X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fposition.cpp;h=8408a8a3d1e29112428e2ddabb720f9184d8ebf6;hp=f304d94a03c0f3f8af989429a221573f8292bfc7;hb=423c6d8a8a36fcc56d421caf0bbc12f53ba62c30;hpb=b4acf83704c9bab4d78d9ec76ecbdfbfa0b0c88c diff --git a/src/position.cpp b/src/position.cpp index f304d94a..045b10ca 100644 --- a/src/position.cpp +++ b/src/position.cpp @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -17,1150 +17,944 @@ along with this program. If not, see . */ - -//// -//// Includes -//// - -#include #include #include -#include -#include #include #include +#include #include "bitcount.h" #include "movegen.h" -#include "movepick.h" +#include "notation.h" #include "position.h" #include "psqtab.h" #include "rkiss.h" +#include "thread.h" #include "tt.h" -#include "ucioption.h" using std::string; using std::cout; using std::endl; +static const string PieceToChar(" PNBRQK pnbrqk"); -//// -//// Position's static data definitions -//// - -Key Position::zobrist[2][8][64]; -Key Position::zobEp[64]; -Key Position::zobCastle[16]; -Key Position::zobSideToMove; -Key Position::zobExclusion; - -Score Position::PieceSquareTable[16][64]; - -// Material values arrays, indexed by Piece -const Value Position::PieceValueMidgame[17] = { - VALUE_ZERO, - PawnValueMidgame, KnightValueMidgame, BishopValueMidgame, - RookValueMidgame, QueenValueMidgame, VALUE_ZERO, - VALUE_ZERO, VALUE_ZERO, - PawnValueMidgame, KnightValueMidgame, BishopValueMidgame, - RookValueMidgame, QueenValueMidgame -}; - -const Value Position::PieceValueEndgame[17] = { - VALUE_ZERO, - PawnValueEndgame, KnightValueEndgame, BishopValueEndgame, - RookValueEndgame, QueenValueEndgame, VALUE_ZERO, - VALUE_ZERO, VALUE_ZERO, - PawnValueEndgame, KnightValueEndgame, BishopValueEndgame, - RookValueEndgame, QueenValueEndgame -}; - -// Material values array used by SEE, indexed by PieceType -const Value Position::seeValues[] = { - VALUE_ZERO, - PawnValueMidgame, KnightValueMidgame, BishopValueMidgame, - RookValueMidgame, QueenValueMidgame, QueenValueMidgame*10 -}; +CACHE_LINE_ALIGNMENT +Score pieceSquareTable[PIECE_NB][SQUARE_NB]; +Value PieceValue[PHASE_NB][PIECE_NB] = { +{ VALUE_ZERO, PawnValueMg, KnightValueMg, BishopValueMg, RookValueMg, QueenValueMg }, +{ VALUE_ZERO, PawnValueEg, KnightValueEg, BishopValueEg, RookValueEg, QueenValueEg } }; -namespace { +namespace Zobrist { - // Bonus for having the side to move (modified by Joona Kiiski) - const Score TempoValue = make_score(48, 22); +Key psq[COLOR_NB][PIECE_TYPE_NB][SQUARE_NB]; +Key enpassant[FILE_NB]; +Key castle[CASTLE_RIGHT_NB]; +Key side; +Key exclusion; - bool isZero(char c) { return c == '0'; } +/// init() initializes at startup the various arrays used to compute hash keys +/// and the piece square tables. The latter is a two-step operation: First, the +/// white halves of the tables are copied from PSQT[] tables. Second, the black +/// halves of the tables are initialized by flipping and changing the sign of +/// the white scores. - struct PieceLetters : public std::map { +void init() { - PieceLetters() { + RKISS rk; - operator[]('K') = WK; operator[]('k') = BK; - operator[]('Q') = WQ; operator[]('q') = BQ; - operator[]('R') = WR; operator[]('r') = BR; - operator[]('B') = WB; operator[]('b') = BB; - operator[]('N') = WN; operator[]('n') = BN; - operator[]('P') = WP; operator[]('p') = BP; - operator[](' ') = PIECE_NONE; - operator[]('.') = PIECE_NONE_DARK_SQ; - } + for (Color c = WHITE; c <= BLACK; c++) + for (PieceType pt = PAWN; pt <= KING; pt++) + for (Square s = SQ_A1; s <= SQ_H8; s++) + psq[c][pt][s] = rk.rand(); - char from_piece(Piece p) const { + for (File f = FILE_A; f <= FILE_H; f++) + enpassant[f] = rk.rand(); - std::map::const_iterator it; - for (it = begin(); it != end(); ++it) - if (it->second == p) - return it->first; + for (int cr = CASTLES_NONE; cr <= ALL_CASTLES; cr++) + { + Bitboard b = cr; + while (b) + { + Key k = castle[1ULL << pop_lsb(&b)]; + castle[cr] ^= k ? k : rk.rand(); + } + } - assert(false); - return 0; - } - }; + side = rk.rand(); + exclusion = rk.rand(); + + for (PieceType pt = PAWN; pt <= KING; pt++) + { + PieceValue[MG][make_piece(BLACK, pt)] = PieceValue[MG][pt]; + PieceValue[EG][make_piece(BLACK, pt)] = PieceValue[EG][pt]; + + Score v = make_score(PieceValue[MG][pt], PieceValue[EG][pt]); - PieceLetters pieceLetters; + for (Square s = SQ_A1; s <= SQ_H8; s++) + { + pieceSquareTable[make_piece(WHITE, pt)][ s] = (v + PSQT[pt][s]); + pieceSquareTable[make_piece(BLACK, pt)][~s] = -(v + PSQT[pt][s]); + } + } } +} // namespace Zobrist -/// CheckInfo c'tor -CheckInfo::CheckInfo(const Position& pos) { +namespace { - Color us = pos.side_to_move(); - Color them = opposite_color(us); +/// next_attacker() is an helper function used by see() to locate the least +/// valuable attacker for the side to move, remove the attacker we just found +/// from the 'occupied' bitboard and scan for new X-ray attacks behind it. - ksq = pos.king_square(them); - dcCandidates = pos.discovered_check_candidates(us); +template FORCE_INLINE +PieceType next_attacker(const Bitboard* bb, const Square& to, const Bitboard& stmAttackers, + Bitboard& occupied, Bitboard& attackers) { - checkSq[PAWN] = pos.attacks_from(ksq, them); - checkSq[KNIGHT] = pos.attacks_from(ksq); - checkSq[BISHOP] = pos.attacks_from(ksq); - checkSq[ROOK] = pos.attacks_from(ksq); - checkSq[QUEEN] = checkSq[BISHOP] | checkSq[ROOK]; - checkSq[KING] = EmptyBoardBB; -} + if (stmAttackers & bb[Pt]) + { + Bitboard b = stmAttackers & bb[Pt]; + occupied ^= b & ~(b - 1); + if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN) + attackers |= attacks_bb(to, occupied) & (bb[BISHOP] | bb[QUEEN]); -/// Position c'tors. Here we always create a copy of the original position -/// or the FEN string, we want the new born Position object do not depend -/// on any external data so we detach state pointer from the source one. + if (Pt == ROOK || Pt == QUEEN) + attackers |= attacks_bb(to, occupied) & (bb[ROOK] | bb[QUEEN]); -Position::Position(const Position& pos, int th) { + return (PieceType)Pt; + } + return next_attacker(bb, to, stmAttackers, occupied, attackers); +} - memcpy(this, &pos, sizeof(Position)); - detach(); // Always detach() in copy c'tor to avoid surprises - threadID = th; - nodes = 0; +template<> FORCE_INLINE +PieceType next_attacker(const Bitboard*, const Square&, const Bitboard&, Bitboard&, Bitboard&) { + return KING; // No need to update bitboards, it is the last cycle } -Position::Position(const string& fen, bool isChess960, int th) { +} // namespace + + +/// CheckInfo c'tor + +CheckInfo::CheckInfo(const Position& pos) { + + Color them = ~pos.side_to_move(); + ksq = pos.king_square(them); - from_fen(fen, isChess960); - threadID = th; + pinned = pos.pinned_pieces(); + dcCandidates = pos.discovered_check_candidates(); + + checkSq[PAWN] = pos.attacks_from(ksq, them); + checkSq[KNIGHT] = pos.attacks_from(ksq); + checkSq[BISHOP] = pos.attacks_from(ksq); + checkSq[ROOK] = pos.attacks_from(ksq); + checkSq[QUEEN] = checkSq[BISHOP] | checkSq[ROOK]; + checkSq[KING] = 0; } -/// Position::detach() copies the content of the current state and castling -/// masks inside the position itself. This is needed when the st pointee could -/// become stale, as example because the caller is about to going out of scope. +/// Position::operator=() creates a copy of 'pos'. We want the new born Position +/// object do not depend on any external data so we detach state pointer from +/// the source one. -void Position::detach() { +Position& Position::operator=(const Position& pos) { + memcpy(this, &pos, sizeof(Position)); startState = *st; st = &startState; - st->previous = NULL; // as a safe guard + nodes = 0; + + assert(pos_is_ok()); + + return *this; } -/// Position::from_fen() initializes the position object with the given FEN -/// string. This function is not very robust - make sure that input FENs are -/// correct (this is assumed to be the responsibility of the GUI). +/// Position::set() initializes the position object with the given FEN string. +/// This function is not very robust - make sure that input FENs are correct, +/// this is assumed to be the responsibility of the GUI. -void Position::from_fen(const string& fen, bool c960) { +void Position::set(const string& fenStr, bool isChess960, Thread* th) { /* A FEN string defines a particular position using only the ASCII character set. - A FEN string contains six fields. The separator between fields is a space. The fields are: + A FEN string contains six fields separated by a space. The fields are: - 1) Piece placement (from white's perspective). Each rank is described, starting with rank 8 and ending - with rank 1; within each rank, the contents of each square are described from file a through file h. - Following the Standard Algebraic Notation (SAN), each piece is identified by a single letter taken - from the standard English names. White pieces are designated using upper-case letters ("PNBRQK") - while Black take lowercase ("pnbrqk"). Blank squares are noted using digits 1 through 8 (the number - of blank squares), and "/" separate ranks. + 1) Piece placement (from white's perspective). Each rank is described, starting + with rank 8 and ending with rank 1; within each rank, the contents of each + square are described from file A through file H. Following the Standard + Algebraic Notation (SAN), each piece is identified by a single letter taken + from the standard English names. White pieces are designated using upper-case + letters ("PNBRQK") while Black take lowercase ("pnbrqk"). Blank squares are + noted using digits 1 through 8 (the number of blank squares), and "/" + separates ranks. 2) Active color. "w" means white moves next, "b" means black. - 3) Castling availability. If neither side can castle, this is "-". Otherwise, this has one or more - letters: "K" (White can castle kingside), "Q" (White can castle queenside), "k" (Black can castle - kingside), and/or "q" (Black can castle queenside). + 3) Castling availability. If neither side can castle, this is "-". Otherwise, + this has one or more letters: "K" (White can castle kingside), "Q" (White + can castle queenside), "k" (Black can castle kingside), and/or "q" (Black + can castle queenside). - 4) En passant target square in algebraic notation. If there's no en passant target square, this is "-". - If a pawn has just made a 2-square move, this is the position "behind" the pawn. This is recorded - regardless of whether there is a pawn in position to make an en passant capture. + 4) En passant target square (in algebraic notation). If there's no en passant + target square, this is "-". If a pawn has just made a 2-square move, this + is the position "behind" the pawn. This is recorded regardless of whether + there is a pawn in position to make an en passant capture. - 5) Halfmove clock: This is the number of halfmoves since the last pawn advance or capture. This is used - to determine if a draw can be claimed under the fifty-move rule. + 5) Halfmove clock. This is the number of halfmoves since the last pawn advance + or capture. This is used to determine if a draw can be claimed under the + fifty-move rule. - 6) Fullmove number: The number of the full move. It starts at 1, and is incremented after Black's move. + 6) Fullmove number. The number of the full move. It starts at 1, and is + incremented after Black's move. */ - char token; - int hmc, fmn; - std::istringstream