannot be backward either. - if ( !(passed | isolated | chain) - && !(ourPawns & attack_span_mask(Them, s)) - && !(pos.attacks_from(s, Us) & theirPawns)) - { - // We now know that there are no friendly pawns beside or behind this - // pawn on neighboring files. We now check whether the pawn is - // backward by looking in the forward direction on the neighboring - // files, and seeing whether we meet a friendly or an enemy pawn first. - b = pos.attacks_from(s, Us); - - // Note that we are sure to find something because pawn is not passed - // nor isolated, so loop is potentially infinite, but it isn't. - while (!(b & (ourPawns | theirPawns))) - Us == WHITE ? b <<= 8 : b >>= 8; - - // The friendly pawn needs to be at least two ranks closer than the - // enemy pawn in order to help the potentially backward pawn advance. - backward = (b | (Us == WHITE ? b << 8 : b >> 8)) & theirPawns; - } - - assert(opposed | passed | (attack_span_mask(Us, s) & theirPawns)); - - // A not passed pawn is a candidate to become passed if it is free to - // advance and if the number of friendly pawns beside or behind this - // pawn on neighboring files is higher or equal than the number of - // enemy pawns in the forward direction on the neighboring files. - candidate = !(opposed | passed | backward | isolated) - && (b = attack_span_mask(Them, s + pawn_push(Us)) & ourPawns) != 0 - && count_1s(b) >= count_1s(attack_span_mask(Us, s) & theirPawns); - - // Passed pawns will be properly scored in evaluation because we need - // full attack info to evaluate passed pawns. Only the frontmost passed - // pawn on each file is considered a true passed pawn. - if (passed && !doubled) - set_bit(&(pi->passedPawns[Us]), s); - - // Score this pawn - if (isolated) - value -= IsolatedPawnPenalty[opposed][f]; - - if (doubled) - value -= DoubledPawnPenalty[opposed][f]; - - if (backward) - value -= BackwardPawnPenalty[opposed][f]; - - if (chain) - value += ChainBonus[f]; - - if (candidate) - value += CandidateBonus[relative_rank(Us, s)]; + b = ourPawns & file_bb(f); + Rank rkUs = b ? relative_rank(Us, backmost_sq(Us, b)) : RANK_1; + + b = theirPawns & file_bb(f); + Rank rkThem = b ? relative_rank(Us, frontmost_sq(Them, b)) : RANK_1; + + if ( (Edges & make_square(f, rkThem)) + && file_of(ksq) == f + && relative_rank(Us, ksq) == rkThem - 1) + safety += 200; + else + safety -= ShelterWeakness[rkUs] + + StormDanger[rkUs == RANK_1 ? 0 : + rkThem != rkUs + 1 ? 1 : 2][rkThem]; } - return value; + + return safety; } -/// PawnInfo::updateShelter() calculates and caches king shelter. It is called -/// only when king square changes, about 20% of total king_shelter() calls. +/// Entry::do_king_safety() calculates a bonus for king safety. It is called only +/// when king square changes, which is about 20% of total king_safety() calls. + template -Score PawnInfo::updateShelter(const Position& pos, Square ksq) { +Score Entry::do_king_safety(const Position& pos, Square ksq) { - const int Shift = (Us == WHITE ? 8 : -8); + kingSquares[Us] = ksq; + castlingRights[Us] = pos.can_castle(Us); + minKPdistance[Us] = 0; - Bitboard pawns; - int r, shelter = 0; + Bitboard pawns = pos.pieces(Us, PAWN); + if (pawns) + while (!(DistanceRingsBB[ksq][minKPdistance[Us]++] & pawns)) {} - if (relative_rank(Us, ksq) <= RANK_4) - { - pawns = pos.pieces(PAWN, Us) & this_and_neighboring_files_bb(file_of(ksq)); - r = ksq & (7 << 3); - for (int i = 0; i < 3; i++) - { - r += Shift; - shelter += BitCount8Bit[(pawns >> r) & 0xFF] << (6 - i); - } - } - kingSquares[Us] = ksq; - kingShelters[Us] = make_score(shelter, 0); - return kingShelters[Us]; + if (relative_rank(Us, ksq) > RANK_4) + return make_score(0, -16 * minKPdistance[Us]); + + Value bonus = shelter_storm(pos, ksq); + + // If we can castle use the bonus after the castling if it is bigger + if (pos.can_castle(MakeCastling::right)) + bonus = std::max(bonus, shelter_storm(pos, relative_square(Us, SQ_G1))); + + if (pos.can_castle(MakeCastling::right)) + bonus = std::max(bonus, shelter_storm(pos, relative_square(Us, SQ_C1))); + + return make_score(bonus, -16 * minKPdistance[Us]); } // Explicit template instantiation -template Score PawnInfo::updateShelter(const Position& pos, Square ksq); -template Score PawnInfo::updateShelter(const Position& pos, Square ksq); +template Score Entry::do_king_safety(const Position& pos, Square ksq); +template Score Entry::do_king_safety(const Position& pos, Square ksq); + +} // namespace Pawns