X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fposition.cpp;h=2573fe8484a7802b8bbad00dad5eff5b721c7c77;hp=0be309ee60cac3d0ea78bcec0ad6c38237e7768b;hb=f7bae2de82347c61897b8de62d294dd0e4fc579e;hpb=108f0da4d7f993732aa2e854b8f3fa8ca6d3b46c diff --git a/src/position.cpp b/src/position.cpp index 0be309ee..2573fe84 100644 --- a/src/position.cpp +++ b/src/position.cpp @@ -130,6 +130,19 @@ std::ostream& operator<<(std::ostream& os, const Position& pos) { } +// Marcel van Kervinck's cuckoo algorithm for fast detection of "upcoming repetition" +// situations. Description of the algorithm in the following paper: +// https://marcelk.net/2013-04-06/paper/upcoming-rep-v2.pdf + +// First and second hash functions for indexing the cuckoo tables +inline int H1(Key h) { return h & 0x1fff; } +inline int H2(Key h) { return (h >> 16) & 0x1fff; } + +// Cuckoo tables with Zobrist hashes of valid reversible moves, and the moves themselves +Key cuckoo[8192]; +Move cuckooMove[8192]; + + /// Position::init() initializes at startup the various arrays used to compute /// hash keys. @@ -157,6 +170,28 @@ void Position::init() { Zobrist::side = rng.rand(); Zobrist::noPawns = rng.rand(); + + // Prepare the cuckoo tables + int count = 0; + for (Piece pc : Pieces) + for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1) + for (Square s2 = Square(s1 + 1); s2 <= SQ_H8; ++s2) + if (PseudoAttacks[type_of(pc)][s1] & s2) + { + Move move = make_move(s1, s2); + Key key = Zobrist::psq[pc][s1] ^ Zobrist::psq[pc][s2] ^ Zobrist::side; + int i = H1(key); + while (true) + { + std::swap(cuckoo[i], key); + std::swap(cuckooMove[i], move); + if (move == 0) // Arrived at empty slot ? + break; + i = (i == H1(key)) ? H2(key) : H1(key); // Push victim to alternative slot + } + count++; + } + assert(count == 3668); } @@ -1113,12 +1148,12 @@ bool Position::has_repeated() const { StateInfo* stc = st; while (true) { - int i = 4, e = std::min(stc->rule50, stc->pliesFromNull); + int i = 4, end = std::min(stc->rule50, stc->pliesFromNull); - if (e < i) + if (end < i) return false; - StateInfo* stp = st->previous->previous; + StateInfo* stp = stc->previous->previous; do { stp = stp->previous->previous; @@ -1127,13 +1162,65 @@ bool Position::has_repeated() const { return true; i += 2; - } while (i <= e); + } while (i <= end); stc = stc->previous; } } +/// Position::has_game_cycle() tests if the position has a move which draws by repetition, +/// or an earlier position has a move that directly reaches the current position. + +bool Position::has_game_cycle(int ply) const { + + int j; + + int end = std::min(st->rule50, st->pliesFromNull); + + if (end < 3) + return false; + + Key originalKey = st->key; + StateInfo* stp = st->previous; + + for (int i = 3; i <= end; i += 2) + { + stp = stp->previous->previous; + + Key moveKey = originalKey ^ stp->key; + if ( (j = H1(moveKey), cuckoo[j] == moveKey) + || (j = H2(moveKey), cuckoo[j] == moveKey)) + { + Move move = cuckooMove[j]; + Square s1 = from_sq(move); + Square s2 = to_sq(move); + + if (!(between_bb(s1, s2) & pieces())) + { + // In the cuckoo table, both moves Rc1c5 and Rc5c1 are stored in the same + // location. We select the legal one by reversing the move variable if necessary. + if (empty(s1)) + move = make_move(s2, s1); + + if (ply > i) + return true; + + // For repetitions before or at the root, require one more + StateInfo* next_stp = stp; + for (int k = i + 2; k <= end; k += 2) + { + next_stp = next_stp->previous->previous; + if (next_stp->key == stp->key) + return true; + } + } + } + } + return false; +} + + /// Position::flip() flips position with the white and black sides reversed. This /// is only useful for debugging e.g. for finding evaluation symmetry bugs.