ss(fen); - Rank rank = RANK_8; - File file = FILE_A; + char col, row, token; + size_t p; + Square sq = SQ_A8; + std::istringstream ss(fenStr); clear(); + ss >> std::noskipws; - // 1. Piece placement field - while (ss.get(token) && token != ' ') + // 1. Piece placement + while ((ss >> token) && !isspace(token)) { if (isdigit(token)) - { - file += File(token - '0'); // Skip the given number of files - continue; - } + sq += Square(token - '0'); // Advance the given number of files + else if (token == '/') + sq -= Square(16); + + else if ((p = PieceToChar.find(token)) != string::npos) { - file = FILE_A; - rank--; - continue; + put_piece(Piece(p), sq); + sq++; } - - if (pieceLetters.find(token) == pieceLetters.end()) - goto incorrect_fen; - - put_piece(pieceLetters[token], make_square(file, rank)); - file++; } // 2. Active color - if (!ss.get(token) || (token != 'w' && token != 'b')) - goto incorrect_fen; - + ss >> token; sideToMove = (token == 'w' ? WHITE : BLACK); + ss >> token; + + // 3. Castling availability. Compatible with 3 standards: Normal FEN standard, + // Shredder-FEN that uses the letters of the columns on which the rooks began + // the game instead of KQkq and also X-FEN standard that, in case of Chess960, + // if an inner rook is associated with the castling right, the castling tag is + // replaced by the file letter of the involved rook, as for the Shredder-FEN. + while ((ss >> token) && !isspace(token)) + { + Square rsq; + Color c = islower(token) ? BLACK : WHITE; - if (!ss.get(token) || token != ' ') - goto incorrect_fen; + token = char(toupper(token)); - // 3. Castling availability - while (ss.get(token) && token != ' ') - { - if (token == '-') + if (token == 'K') + for (rsq = relative_square(c, SQ_H1); type_of(piece_on(rsq)) != ROOK; rsq--) {} + + else if (token == 'Q') + for (rsq = relative_square(c, SQ_A1); type_of(piece_on(rsq)) != ROOK; rsq++) {} + + else if (token >= 'A' && token <= 'H') + rsq = File(token - 'A') | relative_rank(c, RANK_1); + + else continue; - if (!set_castling_rights(token)) - goto incorrect_fen; + set_castle_right(c, rsq); } - // 4. En passant square -- ignore if no capture is possible - char col, row; - if ( (ss.get(col) && (col >= 'a' && col <= 'h')) - && (ss.get(row) && (row == '3' || row == '6'))) + // 4. En passant square. Ignore if no pawn capture is possible + if ( ((ss >> col) && (col >= 'a' && col <= 'h')) + && ((ss >> row) && (row == '3' || row == '6'))) { - Square fenEpSquare = make_square(file_from_char(col), rank_from_char(row)); - Color them = opposite_color(sideToMove); + st->epSquare = File(col - 'a') | Rank(row - '1'); - if (attacks_from(fenEpSquare, them) & pieces(PAWN, sideToMove)) - st->epSquare = fenEpSquare; + if (!(attackers_to(st->epSquare) & pieces(sideToMove, PAWN))) + st->epSquare = SQ_NONE; } - // 5. Halfmove clock - if (ss >> hmc) - st->rule50 = hmc; - - // 6. Fullmove number - if (ss >> fmn) - startPosPlyCounter = (fmn - 1) * 2 + int(sideToMove == BLACK); - - // Various initialisations - castleRightsMask[make_square(initialKFile, RANK_1)] ^= WHITE_OO | WHITE_OOO; - castleRightsMask[make_square(initialKFile, RANK_8)] ^= BLACK_OO | BLACK_OOO; - castleRightsMask[make_square(initialKRFile, RANK_1)] ^= WHITE_OO; - castleRightsMask[make_square(initialKRFile, RANK_8)] ^= BLACK_OO; - castleRightsMask[make_square(initialQRFile, RANK_1)] ^= WHITE_OOO; - castleRightsMask[make_square(initialQRFile, RANK_8)] ^= BLACK_OOO; + // 5-6. Halfmove clock and fullmove number + ss >> std::skipws >> st->rule50 >> startPosPly; - isChess960 = c960; - find_checkers(); + // Convert from fullmove starting from 1 to ply starting from 0, + // handle also common incorrect FEN with fullmove = 0. + startPosPly = std::max(2 * (startPosPly - 1), 0) + int(sideToMove == BLACK); st->key = compute_key(); st->pawnKey = compute_pawn_key(); st->materialKey = compute_material_key(); - st->value = compute_value(); + st->psqScore = compute_psq_score(); st->npMaterial[WHITE] = compute_non_pawn_material(WHITE); st->npMaterial[BLACK] = compute_non_pawn_material(BLACK); - return; + st->checkersBB = attackers_to(king_square(sideToMove)) & pieces(~sideToMove); + chess960 = isChess960; + thisThread = th; -incorrect_fen: - cout << "Error in FEN string: " << fen << endl; + assert(pos_is_ok()); } -/// Position::set_castling_rights() sets castling parameters castling avaiability. -/// This function is compatible with 3 standards: Normal FEN standard, Shredder-FEN -/// that uses the letters of the columns on which the rooks began the game instead -/// of KQkq and also X-FEN standard that, in case of Chess960, if an inner Rook is -/// associated with the castling right, the traditional castling tag will be replaced -/// by the file letter of the involved rook as for the Shredder-FEN. - -bool Position::set_castling_rights(char token) { - - Color c = token >= 'a' ? BLACK : WHITE; - Square sqA = (c == WHITE ? SQ_A1 : SQ_A8); - Square sqH = (c == WHITE ? SQ_H1 : SQ_H8); - Piece rook = (c == WHITE ? WR : BR); - - initialKFile = square_file(king_square(c)); - token = char(toupper(token)); - - if (token == 'K') - { - for (Square sq = sqH; sq >= sqA; sq--) - if (piece_on(sq) == rook) - { - do_allow_oo(c); - initialKRFile = square_file(sq); - break; - } - } - else if (token == 'Q') - { - for (Square sq = sqA; sq <= sqH; sq++) - if (piece_on(sq) == rook) - { - do_allow_ooo(c); - initialQRFile = square_file(sq); - break; - } - } - else if (token >= 'A' && token <= 'H') - { - File rookFile = File(token - 'A') + FILE_A; - if (rookFile < initialKFile) - { - do_allow_ooo(c); - initialQRFile = rookFile; - } - else - { - do_allow_oo(c); - initialKRFile = rookFile; - } - } - else return false; +/// Position::set_castle_right() is an helper function used to set castling +/// rights given the corresponding color and the rook starting square. - return true; +void Position::set_castle_right(Color c, Square rfrom) { + + Square kfrom = king_square(c); + CastlingSide cs = kfrom < rfrom ? KING_SIDE : QUEEN_SIDE; + CastleRight cr = make_castle_right(c, cs); + + st->castleRights |= cr; + castleRightsMask[kfrom] |= cr; + castleRightsMask[rfrom] |= cr; + castleRookSquare[c][cs] = rfrom; + + Square kto = relative_square(c, cs == KING_SIDE ? SQ_G1 : SQ_C1); + Square rto = relative_square(c, cs == KING_SIDE ? SQ_F1 : SQ_D1); + + for (Square s = std::min(rfrom, rto); s <= std::max(rfrom, rto); s++) + if (s != kfrom && s != rfrom) + castlePath[c][cs] |= s; + + for (Square s = std::min(kfrom, kto); s <= std::max(kfrom, kto); s++) + if (s != kfrom && s != rfrom) + castlePath[c][cs] |= s; } -/// Position::to_fen() returns a FEN representation of the position. In case +/// Position::fen() returns a FEN representation of the position. In case /// of Chess960 the Shredder-FEN notation is used. Mainly a debugging function. -const string Position::to_fen() const { +const string Position::fen() const { - string fen; + std::ostringstream ss; Square sq; - char emptyCnt = '0'; + int emptyCnt; for (Rank rank = RANK_8; rank >= RANK_1; rank--) { + emptyCnt = 0; + for (File file = FILE_A; file <= FILE_H; file++) { - sq = make_square(file, rank); + sq = file | rank; - if (square_is_occupied(sq)) - { - fen += emptyCnt; - fen += pieceLetters.from_piece(piece_on(sq)); - emptyCnt = '0'; - } else + if (is_empty(sq)) emptyCnt++; + else + { + if (emptyCnt > 0) + { + ss << emptyCnt; + emptyCnt = 0; + } + ss << PieceToChar[piece_on(sq)]; + } } - fen += emptyCnt; - fen += '/'; - emptyCnt = '0'; + + if (emptyCnt > 0) + ss << emptyCnt; + + if (rank > RANK_1) + ss << '/'; } - fen.erase(std::remove_if(fen.begin(), fen.end(), isZero), fen.end()); - fen.erase(--fen.end()); - fen += (sideToMove == WHITE ? " w " : " b "); + ss << (sideToMove == WHITE ? " w " : " b "); - if (st->castleRights != CASTLES_NONE) - { - if (can_castle_kingside(WHITE)) - fen += isChess960 ? char(toupper(file_to_char(initialKRFile))) : 'K'; + if (can_castle(WHITE_OO)) + ss << (chess960 ? char(toupper(file_to_char(file_of(castle_rook_square(WHITE, KING_SIDE))))) : 'K'); + + if (can_castle(WHITE_OOO)) + ss << (chess960 ? char(toupper(file_to_char(file_of(castle_rook_square(WHITE, QUEEN_SIDE))))) : 'Q'); - if (can_castle_queenside(WHITE)) - fen += isChess960 ? char(toupper(file_to_char(initialQRFile))) : 'Q'; + if (can_castle(BLACK_OO)) + ss << (chess960 ? file_to_char(file_of(castle_rook_square(BLACK, KING_SIDE))) : 'k'); - if (can_castle_kingside(BLACK)) - fen += isChess960 ? file_to_char(initialKRFile) : 'k'; + if (can_castle(BLACK_OOO)) + ss << (chess960 ? file_to_char(file_of(castle_rook_square(BLACK, QUEEN_SIDE))) : 'q'); - if (can_castle_queenside(BLACK)) - fen += isChess960 ? file_to_char(initialQRFile) : 'q'; - } else - fen += '-'; + if (st->castleRights == CASTLES_NONE) + ss << '-'; - fen += (ep_square() == SQ_NONE ? " -" : " " + square_to_string(ep_square())); - return fen; + ss << (ep_square() == SQ_NONE ? " - " : " " + square_to_string(ep_square()) + " ") + << st->rule50 << " " << 1 + (startPosPly - int(sideToMove == BLACK)) / 2; + + return ss.str(); } -/// Position::print() prints an ASCII representation of the position to -/// the standard output. If a move is given then also the san is printed. +/// Position::pretty() returns an ASCII representation of the position to be +/// printed to the standard output together with the move's san notation. -void Position::print(Move move) const { +const string Position::pretty(Move move) const { - const char* dottedLine = "\n+---+---+---+---+---+---+---+---+\n"; - static bool requestPending = false; + const string dottedLine = "\n+---+---+---+---+---+---+---+---+"; + const string twoRows = dottedLine + "\n| | . | | . | | . | | . |" + + dottedLine + "\n| . | | . | | . | | . | |"; - // Check for reentrancy, as example when called from inside - // MovePicker that is used also here in move_to_san() - if (requestPending) - return; + string brd = twoRows + twoRows + twoRows + twoRows + dottedLine; - requestPending = true; + std::ostringstream ss; if (move) - { - Position p(*this, thread()); - string dd = (color_of_piece_on(move_from(move)) == BLACK ? ".." : ""); - cout << "\nMove is: " << dd << move_to_san(p, move); - } - - for (Rank rank = RANK_8; rank >= RANK_1; rank--) - { - cout << dottedLine << '|'; - for (File file = FILE_A; file <= FILE_H; file++) - { - Square sq = make_square(file, rank); - char c = (color_of_piece_on(sq) == BLACK ? '=' : ' '); - Piece piece = piece_on(sq); + ss << "\nMove is: " << (sideToMove == BLACK ? ".." : "") + << move_to_san(*const_cast(this), move); - if (piece == PIECE_NONE && square_color(sq) == DARK) - piece = PIECE_NONE_DARK_SQ; + for (Square sq = SQ_A1; sq <= SQ_H8; sq++) + if (piece_on(sq) != NO_PIECE) + brd[513 - 68*rank_of(sq) + 4*file_of(sq)] = PieceToChar[piece_on(sq)]; - cout << c << pieceLetters.from_piece(piece) << c << '|'; - } - } - cout << dottedLine << "Fen is: " << to_fen() << "\nKey is: " << st->key << endl; - requestPending = false; + ss << brd << "\nFen is: " << fen() << "\nKey is: " << st->key; + return ss.str(); } /// Position:hidden_checkers<>() returns a bitboard of all pinned (against the -/// king) pieces for the given color and for the given pinner type. Or, when -/// template parameter FindPinned is false, the pieces of the given color -/// candidate for a discovery check against the enemy king. -/// Bitboard checkersBB must be already updated when looking for pinners. - +/// king) pieces for the given color. Or, when template parameter FindPinned is +/// false, the function return the pieces of the given color candidate for a +/// discovery check against the enemy king. template -Bitboard Position::hidden_checkers(Color c) const { - - Bitboard result = EmptyBoardBB; - Bitboard pinners = pieces_of_color(FindPinned ? opposite_color(c) : c); +Bitboard Position::hidden_checkers() const { - // Pinned pieces protect our king, dicovery checks attack - // the enemy king. - Square ksq = king_square(FindPinned ? c : opposite_color(c)); + // Pinned pieces protect our king, dicovery checks attack the enemy king + Bitboard b, result = 0; + Bitboard pinners = pieces(FindPinned ? ~sideToMove : sideToMove); + Square ksq = king_square(FindPinned ? sideToMove : ~sideToMove); - // Pinners are sliders, not checkers, that give check when candidate pinned is removed - pinners &= (pieces(ROOK, QUEEN) & RookPseudoAttacks[ksq]) | (pieces(BISHOP, QUEEN) & BishopPseudoAttacks[ksq]); - - if (FindPinned && pinners) - pinners &= ~st->checkersBB; + // Pinners are sliders, that give check when candidate pinned is removed + pinners &= (pieces(ROOK, QUEEN) & PseudoAttacks[ROOK][ksq]) + | (pieces(BISHOP, QUEEN) & PseudoAttacks[BISHOP][ksq]); while (pinners) { - Square s = pop_1st_bit(&pinners); - Bitboard b = squares_between(s, ksq) & occupied_squares(); - - assert(b); + b = between_bb(ksq, pop_lsb(&pinners)) & pieces(); - if ( !(b & (b - 1)) // Only one bit set? - && (b & pieces_of_color(c))) // Is an our piece? + if (b && !more_than_one(b) && (b & pieces(sideToMove))) result |= b; } return result; } +// Explicit template instantiations +template Bitboard Position::hidden_checkers() const; +template Bitboard Position::hidden_checkers() const; -/// Position:pinned_pieces() returns a bitboard of all pinned (against the -/// king) pieces for the given color. Note that checkersBB bitboard must -/// be already updated. -Bitboard Position::pinned_pieces(Color c) const { - - return hidden_checkers(c); -} +/// Position::attackers_to() computes a bitboard of all pieces which attack a +/// given square. Slider attacks use occ bitboard as occupancy. +Bitboard Position::attackers_to(Square s, Bitboard occ) const { -/// Position:discovered_check_candidates() returns a bitboard containing all -/// pieces for the given side which are candidates for giving a discovered -/// check. Contrary to pinned_pieces() here there is no need of checkersBB -/// to be already updated. - -Bitboard Position::discovered_check_candidates(Color c) const { - - return hidden_checkers(c); -} - -/// Position::attackers_to() computes a bitboard containing all pieces which -/// attacks a given square. - -Bitboard Position::attackers_to(Square s) const { - - return (attacks_from(s, BLACK) & pieces(PAWN, WHITE)) - | (attacks_from(s, WHITE) & pieces(PAWN, BLACK)) + return (attacks_from(s, BLACK) & pieces(WHITE, PAWN)) + | (attacks_from(s, WHITE) & pieces(BLACK, PAWN)) | (attacks_from(s) & pieces(KNIGHT)) - | (attacks_from(s) & pieces(ROOK, QUEEN)) - | (attacks_from(s) & pieces(BISHOP, QUEEN)) + | (attacks_bb(s, occ) & pieces(ROOK, QUEEN)) + | (attacks_bb(s, occ) & pieces(BISHOP, QUEEN)) | (attacks_from(s) & pieces(KING)); } -/// Position::attacks_from() computes a bitboard of all attacks -/// of a given piece put in a given square. -Bitboard Position::attacks_from(Piece p, Square s) const { - - assert(square_is_ok(s)); - - switch (p) - { - case WB: case BB: return attacks_from(s); - case WR: case BR: return attacks_from(s); - case WQ: case BQ: return attacks_from(s); - default: return NonSlidingAttacksBB[p][s]; - } -} +/// Position::attacks_from() computes a bitboard of all attacks of a given piece +/// put in a given square. Slider attacks use occ bitboard as occupancy. Bitboard Position::attacks_from(Piece p, Square s, Bitboard occ) { - assert(square_is_ok(s)); + assert(is_ok(s)); - switch (p) + switch (type_of(p)) { - case WB: case BB: return bishop_attacks_bb(s, occ); - case WR: case BR: return rook_attacks_bb(s, occ); - case WQ: case BQ: return bishop_attacks_bb(s, occ) | rook_attacks_bb(s, occ); - default: return NonSlidingAttacksBB[p][s]; + case BISHOP: return attacks_bb(s, occ); + case ROOK : return attacks_bb(s, occ); + case QUEEN : return attacks_bb(s, occ) | attacks_bb(s, occ); + default : return StepAttacksBB[p][s]; } } -/// Position::move_attacks_square() tests whether a move from the current -/// position attacks a given square. - -bool Position::move_attacks_square(Move m, Square s) const { - - assert(move_is_ok(m)); - assert(square_is_ok(s)); +/// Position::pl_move_is_legal() tests whether a pseudo-legal move is legal - Bitboard occ, xray; - Square f = move_from(m), t = move_to(m); +bool Position::pl_move_is_legal(Move m, Bitboard pinned) const { - assert(square_is_occupied(f)); + assert(is_ok(m)); + assert(pinned == pinned_pieces()); - if (bit_is_set(attacks_from(piece_on(f), t), s)) - return true; + Color us = sideToMove; + Square from = from_sq(m); - // Move the piece and scan for X-ray attacks behind it - occ = occupied_squares(); - do_move_bb(&occ, make_move_bb(f, t)); - xray = ( (rook_attacks_bb(s, occ) & pieces(ROOK, QUEEN)) - |(bishop_attacks_bb(s, occ) & pieces(BISHOP, QUEEN))) - & pieces_of_color(color_of_piece_on(f)); + assert(color_of(piece_moved(m)) == us); + assert(piece_on(king_square(us)) == make_piece(us, KING)); - // If we have attacks we need to verify that are caused by our move - // and are not already existent ones. - return xray && (xray ^ (xray & attacks_from(s))); -} + // En passant captures are a tricky special case. Because they are rather + // uncommon, we do it simply by testing whether the king is attacked after + // the move is made. + if (type_of(m) == ENPASSANT) + { + Color them = ~us; + Square to = to_sq(m); + Square capsq = to + pawn_push(them); + Square ksq = king_square(us); + Bitboard b = (pieces() ^ from ^ capsq) | to; + assert(to == ep_square()); + assert(piece_moved(m) == make_piece(us, PAWN)); + assert(piece_on(capsq) == make_piece(them, PAWN)); + assert(piece_on(to) == NO_PIECE); -/// Position::find_checkers() computes the checkersBB bitboard, which -/// contains a nonzero bit for each checking piece (0, 1 or 2). It -/// currently works by calling Position::attackers_to, which is probably -/// inefficient. Consider rewriting this function to use the last move -/// played, like in non-bitboard versions of Glaurung. + return !(attacks_bb< ROOK>(ksq, b) & pieces(them, QUEEN, ROOK)) + && !(attacks_bb(ksq, b) & pieces(them, QUEEN, BISHOP)); + } -void Position::find_checkers() { + // If the moving piece is a king, check whether the destination + // square is attacked by the opponent. Castling moves are checked + // for legality during move generation. + if (type_of(piece_on(from)) == KING) + return type_of(m) == CASTLE || !(attackers_to(to_sq(m)) & pieces(~us)); - Color us = side_to_move(); - st->checkersBB = attackers_to(king_square(us)) & pieces_of_color(opposite_color(us)); + // A non-king move is legal if and only if it is not pinned or it + // is moving along the ray towards or away from the king. + return !pinned + || !(pinned & from) + || squares_aligned(from, to_sq(m), king_square(us)); } -/// Position::pl_move_is_legal() tests whether a pseudo-legal move is legal +/// Position::move_is_legal() takes a random move and tests whether the move +/// is legal. This version is not very fast and should be used only in non +/// time-critical paths. -bool Position::pl_move_is_legal(Move m, Bitboard pinned) const { +bool Position::move_is_legal(const Move m) const { - assert(is_ok()); - assert(move_is_ok(m)); - assert(pinned == pinned_pieces(side_to_move())); - - // Castling moves are checked for legality during move generation. - if (move_is_castle(m)) - return true; + for (MoveList ml(*this); !ml.end(); ++ml) + if (ml.move() == m) + return true; - // En passant captures are a tricky special case. Because they are - // rather uncommon, we do it simply by testing whether the king is attacked - // after the move is made - if (move_is_ep(m)) - { - Color us = side_to_move(); - Color them = opposite_color(us); - Square from = move_from(m); - Square to = move_to(m); - Square capsq = make_square(square_file(to), square_rank(from)); - Square ksq = king_square(us); - Bitboard b = occupied_squares(); + return false; +} - assert(to == ep_square()); - assert(piece_on(from) == piece_of_color_and_type(us, PAWN)); - assert(piece_on(capsq) == piece_of_color_and_type(them, PAWN)); - assert(piece_on(to) == PIECE_NONE); - clear_bit(&b, from); - clear_bit(&b, capsq); - set_bit(&b, to); +/// Position::is_pseudo_legal() takes a random move and tests whether the move +/// is pseudo legal. It is used to validate moves from TT that can be corrupted +/// due to SMP concurrent access or hash position key aliasing. - return !(rook_attacks_bb(ksq, b) & pieces(ROOK, QUEEN, them)) - && !(bishop_attacks_bb(ksq, b) & pieces(BISHOP, QUEEN, them)); - } +bool Position::is_pseudo_legal(const Move m) const { - Color us = side_to_move(); - Square from = move_from(m); + Color us = sideToMove; + Square from = from_sq(m); + Square to = to_sq(m); + Piece pc = piece_moved(m); - assert(color_of_piece_on(from) == us); - assert(piece_on(king_square(us)) == piece_of_color_and_type(us, KING)); + // Use a slower but simpler function for uncommon cases + if (type_of(m) != NORMAL) + return move_is_legal(m); - // If the moving piece is a king, check whether the destination - // square is attacked by the opponent. - if (type_of_piece_on(from) == KING) - return !(attackers_to(move_to(m)) & pieces_of_color(opposite_color(us))); + // Is not a promotion, so promotion piece must be empty + if (promotion_type(m) - 2 != NO_PIECE_TYPE) + return false; - // A non-king move is legal if and only if it is not pinned or it - // is moving along the ray towards or away from the king. - return !pinned - || !bit_is_set(pinned, from) - || squares_aligned(from, move_to(m), king_square(us)); -} + // If the from square is not occupied by a piece belonging to the side to + // move, the move is obviously not legal. + if (pc == NO_PIECE || color_of(pc) != us) + return false; + // The destination square cannot be occupied by a friendly piece + if (piece_on(to) != NO_PIECE && color_of(piece_on(to)) == us) + return false; -/// Position::pl_move_is_evasion() tests whether a pseudo-legal move is a legal evasion + // Handle the special case of a pawn move + if (type_of(pc) == PAWN) + { + // Move direction must be compatible with pawn color + int direction = to - from; + if ((us == WHITE) != (direction > 0)) + return false; -bool Position::pl_move_is_evasion(Move m, Bitboard pinned) const -{ - assert(is_check()); + // We have already handled promotion moves, so destination + // cannot be on the 8/1th rank. + if (rank_of(to) == RANK_8 || rank_of(to) == RANK_1) + return false; - Color us = side_to_move(); - Square from = move_from(m); - Square to = move_to(m); + // Proceed according to the square delta between the origin and + // destination squares. + switch (direction) + { + case DELTA_NW: + case DELTA_NE: + case DELTA_SW: + case DELTA_SE: + // Capture. The destination square must be occupied by an enemy + // piece (en passant captures was handled earlier). + if (piece_on(to) == NO_PIECE || color_of(piece_on(to)) != ~us) + return false; - // King moves and en-passant captures are verified in pl_move_is_legal() - if (type_of_piece_on(from) == KING || move_is_ep(m)) - return pl_move_is_legal(m, pinned); + // From and to files must be one file apart, avoids a7h5 + if (abs(file_of(from) - file_of(to)) != 1) + return false; + break; - Bitboard target = checkers(); - Square checksq = pop_1st_bit(&target); + case DELTA_N: + case DELTA_S: + // Pawn push. The destination square must be empty. + if (!is_empty(to)) + return false; + break; + + case DELTA_NN: + // Double white pawn push. The destination square must be on the fourth + // rank, and both the destination square and the square between the + // source and destination squares must be empty. + if ( rank_of(to) != RANK_4 + || !is_empty(to) + || !is_empty(from + DELTA_N)) + return false; + break; + + case DELTA_SS: + // Double black pawn push. The destination square must be on the fifth + // rank, and both the destination square and the square between the + // source and destination squares must be empty. + if ( rank_of(to) != RANK_5 + || !is_empty(to) + || !is_empty(from + DELTA_S)) + return false; + break; - if (target) // double check ? + default: + return false; + } + } + else if (!(attacks_from(pc, from) & to)) return false; - // Our move must be a blocking evasion or a capture of the checking piece - target = squares_between(checksq, king_square(us)) | checkers(); - return bit_is_set(target, to) && pl_move_is_legal(m, pinned); -} + // Evasions generator already takes care to avoid some kind of illegal moves + // and pl_move_is_legal() relies on this. So we have to take care that the + // same kind of moves are filtered out here. + if (in_check()) + { + if (type_of(pc) != KING) + { + // Double check? In this case a king move is required + if (more_than_one(checkers())) + return false; + // Our move must be a blocking evasion or a capture of the checking piece + if (!((between_bb(lsb(checkers()), king_square(us)) | checkers()) & to)) + return false; + } + // In case of king moves under check we have to remove king so to catch + // as invalid moves like b1a1 when opposite queen is on c1. + else if (attackers_to(to, pieces() ^ from) & pieces(~us)) + return false; + } -/// Position::move_is_check() tests whether a pseudo-legal move is a check + return true; +} -bool Position::move_is_check(Move m) const { - return move_is_check(m, CheckInfo(*this)); -} +/// Position::move_gives_check() tests whether a pseudo-legal move gives a check -bool Position::move_is_check(Move m, const CheckInfo& ci) const { +bool Position::move_gives_check(Move m, const CheckInfo& ci) const { - assert(is_ok()); - assert(move_is_ok(m)); - assert(ci.dcCandidates == discovered_check_candidates(side_to_move())); - assert(color_of_piece_on(move_from(m)) == side_to_move()); - assert(piece_on(ci.ksq) == piece_of_color_and_type(opposite_color(side_to_move()), KING)); + assert(is_ok(m)); + assert(ci.dcCandidates == discovered_check_candidates()); + assert(color_of(piece_moved(m)) == sideToMove); - Square from = move_from(m); - Square to = move_to(m); - PieceType pt = type_of_piece_on(from); + Square from = from_sq(m); + Square to = to_sq(m); + PieceType pt = type_of(piece_on(from)); // Direct check ? - if (bit_is_set(ci.checkSq[pt], to)) + if (ci.checkSq[pt] & to) return true; // Discovery check ? - if (ci.dcCandidates && bit_is_set(ci.dcCandidates, from)) + if (ci.dcCandidates && (ci.dcCandidates & from)) { // For pawn and king moves we need to verify also direction - if ( (pt != PAWN && pt != KING) - || !squares_aligned(from, to, ci.ksq)) + if ( (pt != PAWN && pt != KING) + || !squares_aligned(from, to, king_square(~sideToMove))) return true; } // Can we skip the ugly special cases ? - if (!move_is_special(m)) + if (type_of(m) == NORMAL) return false; - Color us = side_to_move(); - Bitboard b = occupied_squares(); + Color us = sideToMove; + Square ksq = king_square(~us); - // Promotion with check ? - if (move_is_promotion(m)) + switch (type_of(m)) { - clear_bit(&b, from); - - switch (move_promotion_piece(m)) - { - case KNIGHT: - return bit_is_set(attacks_from(to), ci.ksq); - case BISHOP: - return bit_is_set(bishop_attacks_bb(to, b), ci.ksq); - case ROOK: - return bit_is_set(rook_attacks_bb(to, b), ci.ksq); - case QUEEN: - return bit_is_set(queen_attacks_bb(to, b), ci.ksq); - default: - assert(false); - } - } + case PROMOTION: + return attacks_from(Piece(promotion_type(m)), to, pieces() ^ from) & ksq; // En passant capture with check ? We have already handled the case // of direct checks and ordinary discovered check, the only case we // need to handle is the unusual case of a discovered check through // the captured pawn. - if (move_is_ep(m)) + case ENPASSANT: { - Square capsq = make_square(square_file(to), square_rank(from)); - clear_bit(&b, from); - clear_bit(&b, capsq); - set_bit(&b, to); - return (rook_attacks_bb(ci.ksq, b) & pieces(ROOK, QUEEN, us)) - ||(bishop_attacks_bb(ci.ksq, b) & pieces(BISHOP, QUEEN, us)); - } + Square capsq = file_of(to) | rank_of(from); + Bitboard b = (pieces() ^ from ^ capsq) | to; - // Castling with check ? - if (move_is_castle(m)) + return (attacks_bb< ROOK>(ksq, b) & pieces(us, QUEEN, ROOK)) + | (attacks_bb(ksq, b) & pieces(us, QUEEN, BISHOP)); + } + case CASTLE: { - Square kfrom, kto, rfrom, rto; - kfrom = from; - rfrom = to; + Square kfrom = from; + Square rfrom = to; // 'King captures the rook' notation + Square kto = relative_square(us, rfrom > kfrom ? SQ_G1 : SQ_C1); + Square rto = relative_square(us, rfrom > kfrom ? SQ_F1 : SQ_D1); + Bitboard b = (pieces() ^ kfrom ^ rfrom) | rto | kto; - if (rfrom > kfrom) - { - kto = relative_square(us, SQ_G1); - rto = relative_square(us, SQ_F1); - } else { - kto = relative_square(us, SQ_C1); - rto = relative_square(us, SQ_D1); - } - clear_bit(&b, kfrom); - clear_bit(&b, rfrom); - set_bit(&b, rto); - set_bit(&b, kto); - return bit_is_set(rook_attacks_bb(rto, b), ci.ksq); + return attacks_bb(rto, b) & ksq; + } + default: + assert(false); + return false; } - - return false; } -/// Position::do_setup_move() makes a permanent move on the board. -/// It should be used when setting up a position on board. -/// You can't undo the move. - -void Position::do_setup_move(Move m, StateInfo& newSt) { - - do_move(m, newSt); - - // Reset "game ply" in case we made a non-reversible move. - // "game ply" is used for repetition detection. - if (st->rule50 == 0) - st->gamePly = 0; - - // Update the number of plies played from the starting position - startPosPlyCounter++; -} - /// Position::do_move() makes a move, and saves all information necessary -/// to a StateInfo object. The move is assumed to be legal. -/// Pseudo-legal moves should be filtered out before this function is called. +/// to a StateInfo object. The move is assumed to be legal. Pseudo-legal +/// moves should be filtered out before this function is called. void Position::do_move(Move m, StateInfo& newSt) { CheckInfo ci(*this); - do_move(m, newSt, ci, move_is_check(m, ci)); + do_move(m, newSt, ci, move_gives_check(m, ci)); } void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveIsCheck) { - assert(is_ok()); - assert(move_is_ok(m)); + assert(is_ok(m)); + assert(&newSt != st); nodes++; - Key key = st->key; + Key k = st->key; - // Copy some fields of old state to our new StateInfo object except the - // ones which are recalculated from scratch anyway, then switch our state + // Copy some fields of old state to our new StateInfo object except the ones + // which are going to be recalculated from scratch anyway, then switch our state // pointer to point to the new, ready to be updated, state. - struct ReducedStateInfo { - Key pawnKey, materialKey; - int castleRights, rule50, gamePly, pliesFromNull; - Square epSquare; - Score value; - Value npMaterial[2]; - }; - - if (&newSt != st) - memcpy(&newSt, st, sizeof(ReducedStateInfo)); + memcpy(&newSt, st, StateCopySize64 * sizeof(uint64_t)); newSt.previous = st; st = &newSt; - // Save the current key to the history[] array, in order to be able to - // detect repetition draws. - history[st->gamePly++] = key; - // Update side to move - key ^= zobSideToMove; + k ^= Zobrist::side; // Increment the 50 moves rule draw counter. Resetting it to zero in the - // case of non-reversible moves is taken care of later. + // case of a capture or a pawn move is taken care of later. st->rule50++; st->pliesFromNull++; - if (move_is_castle(m)) + if (type_of(m) == CASTLE) { - st->key = key; - do_castle_move(m); + st->key = k; + do_castle_move(m); return; } - Color us = side_to_move(); - Color them = opposite_color(us); - Square from = move_from(m); - Square to = move_to(m); - bool ep = move_is_ep(m); - bool pm = move_is_promotion(m); - + Color us = sideToMove; + Color them = ~us; + Square from = from_sq(m); + Square to = to_sq(m); Piece piece = piece_on(from); - PieceType pt = type_of_piece(piece); - PieceType capture = ep ? PAWN : type_of_piece_on(to); + PieceType pt = type_of(piece); + PieceType capture = type_of(m) == ENPASSANT ? PAWN : type_of(piece_on(to)); - assert(color_of_piece_on(from) == us); - assert(color_of_piece_on(to) == them || square_is_empty(to)); - assert(!(ep || pm) || piece == piece_of_color_and_type(us, PAWN)); - assert(!pm || relative_rank(us, to) == RANK_8); + assert(color_of(piece) == us); + assert(piece_on(to) == NO_PIECE || color_of(piece_on(to)) == them); + assert(capture != KING); if (capture) - do_capture_move(key, capture, them, to, ep); + { + Square capsq = to; + + // If the captured piece is a pawn, update pawn hash key, otherwise + // update non-pawn material. + if (capture == PAWN) + { + if (type_of(m) == ENPASSANT) + { + capsq += pawn_push(them); + + assert(pt == PAWN); + assert(to == st->epSquare); + assert(relative_rank(us, to) == RANK_6); + assert(piece_on(to) == NO_PIECE); + assert(piece_on(capsq) == make_piece(them, PAWN)); + + board[capsq] = NO_PIECE; + } + + st->pawnKey ^= Zobrist::psq[them][PAWN][capsq]; + } + else + st->npMaterial[them] -= PieceValue[MG][capture]; + + // Remove the captured piece + byTypeBB[ALL_PIECES] ^= capsq; + byTypeBB[capture] ^= capsq; + byColorBB[them] ^= capsq; + + // Update piece list, move the last piece at index[capsq] position and + // shrink the list. + // + // WARNING: This is a not revresible operation. When we will reinsert the + // captured piece in undo_move() we will put it at the end of the list and + // not in its original place, it means index[] and pieceList[] are not + // guaranteed to be invariant to a do_move() + undo_move() sequence. + Square lastSquare = pieceList[them][capture][--pieceCount[them][capture]]; + index[lastSquare] = index[capsq]; + pieceList[them][capture][index[lastSquare]] = lastSquare; + pieceList[them][capture][pieceCount[them][capture]] = SQ_NONE; + + // Update hash keys + k ^= Zobrist::psq[them][capture][capsq]; + st->materialKey ^= Zobrist::psq[them][capture][pieceCount[them][capture]]; + + // Update incremental scores + st->psqScore -= pieceSquareTable[make_piece(them, capture)][capsq]; + + // Reset rule 50 counter + st->rule50 = 0; + } // Update hash key - key ^= zobrist[us][pt][from] ^ zobrist[us][pt][to]; + k ^= Zobrist::psq[us][pt][from] ^ Zobrist::psq[us][pt][to]; // Reset en passant square if (st->epSquare != SQ_NONE) { - key ^= zobEp[st->epSquare]; + k ^= Zobrist::enpassant[file_of(st->epSquare)]; st->epSquare = SQ_NONE; } - // Update castle rights, try to shortcut a common case - int cm = castleRightsMask[from] & castleRightsMask[to]; - if (cm != ALL_CASTLES && ((cm & st->castleRights) != st->castleRights)) + // Update castle rights if needed + if (st->castleRights && (castleRightsMask[from] | castleRightsMask[to])) { - key ^= zobCastle[st->castleRights]; - st->castleRights &= castleRightsMask[from]; - st->castleRights &= castleRightsMask[to]; - key ^= zobCastle[st->castleRights]; + int cr = castleRightsMask[from] | castleRightsMask[to]; + k ^= Zobrist::castle[st->castleRights & cr]; + st->castleRights &= ~cr; } // Prefetch TT access as soon as we know key is updated - prefetch((char*)TT.first_entry(key)); + prefetch((char*)TT.first_entry(k)); // Move the piece - Bitboard move_bb = make_move_bb(from, to); - do_move_bb(&(byColorBB[us]), move_bb); - do_move_bb(&(byTypeBB[pt]), move_bb); - do_move_bb(&(byTypeBB[0]), move_bb); // HACK: byTypeBB[0] == occupied squares + Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to]; + byTypeBB[ALL_PIECES] ^= from_to_bb; + byTypeBB[pt] ^= from_to_bb; + byColorBB[us] ^= from_to_bb; board[to] = board[from]; - board[from] = PIECE_NONE; + board[from] = NO_PIECE; - // Update piece lists, note that index[from] is not updated and - // becomes stale. This works as long as index[] is accessed just - // by known occupied squares. + // Update piece lists, index[from] is not updated and becomes stale. This + // works as long as index[] is accessed just by known occupied squares. index[to] = index[from]; pieceList[us][pt][index[to]] = to; - // If the moving piece was a pawn do some special extra work + // If the moving piece is a pawn do some special extra work if (pt == PAWN) { - // Reset rule 50 draw counter - st->rule50 = 0; - - // Update pawn hash key and prefetch in L1/L2 cache - st->pawnKey ^= zobrist[us][PAWN][from] ^ zobrist[us][PAWN][to]; - prefetchPawn(st->pawnKey, threadID); - - // Set en passant square, only if moved pawn can be captured - if ((to ^ from) == 16) + // Set en-passant square, only if moved pawn can be captured + if ( (int(to) ^ int(from)) == 16 + && (attacks_from(from + pawn_push(us), us) & pieces(them, PAWN))) { - if (attacks_from(from + (us == WHITE ? DELTA_N : DELTA_S), us) & pieces(PAWN, them)) - { - st->epSquare = Square((int(from) + int(to)) / 2); - key ^= zobEp[st->epSquare]; - } + st->epSquare = Square((from + to) / 2); + k ^= Zobrist::enpassant[file_of(st->epSquare)]; } - if (pm) // promotion ? + if (type_of(m) == PROMOTION) { - PieceType promotion = move_promotion_piece(m); + PieceType promotion = promotion_type(m); + assert(relative_rank(us, to) == RANK_8); assert(promotion >= KNIGHT && promotion <= QUEEN); - // Insert promoted piece instead of pawn - clear_bit(&(byTypeBB[PAWN]), to); - set_bit(&(byTypeBB[promotion]), to); - board[to] = piece_of_color_and_type(us, promotion); - - // Update piece counts - pieceCount[us][promotion]++; - pieceCount[us][PAWN]--; - - // Update material key - st->materialKey ^= zobrist[us][PAWN][pieceCount[us][PAWN]]; - st->materialKey ^= zobrist[us][promotion][pieceCount[us][promotion]-1]; + // Replace the pawn with the promoted piece + byTypeBB[PAWN] ^= to; + byTypeBB[promotion] |= to; + board[to] = make_piece(us, promotion); // Update piece lists, move the last pawn at index[to] position // and shrink the list. Add a new promotion piece to the list. - Square lastPawnSquare = pieceList[us][PAWN][pieceCount[us][PAWN]]; - index[lastPawnSquare] = index[to]; - pieceList[us][PAWN][index[lastPawnSquare]] = lastPawnSquare; + Square lastSquare = pieceList[us][PAWN][--pieceCount[us][PAWN]]; + index[lastSquare] = index[to]; + pieceList[us][PAWN][index[lastSquare]] = lastSquare; pieceList[us][PAWN][pieceCount[us][PAWN]] = SQ_NONE; - index[to] = pieceCount[us][promotion] - 1; + index[to] = pieceCount[us][promotion]; pieceList[us][promotion][index[to]] = to; - // Partially revert hash keys update - key ^= zobrist[us][PAWN][to] ^ zobrist[us][promotion][to]; - st->pawnKey ^= zobrist[us][PAWN][to]; + // Update hash keys + k ^= Zobrist::psq[us][PAWN][to] ^ Zobrist::psq[us][promotion][to]; + st->pawnKey ^= Zobrist::psq[us][PAWN][to]; + st->materialKey ^= Zobrist::psq[us][promotion][pieceCount[us][promotion]++] + ^ Zobrist::psq[us][PAWN][pieceCount[us][PAWN]]; - // Partially revert and update incremental scores - st->value -= pst(us, PAWN, to); - st->value += pst(us, promotion, to); + // Update incremental score + st->psqScore += pieceSquareTable[make_piece(us, promotion)][to] + - pieceSquareTable[make_piece(us, PAWN)][to]; // Update material - st->npMaterial[us] += PieceValueMidgame[promotion]; + st->npMaterial[us] += PieceValue[MG][promotion]; } + + // Update pawn hash key + st->pawnKey ^= Zobrist::psq[us][PAWN][from] ^ Zobrist::psq[us][PAWN][to]; + + // Reset rule 50 draw counter + st->rule50 = 0; } + // Prefetch pawn and material hash tables + prefetch((char*)thisThread->pawnsTable[st->pawnKey]); + prefetch((char*)thisThread->materialTable[st->materialKey]); + // Update incremental scores - st->value += pst_delta(piece, from, to); + st->psqScore += psq_delta(piece, from, to); // Set capture piece st->capturedType = capture; // Update the key with the final value - st->key = key; + st->key = k; // Update checkers bitboard, piece must be already moved - st->checkersBB = EmptyBoardBB; + st->checkersBB = 0; if (moveIsCheck) { - if (ep | pm) - st->checkersBB = attackers_to(king_square(them)) & pieces_of_color(us); + if (type_of(m) != NORMAL) + st->checkersBB = attackers_to(king_square(them)) & pieces(us); else { // Direct checks - if (bit_is_set(ci.checkSq[pt], to)) - st->checkersBB = SetMaskBB[to]; + if (ci.checkSq[pt] & to) + st->checkersBB |= to; // Discovery checks - if (ci.dcCandidates && bit_is_set(ci.dcCandidates, from)) + if (ci.dcCandidates && (ci.dcCandidates & from)) { if (pt != ROOK) - st->checkersBB |= (attacks_from(ci.ksq) & pieces(ROOK, QUEEN, us)); + st->checkersBB |= attacks_from(king_square(them)) & pieces(us, QUEEN, ROOK); if (pt != BISHOP) - st->checkersBB |= (attacks_from(ci.ksq) & pieces(BISHOP, QUEEN, us)); + st->checkersBB |= attacks_from(king_square(them)) & pieces(us, QUEEN, BISHOP); } } } - // Finish - sideToMove = opposite_color(sideToMove); - st->value += (sideToMove == WHITE ? TempoValue : -TempoValue); + sideToMove = ~sideToMove; - assert(is_ok()); -} - - -/// Position::do_capture_move() is a private method used to update captured -/// piece info. It is called from the main Position::do_move function. - -void Position::do_capture_move(Key& key, PieceType capture, Color them, Square to, bool ep) { - - assert(capture != KING); - - Square capsq = to; - - // If the captured piece was a pawn, update pawn hash key, - // otherwise update non-pawn material. - if (capture == PAWN) - { - if (ep) // en passant ? - { - capsq = (them == BLACK)? (to - DELTA_N) : (to - DELTA_S); - - assert(to == st->epSquare); - assert(relative_rank(opposite_color(them), to) == RANK_6); - assert(piece_on(to) == PIECE_NONE); - assert(piece_on(capsq) == piece_of_color_and_type(them, PAWN)); - - board[capsq] = PIECE_NONE; - } - st->pawnKey ^= zobrist[them][PAWN][capsq]; - } - else - st->npMaterial[them] -= PieceValueMidgame[capture]; - - // Remove captured piece - clear_bit(&(byColorBB[them]), capsq); - clear_bit(&(byTypeBB[capture]), capsq); - clear_bit(&(byTypeBB[0]), capsq); - - // Update hash key - key ^= zobrist[them][capture][capsq]; - - // Update incremental scores - st->value -= pst(them, capture, capsq); - - // Update piece count - pieceCount[them][capture]--; - - // Update material hash key - st->materialKey ^= zobrist[them][capture][pieceCount[them][capture]]; - - // Update piece list, move the last piece at index[capsq] position - // - // WARNING: This is a not perfectly revresible operation. When we - // will reinsert the captured piece in undo_move() we will put it - // at the end of the list and not in its original place, it means - // index[] and pieceList[] are not guaranteed to be invariant to a - // do_move() + undo_move() sequence. - Square lastPieceSquare = pieceList[them][capture][pieceCount[them][capture]]; - index[lastPieceSquare] = index[capsq]; - pieceList[them][capture][index[lastPieceSquare]] = lastPieceSquare; - pieceList[them][capture][pieceCount[them][capture]] = SQ_NONE; - - // Reset rule 50 counter - st->rule50 = 0; -} - - -/// Position::do_castle_move() is a private method used to make a castling -/// move. It is called from the main Position::do_move function. Note that -/// castling moves are encoded as "king captures friendly rook" moves, for -/// instance white short castling in a non-Chess960 game is encoded as e1h1. - -void Position::do_castle_move(Move m) { - - assert(move_is_ok(m)); - assert(move_is_castle(m)); - - Color us = side_to_move(); - Color them = opposite_color(us); - - // Reset capture field - st->capturedType = PIECE_TYPE_NONE; - - // Find source squares for king and rook - Square kfrom = move_from(m); - Square rfrom = move_to(m); // HACK: See comment at beginning of function - Square kto, rto; - - assert(piece_on(kfrom) == piece_of_color_and_type(us, KING)); - assert(piece_on(rfrom) == piece_of_color_and_type(us, ROOK)); - - // Find destination squares for king and rook - if (rfrom > kfrom) // O-O - { - kto = relative_square(us, SQ_G1); - rto = relative_square(us, SQ_F1); - } else { // O-O-O - kto = relative_square(us, SQ_C1); - rto = relative_square(us, SQ_D1); - } - - // Remove pieces from source squares: - clear_bit(&(byColorBB[us]), kfrom); - clear_bit(&(byTypeBB[KING]), kfrom); - clear_bit(&(byTypeBB[0]), kfrom); // HACK: byTypeBB[0] == occupied squares - clear_bit(&(byColorBB[us]), rfrom); - clear_bit(&(byTypeBB[ROOK]), rfrom); - clear_bit(&(byTypeBB[0]), rfrom); // HACK: byTypeBB[0] == occupied squares - - // Put pieces on destination squares: - set_bit(&(byColorBB[us]), kto); - set_bit(&(byTypeBB[KING]), kto); - set_bit(&(byTypeBB[0]), kto); // HACK: byTypeBB[0] == occupied squares - set_bit(&(byColorBB[us]), rto); - set_bit(&(byTypeBB[ROOK]), rto); - set_bit(&(byTypeBB[0]), rto); // HACK: byTypeBB[0] == occupied squares - - // Update board array - Piece king = piece_of_color_and_type(us, KING); - Piece rook = piece_of_color_and_type(us, ROOK); - board[kfrom] = board[rfrom] = PIECE_NONE; - board[kto] = king; - board[rto] = rook; - - // Update piece lists - pieceList[us][KING][index[kfrom]] = kto; - pieceList[us][ROOK][index[rfrom]] = rto; - int tmp = index[rfrom]; // In Chess960 could be rto == kfrom - index[kto] = index[kfrom]; - index[rto] = tmp; - - // Update incremental scores - st->value += pst_delta(king, kfrom, kto); - st->value += pst_delta(rook, rfrom, rto); - - // Update hash key - st->key ^= zobrist[us][KING][kfrom] ^ zobrist[us][KING][kto]; - st->key ^= zobrist[us][ROOK][rfrom] ^ zobrist[us][ROOK][rto]; - - // Clear en passant square - if (st->epSquare != SQ_NONE) - { - st->key ^= zobEp[st->epSquare]; - st->epSquare = SQ_NONE; - } - - // Update castling rights - st->key ^= zobCastle[st->castleRights]; - st->castleRights &= castleRightsMask[kfrom]; - st->key ^= zobCastle[st->castleRights]; - - // Reset rule 50 counter - st->rule50 = 0; - - // Update checkers BB - st->checkersBB = attackers_to(king_square(them)) & pieces_of_color(us); - - // Finish - sideToMove = opposite_color(sideToMove); - st->value += (sideToMove == WHITE ? TempoValue : -TempoValue); - - assert(is_ok()); + assert(pos_is_ok()); } @@ -1169,230 +963,238 @@ void Position::do_castle_move(Move m) { void Position::undo_move(Move m) { - assert(is_ok()); - assert(move_is_ok(m)); + assert(is_ok(m)); - sideToMove = opposite_color(sideToMove); + sideToMove = ~sideToMove; - if (move_is_castle(m)) + if (type_of(m) == CASTLE) { - undo_castle_move(m); + do_castle_move(m); return; } - Color us = side_to_move(); - Color them = opposite_color(us); - Square from = move_from(m); - Square to = move_to(m); - bool ep = move_is_ep(m); - bool pm = move_is_promotion(m); - - PieceType pt = type_of_piece_on(to); + Color us = sideToMove; + Color them = ~us; + Square from = from_sq(m); + Square to = to_sq(m); + Piece piece = piece_on(to); + PieceType pt = type_of(piece); + PieceType capture = st->capturedType; - assert(square_is_empty(from)); - assert(color_of_piece_on(to) == us); - assert(!pm || relative_rank(us, to) == RANK_8); - assert(!ep || to == st->previous->epSquare); - assert(!ep || relative_rank(us, to) == RANK_6); - assert(!ep || piece_on(to) == piece_of_color_and_type(us, PAWN)); + assert(is_empty(from)); + assert(color_of(piece) == us); + assert(capture != KING); - if (pm) // promotion ? + if (type_of(m) == PROMOTION) { - PieceType promotion = move_promotion_piece(m); - pt = PAWN; + PieceType promotion = promotion_type(m); + assert(promotion == pt); + assert(relative_rank(us, to) == RANK_8); assert(promotion >= KNIGHT && promotion <= QUEEN); - assert(piece_on(to) == piece_of_color_and_type(us, promotion)); - // Replace promoted piece with a pawn - clear_bit(&(byTypeBB[promotion]), to); - set_bit(&(byTypeBB[PAWN]), to); + // Replace the promoted piece with the pawn + byTypeBB[promotion] ^= to; + byTypeBB[PAWN] |= to; + board[to] = make_piece(us, PAWN); - // Update piece counts - pieceCount[us][promotion]--; - pieceCount[us][PAWN]++; - - // Update piece list replacing promotion piece with a pawn - Square lastPromotionSquare = pieceList[us][promotion][pieceCount[us][promotion]]; - index[lastPromotionSquare] = index[to]; - pieceList[us][promotion][index[lastPromotionSquare]] = lastPromotionSquare; + // Update piece lists, move the last promoted piece at index[to] position + // and shrink the list. Add a new pawn to the list. + Square lastSquare = pieceList[us][promotion][--pieceCount[us][promotion]]; + index[lastSquare] = index[to]; + pieceList[us][promotion][index[lastSquare]] = lastSquare; pieceList[us][promotion][pieceCount[us][promotion]] = SQ_NONE; - index[to] = pieceCount[us][PAWN] - 1; + index[to] = pieceCount[us][PAWN]++; pieceList[us][PAWN][index[to]] = to; + + pt = PAWN; } // Put the piece back at the source square - Bitboard move_bb = make_move_bb(to, from); - do_move_bb(&(byColorBB[us]), move_bb); - do_move_bb(&(byTypeBB[pt]), move_bb); - do_move_bb(&(byTypeBB[0]), move_bb); // HACK: byTypeBB[0] == occupied squares + Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to]; + byTypeBB[ALL_PIECES] ^= from_to_bb; + byTypeBB[pt] ^= from_to_bb; + byColorBB[us] ^= from_to_bb; - board[from] = piece_of_color_and_type(us, pt); - board[to] = PIECE_NONE; + board[from] = board[to]; + board[to] = NO_PIECE; - // Update piece list + // Update piece lists, index[to] is not updated and becomes stale. This + // works as long as index[] is accessed just by known occupied squares. index[from] = index[to]; pieceList[us][pt][index[from]] = from; - if (st->capturedType) + if (capture) { Square capsq = to; - if (ep) - capsq = (us == WHITE)? (to - DELTA_N) : (to - DELTA_S); + if (type_of(m) == ENPASSANT) + { + capsq -= pawn_push(us); - assert(st->capturedType != KING); - assert(!ep || square_is_empty(capsq)); + assert(pt == PAWN); + assert(to == st->previous->epSquare); + assert(relative_rank(us, to) == RANK_6); + assert(piece_on(capsq) == NO_PIECE); + } // Restore the captured piece - set_bit(&(byColorBB[them]), capsq); - set_bit(&(byTypeBB[st->capturedType]), capsq); - set_bit(&(byTypeBB[0]), capsq); - - board[capsq] = piece_of_color_and_type(them, st->capturedType); + byTypeBB[ALL_PIECES] |= capsq; + byTypeBB[capture] |= capsq; + byColorBB[them] |= capsq; - // Update piece count - pieceCount[them][st->capturedType]++; + board[capsq] = make_piece(them, capture); // Update piece list, add a new captured piece in capsq square - index[capsq] = pieceCount[them][st->capturedType] - 1; - pieceList[them][st->capturedType][index[capsq]] = capsq; + index[capsq] = pieceCount[them][capture]++; + pieceList[them][capture][index[capsq]] = capsq; } // Finally point our state pointer back to the previous state st = st->previous; - assert(is_ok()); + assert(pos_is_ok()); } -/// Position::undo_castle_move() is a private method used to unmake a castling -/// move. It is called from the main Position::undo_move function. Note that -/// castling moves are encoded as "king captures friendly rook" moves, for -/// instance white short castling in a non-Chess960 game is encoded as e1h1. - -void Position::undo_castle_move(Move m) { +/// Position::do_castle_move() is a private method used to do/undo a castling +/// move. Note that castling moves are encoded as "king captures friendly rook" +/// moves, for instance white short castling in a non-Chess960 game is encoded +/// as e1h1. +template +void Position::do_castle_move(Move m) { - assert(move_is_ok(m)); - assert(move_is_castle(m)); + assert(is_ok(m)); + assert(type_of(m) == CASTLE); - // When we have arrived here, some work has already been done by - // Position::undo_move. In particular, the side to move has been switched, - // so the code below is correct. - Color us = side_to_move(); + Square kto, kfrom, rfrom, rto, kAfter, rAfter; - // Find source squares for king and rook - Square kfrom = move_from(m); - Square rfrom = move_to(m); // HACK: See comment at beginning of function - Square kto, rto; + Color us = sideToMove; + Square kBefore = from_sq(m); + Square rBefore = to_sq(m); - // Find destination squares for king and rook - if (rfrom > kfrom) // O-O + // Find after-castle squares for king and rook + if (rBefore > kBefore) // O-O + { + kAfter = relative_square(us, SQ_G1); + rAfter = relative_square(us, SQ_F1); + } + else // O-O-O { - kto = relative_square(us, SQ_G1); - rto = relative_square(us, SQ_F1); - } else { // O-O-O - kto = relative_square(us, SQ_C1); - rto = relative_square(us, SQ_D1); + kAfter = relative_square(us, SQ_C1); + rAfter = relative_square(us, SQ_D1); } - assert(piece_on(kto) == piece_of_color_and_type(us, KING)); - assert(piece_on(rto) == piece_of_color_and_type(us, ROOK)); - - // Remove pieces from destination squares: - clear_bit(&(byColorBB[us]), kto); - clear_bit(&(byTypeBB[KING]), kto); - clear_bit(&(byTypeBB[0]), kto); // HACK: byTypeBB[0] == occupied squares - clear_bit(&(byColorBB[us]), rto); - clear_bit(&(byTypeBB[ROOK]), rto); - clear_bit(&(byTypeBB[0]), rto); // HACK: byTypeBB[0] == occupied squares - - // Put pieces on source squares: - set_bit(&(byColorBB[us]), kfrom); - set_bit(&(byTypeBB[KING]), kfrom); - set_bit(&(byTypeBB[0]), kfrom); // HACK: byTypeBB[0] == occupied squares - set_bit(&(byColorBB[us]), rfrom); - set_bit(&(byTypeBB[ROOK]), rfrom); - set_bit(&(byTypeBB[0]), rfrom); // HACK: byTypeBB[0] == occupied squares + kfrom = Do ? kBefore : kAfter; + rfrom = Do ? rBefore : rAfter; + + kto = Do ? kAfter : kBefore; + rto = Do ? rAfter : rBefore; + + assert(piece_on(kfrom) == make_piece(us, KING)); + assert(piece_on(rfrom) == make_piece(us, ROOK)); + + // Move the pieces, with some care; in chess960 could be kto == rfrom + Bitboard k_from_to_bb = SquareBB[kfrom] ^ SquareBB[kto]; + Bitboard r_from_to_bb = SquareBB[rfrom] ^ SquareBB[rto]; + byTypeBB[KING] ^= k_from_to_bb; + byTypeBB[ROOK] ^= r_from_to_bb; + byTypeBB[ALL_PIECES] ^= k_from_to_bb ^ r_from_to_bb; + byColorBB[us] ^= k_from_to_bb ^ r_from_to_bb; // Update board - board[rto] = board[kto] = PIECE_NONE; - board[rfrom] = piece_of_color_and_type(us, ROOK); - board[kfrom] = piece_of_color_and_type(us, KING); + Piece king = make_piece(us, KING); + Piece rook = make_piece(us, ROOK); + board[kfrom] = board[rfrom] = NO_PIECE; + board[kto] = king; + board[rto] = rook; // Update piece lists - pieceList[us][KING][index[kto]] = kfrom; - pieceList[us][ROOK][index[rto]] = rfrom; - int tmp = index[rto]; // In Chess960 could be rto == kfrom - index[kfrom] = index[kto]; - index[rfrom] = tmp; - - // Finally point our state pointer back to the previous state - st = st->previous; + pieceList[us][KING][index[kfrom]] = kto; + pieceList[us][ROOK][index[rfrom]] = rto; + int tmp = index[rfrom]; // In Chess960 could be kto == rfrom + index[kto] = index[kfrom]; + index[rto] = tmp; - assert(is_ok()); -} + if (Do) + { + // Reset capture field + st->capturedType = NO_PIECE_TYPE; + // Update incremental scores + st->psqScore += psq_delta(king, kfrom, kto); + st->psqScore += psq_delta(rook, rfrom, rto); -/// Position::do_null_move makes() a "null move": It switches the side to move -/// and updates the hash key without executing any move on the board. + // Update hash key + st->key ^= Zobrist::psq[us][KING][kfrom] ^ Zobrist::psq[us][KING][kto]; + st->key ^= Zobrist::psq[us][ROOK][rfrom] ^ Zobrist::psq[us][ROOK][rto]; -void Position::do_null_move(StateInfo& backupSt) { + // Clear en passant square + if (st->epSquare != SQ_NONE) + { + st->key ^= Zobrist::enpassant[file_of(st->epSquare)]; + st->epSquare = SQ_NONE; + } - assert(is_ok()); - assert(!is_check()); + // Update castling rights + st->key ^= Zobrist::castle[st->castleRights & castleRightsMask[kfrom]]; + st->castleRights &= ~castleRightsMask[kfrom]; - // Back up the information necessary to undo the null move to the supplied - // StateInfo object. - // Note that differently from normal case here backupSt is actually used as - // a backup storage not as a new state to be used. - backupSt.key = st->key; - backupSt.epSquare = st->epSquare; - backupSt.value = st->value; - backupSt.previous = st->previous; - backupSt.pliesFromNull = st->pliesFromNull; - st->previous = &backupSt; - - // Save the current key to the history[] array, in order to be able to - // detect repetition draws. - history[st->gamePly++] = st->key; - - // Update the necessary information - if (st->epSquare != SQ_NONE) - st->key ^= zobEp[st->epSquare]; + // Update checkers BB + st->checkersBB = attackers_to(king_square(~us)) & pieces(us); - st->key ^= zobSideToMove; - prefetch((char*)TT.first_entry(st->key)); + sideToMove = ~sideToMove; + } + else + // Undo: point our state pointer back to the previous state + st = st->previous; - sideToMove = opposite_color(sideToMove); - st->epSquare = SQ_NONE; - st->rule50++; - st->pliesFromNull = 0; - st->value += (sideToMove == WHITE) ? TempoValue : -TempoValue; + assert(pos_is_ok()); } -/// Position::undo_null_move() unmakes a "null move". +/// Position::do_null_move() is used to do/undo a "null move": It flips the side +/// to move and updates the hash key without executing any move on the board. +template +void Position::do_null_move(StateInfo& backupSt) { + + assert(!in_check()); + + // Back up the information necessary to undo the null move to the supplied + // StateInfo object. Note that differently from normal case here backupSt + // is actually used as a backup storage not as the new state. This reduces + // the number of fields to be copied. + StateInfo* src = Do ? st : &backupSt; + StateInfo* dst = Do ? &backupSt : st; + + dst->key = src->key; + dst->epSquare = src->epSquare; + dst->psqScore = src->psqScore; + dst->rule50 = src->rule50; + dst->pliesFromNull = src->pliesFromNull; -void Position::undo_null_move() { + sideToMove = ~sideToMove; - assert(is_ok()); - assert(!is_check()); + if (Do) + { + if (st->epSquare != SQ_NONE) + st->key ^= Zobrist::enpassant[file_of(st->epSquare)]; - // Restore information from the our backup StateInfo object - StateInfo* backupSt = st->previous; - st->key = backupSt->key; - st->epSquare = backupSt->epSquare; - st->value = backupSt->value; - st->previous = backupSt->previous; - st->pliesFromNull = backupSt->pliesFromNull; + st->key ^= Zobrist::side; + prefetch((char*)TT.first_entry(st->key)); + + st->epSquare = SQ_NONE; + st->rule50++; + st->pliesFromNull = 0; + } - // Update the necessary information - sideToMove = opposite_color(sideToMove); - st->rule50--; - st->gamePly--; + assert(pos_is_ok()); } +// Explicit template instantiations +template void Position::do_null_move(StateInfo& backupSt); +template void Position::do_null_move(StateInfo& backupSt); + /// Position::see() is a static exchange evaluator: It tries to estimate the /// material gain or loss resulting from a move. There are three versions of @@ -1400,74 +1202,61 @@ void Position::undo_null_move() { /// move, and one which takes a 'from' and a 'to' square. The function does /// not yet understand promotions captures. -int Position::see(Move m) const { - - assert(move_is_ok(m)); - return see(move_from(m), move_to(m)); -} - int Position::see_sign(Move m) const { - assert(move_is_ok(m)); - - Square from = move_from(m); - Square to = move_to(m); + assert(is_ok(m)); // Early return if SEE cannot be negative because captured piece value // is not less then capturing one. Note that king moves always return // here because king midgame value is set to 0. - if (midgame_value_of_piece_on(to) >= midgame_value_of_piece_on(from)) + if (PieceValue[MG][piece_on(to_sq(m))] >= PieceValue[MG][piece_moved(m)]) return 1; - return see(from, to); + return see(m); } -int Position::see(Square from, Square to) const { +int Position::see(Move m) const { - Bitboard occupied, attackers, stmAttackers, b; + Square from, to; + Bitboard occupied, attackers, stmAttackers; int swapList[32], slIndex = 1; - PieceType capturedType, pt; + PieceType captured; Color stm; - assert(square_is_ok(from)); - assert(square_is_ok(to)); + assert(is_ok(m)); - capturedType = type_of_piece_on(to); - - // King cannot be recaptured - if (capturedType == KING) - return seeValues[capturedType]; - - occupied = occupied_squares(); + from = from_sq(m); + to = to_sq(m); + captured = type_of(piece_on(to)); + occupied = pieces() ^ from; // Handle en passant moves - if (st->epSquare == to && type_of_piece_on(from) == PAWN) + if (type_of(m) == ENPASSANT) { - Square capQq = (side_to_move() == WHITE ? to - DELTA_N : to - DELTA_S); + Square capQq = to - pawn_push(sideToMove); - assert(capturedType == PIECE_TYPE_NONE); - assert(type_of_piece_on(capQq) == PAWN); + assert(!captured); + assert(type_of(piece_on(capQq)) == PAWN); // Remove the captured pawn - clear_bit(&occupied, capQq); - capturedType = PAWN; + occupied ^= capQq; + captured = PAWN; } + else if (type_of(m) == CASTLE) + // Castle moves are implemented as king capturing the rook so cannot be + // handled correctly. Simply return 0 that is always the correct value + // unless the rook is ends up under attack. + return 0; // Find all attackers to the destination square, with the moving piece // removed, but possibly an X-ray attacker added behind it. - clear_bit(&occupied, from); - attackers = (rook_attacks_bb(to, occupied) & pieces(ROOK, QUEEN)) - | (bishop_attacks_bb(to, occupied)& pieces(BISHOP, QUEEN)) - | (attacks_from(to) & pieces(KNIGHT)) - | (attacks_from(to) & pieces(KING)) - | (attacks_from(to, WHITE) & pieces(PAWN, BLACK)) - | (attacks_from(to, BLACK) & pieces(PAWN, WHITE)); + attackers = attackers_to(to, occupied); // If the opponent has no attackers we are finished - stm = opposite_color(color_of_piece_on(from)); - stmAttackers = attackers & pieces_of_color(stm); + stm = ~color_of(piece_on(from)); + stmAttackers = attackers & pieces(stm); if (!stmAttackers) - return seeValues[capturedType]; + return PieceValue[MG][captured]; // The destination square is defended, which makes things rather more // difficult to compute. We proceed by building up a "swap list" containing @@ -1475,49 +1264,38 @@ int Position::see(Square from, Square to) const { // destination square, where the sides alternately capture, and always // capture with the least valuable piece. After each capture, we look for // new X-ray attacks from behind the capturing piece. - swapList[0] = seeValues[capturedType]; - capturedType = type_of_piece_on(from); + swapList[0] = PieceValue[MG][captured]; + captured = type_of(piece_on(from)); do { - // Locate the least valuable attacker for the side to move. The loop - // below looks like it is potentially infinite, but it isn't. We know - // that the side to move still has at least one attacker left. - for (pt = PAWN; !(stmAttackers & pieces(pt)); pt++) - assert(pt < KING); - - // Remove the attacker we just found from the 'occupied' bitboard, - // and scan for new X-ray attacks behind the attacker. - b = stmAttackers & pieces(pt); - occupied ^= (b & (~b + 1)); - attackers |= (rook_attacks_bb(to, occupied) & pieces(ROOK, QUEEN)) - | (bishop_attacks_bb(to, occupied) & pieces(BISHOP, QUEEN)); - - attackers &= occupied; // Cut out pieces we've already done + assert(slIndex < 32); // Add the new entry to the swap list - assert(slIndex < 32); - swapList[slIndex] = -swapList[slIndex - 1] + seeValues[capturedType]; + swapList[slIndex] = -swapList[slIndex - 1] + PieceValue[MG][captured]; slIndex++; - // Remember the value of the capturing piece, and change the side to - // move before beginning the next iteration. - capturedType = pt; - stm = opposite_color(stm); - stmAttackers = attackers & pieces_of_color(stm); + // Locate and remove from 'occupied' the next least valuable attacker + captured = next_attacker(byTypeBB, to, stmAttackers, occupied, attackers); + + attackers &= occupied; // Remove the just found attacker + stm = ~stm; + stmAttackers = attackers & pieces(stm); - // Stop before processing a king capture - if (capturedType == KING && stmAttackers) + if (captured == KING) { - assert(slIndex < 32); - swapList[slIndex++] = QueenValueMidgame*10; + // Stop before processing a king capture + if (stmAttackers) + swapList[slIndex++] = QueenValueMg * 16; + break; } + } while (stmAttackers); // Having built the swap list, we negamax through it to find the best // achievable score from the point of view of the side to move. while (--slIndex) - swapList[slIndex-1] = Min(-swapList[slIndex], swapList[slIndex-1]); + swapList[slIndex-1] = std::min(-swapList[slIndex], swapList[slIndex-1]); return swapList[0]; } @@ -1528,31 +1306,13 @@ int Position::see(Square from, Square to) const { void Position::clear() { + memset(this, 0, sizeof(Position)); + startState.epSquare = SQ_NONE; st = &startState; - memset(st, 0, sizeof(StateInfo)); - st->epSquare = SQ_NONE; - startPosPlyCounter = 0; - nodes = 0; - - memset(byColorBB, 0, sizeof(Bitboard) * 2); - memset(byTypeBB, 0, sizeof(Bitboard) * 8); - memset(pieceCount, 0, sizeof(int) * 2 * 8); - memset(index, 0, sizeof(int) * 64); - - for (int i = 0; i < 64; i++) - board[i] = PIECE_NONE; for (int i = 0; i < 8; i++) for (int j = 0; j < 16; j++) pieceList[0][i][j] = pieceList[1][i][j] = SQ_NONE; - - for (Square sq = SQ_A1; sq <= SQ_H8; sq++) - castleRightsMask[sq] = ALL_CASTLES; - - sideToMove = WHITE; - initialKFile = FILE_E; - initialKRFile = FILE_H; - initialQRFile = FILE_A; } @@ -1561,16 +1321,16 @@ void Position::clear() { void Position::put_piece(Piece p, Square s) { - Color c = color_of_piece(p); - PieceType pt = type_of_piece(p); + Color c = color_of(p); + PieceType pt = type_of(p); board[s] = p; index[s] = pieceCount[c][pt]++; pieceList[c][pt][index[s]] = s; - set_bit(&(byTypeBB[pt]), s); - set_bit(&(byColorBB[c]), s); - set_bit(&(byTypeBB[0]), s); // HACK: byTypeBB[0] contains all occupied squares. + byTypeBB[ALL_PIECES] |= s; + byTypeBB[pt] |= s; + byColorBB[c] |= s; } @@ -1581,19 +1341,21 @@ void Position::put_piece(Piece p, Square s) { Key Position::compute_key() const { - Key result = zobCastle[st->castleRights]; + Key k = Zobrist::castle[st->castleRights]; - for (Square s = SQ_A1; s <= SQ_H8; s++) - if (square_is_occupied(s)) - result ^= zobrist[color_of_piece_on(s)][type_of_piece_on(s)][s]; + for (Bitboard b = pieces(); b; ) + { + Square s = pop_lsb(&b); + k ^= Zobrist::psq[color_of(piece_on(s))][type_of(piece_on(s))][s]; + } if (ep_square() != SQ_NONE) - result ^= zobEp[ep_square()]; + k ^= Zobrist::enpassant[file_of(ep_square())]; - if (side_to_move() == BLACK) - result ^= zobSideToMove; + if (sideToMove == BLACK) + k ^= Zobrist::side; - return result; + return k; } @@ -1605,16 +1367,15 @@ Key Position::compute_key() const { Key Position::compute_pawn_key() const { - Bitboard b; - Key result = 0; + Key k = 0; - for (Color c = WHITE; c <= BLACK; c++) + for (Bitboard b = pieces(PAWN); b; ) { - b = pieces(PAWN, c); - while (b) - result ^= zobrist[c][PAWN][pop_1st_bit(&b)]; + Square s = pop_lsb(&b); + k ^= Zobrist::psq[color_of(piece_on(s))][PAWN][s]; } - return result; + + return k; } @@ -1626,39 +1387,32 @@ Key Position::compute_pawn_key() const { Key Position::compute_material_key() const { - int count; - Key result = 0; + Key k = 0; for (Color c = WHITE; c <= BLACK; c++) for (PieceType pt = PAWN; pt <= QUEEN; pt++) - { - count = piece_count(c, pt); - for (int i = 0; i < count; i++) - result ^= zobrist[c][pt][i]; - } - return result; + for (int cnt = 0; cnt < piece_count(c, pt); cnt++) + k ^= Zobrist::psq[c][pt][cnt]; + + return k; } -/// Position::compute_value() compute the incremental scores for the middle +/// Position::compute_psq_score() computes the incremental scores for the middle /// game and the endgame. These functions are used to initialize the incremental /// scores when a new position is set up, and to verify that the scores are correctly /// updated by do_move and undo_move when the program is running in debug mode. -Score Position::compute_value() const { +Score Position::compute_psq_score() const { - Bitboard b; - Score result = SCORE_ZERO; + Score score = SCORE_ZERO; - for (Color c = WHITE; c <= BLACK; c++) - for (PieceType pt = PAWN; pt <= KING; pt++) - { - b = pieces(pt, c); - while (b) - result += pst(c, pt, pop_1st_bit(&b)); - } + for (Bitboard b = pieces(); b; ) + { + Square s = pop_lsb(&b); + score += pieceSquareTable[piece_on(s)][s]; + } - result += (side_to_move() == WHITE ? TempoValue / 2 : -TempoValue / 2); - return result; + return score; } @@ -1669,275 +1423,161 @@ Score Position::compute_value() const { Value Position::compute_non_pawn_material(Color c) const { - Value result = VALUE_ZERO; + Value value = VALUE_ZERO; for (PieceType pt = KNIGHT; pt <= QUEEN; pt++) - result += piece_count(c, pt) * PieceValueMidgame[pt]; + value += piece_count(c, pt) * PieceValue[MG][pt]; - return result; + return value; } /// Position::is_draw() tests whether the position is drawn by material, /// repetition, or the 50 moves rule. It does not detect stalemates, this /// must be done by the search. - +template bool Position::is_draw() const { - // Draw by material? if ( !pieces(PAWN) - && (non_pawn_material(WHITE) + non_pawn_material(BLACK) <= BishopValueMidgame)) + && (non_pawn_material(WHITE) + non_pawn_material(BLACK) <= BishopValueMg)) return true; - // Draw by the 50 moves rule? - if (st->rule50 > 99 && !is_mate()) + if (st->rule50 > 99 && (!in_check() || MoveList(*this).size())) return true; - // Draw by repetition? - for (int i = 4, e = Min(Min(st->gamePly, st->rule50), st->pliesFromNull); i <= e; i += 2) - if (history[st->gamePly - i] == st->key) - return true; - - return false; -} - - -/// Position::is_mate() returns true or false depending on whether the -/// side to move is checkmated. - -bool Position::is_mate() const { - - MoveStack moves[MOVES_MAX]; - return is_check() && generate(*this, moves) == moves; -} - - -/// Position::has_mate_threat() tests whether the side to move is under -/// a threat of being mated in one from the current position. - -bool Position::has_mate_threat() { - - MoveStack mlist[MOVES_MAX], *last, *cur; - StateInfo st1, st2; - bool mateFound = false; - - // If we are under check it's up to evasions to do the job - if (is_check()) - return false; - - // First pass the move to our opponent doing a null move - do_null_move(st1); - - // Then generate pseudo-legal moves that could give check - last = generate(*this, mlist); - last = generate(*this, last); - - // Loop through the moves, and see if one of them gives mate - Bitboard pinned = pinned_pieces(sideToMove); - CheckInfo ci(*this); - for (cur = mlist; cur != last && !mateFound; cur++) + if (CheckRepetition) { - Move move = cur->move; - if ( !pl_move_is_legal(move, pinned) - || !move_is_check(move, ci)) - continue; + int i = 4, e = std::min(st->rule50, st->pliesFromNull), cnt; - do_move(move, st2, ci, true); + if (i <= e) + { + StateInfo* stp = st->previous->previous; - if (is_mate()) - mateFound = true; + for (cnt = 0; i <= e; i += 2) + { + stp = stp->previous->previous; - undo_move(move); + if (stp->key == st->key && (!CheckThreeFold || ++cnt >= 2)) + return true; + } + } } - undo_null_move(); - return mateFound; + return false; } +// Explicit template instantiations +template bool Position::is_draw() const; +template bool Position::is_draw() const; +template bool Position::is_draw() const; -/// Position::init_zobrist() is a static member function which initializes at -/// startup the various arrays used to compute hash keys. - -void Position::init_zobrist() { - - int i,j, k; - RKISS rk; - - for (i = 0; i < 2; i++) for (j = 0; j < 8; j++) for (k = 0; k < 64; k++) - zobrist[i][j][k] = rk.rand(); - - for (i = 0; i < 64; i++) - zobEp[i] = rk.rand(); - for (i = 0; i < 16; i++) - zobCastle[i] = rk.rand(); - - zobSideToMove = rk.rand(); - zobExclusion = rk.rand(); -} +/// Position::flip() flips position with the white and black sides reversed. This +/// is only useful for debugging especially for finding evaluation symmetry bugs. +void Position::flip() { -/// Position::init_piece_square_tables() initializes the piece square tables. -/// This is a two-step operation: First, the white halves of the tables are -/// copied from the MgPST[][] and EgPST[][] arrays. Second, the black halves -/// of the tables are initialized by mirroring and changing the sign of the -/// corresponding white scores. + const Position pos(*this); -void Position::init_piece_square_tables() { + clear(); - for (Square s = SQ_A1; s <= SQ_H8; s++) - for (Piece p = WP; p <= WK; p++) - PieceSquareTable[p][s] = make_score(MgPST[p][s], EgPST[p][s]); + sideToMove = ~pos.side_to_move(); + thisThread = pos.this_thread(); + nodes = pos.nodes_searched(); + chess960 = pos.is_chess960(); + startPosPly = pos.startpos_ply_counter(); for (Square s = SQ_A1; s <= SQ_H8; s++) - for (Piece p = BP; p <= BK; p++) - PieceSquareTable[p][s] = -PieceSquareTable[p-8][flip_square(s)]; -} - - -/// Position::flipped_copy() makes a copy of the input position, but with -/// the white and black sides reversed. This is only useful for debugging, -/// especially for finding evaluation symmetry bugs. + if (!pos.is_empty(s)) + put_piece(Piece(pos.piece_on(s) ^ 8), ~s); + + if (pos.can_castle(WHITE_OO)) + set_castle_right(BLACK, ~pos.castle_rook_square(WHITE, KING_SIDE)); + if (pos.can_castle(WHITE_OOO)) + set_castle_right(BLACK, ~pos.castle_rook_square(WHITE, QUEEN_SIDE)); + if (pos.can_castle(BLACK_OO)) + set_castle_right(WHITE, ~pos.castle_rook_square(BLACK, KING_SIDE)); + if (pos.can_castle(BLACK_OOO)) + set_castle_right(WHITE, ~pos.castle_rook_square(BLACK, QUEEN_SIDE)); -void Position::flipped_copy(const Position& pos) { - - assert(pos.is_ok()); - - clear(); - threadID = pos.thread(); - - // Board - for (Square s = SQ_A1; s <= SQ_H8; s++) - if (!pos.square_is_empty(s)) - put_piece(Piece(pos.piece_on(s) ^ 8), flip_square(s)); - - // Side to move - sideToMove = opposite_color(pos.side_to_move()); - - // Castling rights - if (pos.can_castle_kingside(WHITE)) do_allow_oo(BLACK); - if (pos.can_castle_queenside(WHITE)) do_allow_ooo(BLACK); - if (pos.can_castle_kingside(BLACK)) do_allow_oo(WHITE); - if (pos.can_castle_queenside(BLACK)) do_allow_ooo(WHITE); - - initialKFile = pos.initialKFile; - initialKRFile = pos.initialKRFile; - initialQRFile = pos.initialQRFile; - - castleRightsMask[make_square(initialKFile, RANK_1)] ^= (WHITE_OO | WHITE_OOO); - castleRightsMask[make_square(initialKFile, RANK_8)] ^= (BLACK_OO | BLACK_OOO); - castleRightsMask[make_square(initialKRFile, RANK_1)] ^= WHITE_OO; - castleRightsMask[make_square(initialKRFile, RANK_8)] ^= BLACK_OO; - castleRightsMask[make_square(initialQRFile, RANK_1)] ^= WHITE_OOO; - castleRightsMask[make_square(initialQRFile, RANK_8)] ^= BLACK_OOO; - - // En passant square if (pos.st->epSquare != SQ_NONE) - st->epSquare = flip_square(pos.st->epSquare); + st->epSquare = ~pos.st->epSquare; - // Checkers - find_checkers(); + st->checkersBB = attackers_to(king_square(sideToMove)) & pieces(~sideToMove); - // Hash keys st->key = compute_key(); st->pawnKey = compute_pawn_key(); st->materialKey = compute_material_key(); - - // Incremental scores - st->value = compute_value(); - - // Material + st->psqScore = compute_psq_score(); st->npMaterial[WHITE] = compute_non_pawn_material(WHITE); st->npMaterial[BLACK] = compute_non_pawn_material(BLACK); - assert(is_ok()); + assert(pos_is_ok()); } -/// Position::is_ok() performs some consitency checks for the position object. +/// Position::pos_is_ok() performs some consitency checks for the position object. /// This is meant to be helpful when debugging. -bool Position::is_ok(int* failedStep) const { +bool Position::pos_is_ok(int* failedStep) const { - // What features of the position should be verified? - const bool debugAll = false; - - const bool debugBitboards = debugAll || false; - const bool debugKingCount = debugAll || false; - const bool debugKingCapture = debugAll || false; - const bool debugCheckerCount = debugAll || false; - const bool debugKey = debugAll || false; - const bool debugMaterialKey = debugAll || false; - const bool debugPawnKey = debugAll || false; - const bool debugIncrementalEval = debugAll || false; - const bool debugNonPawnMaterial = debugAll || false; - const bool debugPieceCounts = debugAll || false; - const bool debugPieceList = debugAll || false; - const bool debugCastleSquares = debugAll || false; - - if (failedStep) *failedStep = 1; - - // Side to move OK? - if (!color_is_ok(side_to_move())) - return false; - - // Are the king squares in the position correct? - if (failedStep) (*failedStep)++; - if (piece_on(king_square(WHITE)) != WK) - return false; + int dummy, *step = failedStep ? failedStep : &dummy; - if (failedStep) (*failedStep)++; - if (piece_on(king_square(BLACK)) != BK) + // What features of the position should be verified? + const bool all = false; + + const bool debugBitboards = all || false; + const bool debugKingCount = all || false; + const bool debugKingCapture = all || false; + const bool debugCheckerCount = all || false; + const bool debugKey = all || false; + const bool debugMaterialKey = all || false; + const bool debugPawnKey = all || false; + const bool debugIncrementalEval = all || false; + const bool debugNonPawnMaterial = all || false; + const bool debugPieceCounts = all || false; + const bool debugPieceList = all || false; + const bool debugCastleSquares = all || false; + + *step = 1; + + if (sideToMove != WHITE && sideToMove != BLACK) return false; - // Castle files OK? - if (failedStep) (*failedStep)++; - if (!file_is_ok(initialKRFile)) + if ((*step)++, piece_on(king_square(WHITE)) != W_KING) return false; - if (!file_is_ok(initialQRFile)) + if ((*step)++, piece_on(king_square(BLACK)) != B_KING) return false; - // Do both sides have exactly one king? - if (failedStep) (*failedStep)++; - if (debugKingCount) + if ((*step)++, debugKingCount) { - int kingCount[2] = {0, 0}; + int kingCount[COLOR_NB] = {}; + for (Square s = SQ_A1; s <= SQ_H8; s++) - if (type_of_piece_on(s) == KING) - kingCount[color_of_piece_on(s)]++; + if (type_of(piece_on(s)) == KING) + kingCount[color_of(piece_on(s))]++; if (kingCount[0] != 1 || kingCount[1] != 1) return false; } - // Can the side to move capture the opponent's king? - if (failedStep) (*failedStep)++; - if (debugKingCapture) - { - Color us = side_to_move(); - Color them = opposite_color(us); - Square ksq = king_square(them); - if (attackers_to(ksq) & pieces_of_color(us)) + if ((*step)++, debugKingCapture) + if (attackers_to(king_square(~sideToMove)) & pieces(sideToMove)) return false; - } - // Is there more than 2 checkers? - if (failedStep) (*failedStep)++; - if (debugCheckerCount && count_1s(st->checkersBB) > 2) + if ((*step)++, debugCheckerCount && popcount(st->checkersBB) > 2) return false; - // Bitboards OK? - if (failedStep) (*failedStep)++; - if (debugBitboards) + if ((*step)++, debugBitboards) { // The intersection of the white and black pieces must be empty - if ((pieces_of_color(WHITE) & pieces_of_color(BLACK)) != EmptyBoardBB) + if (pieces(WHITE) & pieces(BLACK)) return false; // The union of the white and black pieces must be equal to all // occupied squares - if ((pieces_of_color(WHITE) | pieces_of_color(BLACK)) != occupied_squares()) + if ((pieces(WHITE) | pieces(BLACK)) != pieces()) return false; // Separate piece type bitboards must have empty intersections @@ -1947,88 +1587,63 @@ bool Position::is_ok(int* failedStep) const { return false; } - // En passant square OK? - if (failedStep) (*failedStep)++; - if (ep_square() != SQ_NONE) - { - // The en passant square must be on rank 6, from the point of view of the - // side to move. - if (relative_rank(side_to_move(), ep_square()) != RANK_6) - return false; - } + if ((*step)++, ep_square() != SQ_NONE && relative_rank(sideToMove, ep_square()) != RANK_6) + return false; - // Hash key OK? - if (failedStep) (*failedStep)++; - if (debugKey && st->key != compute_key()) + if ((*step)++, debugKey && st->key != compute_key()) return false; - // Pawn hash key OK? - if (failedStep) (*failedStep)++; - if (debugPawnKey && st->pawnKey != compute_pawn_key()) + if ((*step)++, debugPawnKey && st->pawnKey != compute_pawn_key()) return false; - // Material hash key OK? - if (failedStep) (*failedStep)++; - if (debugMaterialKey && st->materialKey != compute_material_key()) + if ((*step)++, debugMaterialKey && st->materialKey != compute_material_key()) return false; - // Incremental eval OK? - if (failedStep) (*failedStep)++; - if (debugIncrementalEval && st->value != compute_value()) + if ((*step)++, debugIncrementalEval && st->psqScore != compute_psq_score()) return false; - // Non-pawn material OK? - if (failedStep) (*failedStep)++; - if (debugNonPawnMaterial) + if ((*step)++, debugNonPawnMaterial) { - if (st->npMaterial[WHITE] != compute_non_pawn_material(WHITE)) - return false; - - if (st->npMaterial[BLACK] != compute_non_pawn_material(BLACK)) + if ( st->npMaterial[WHITE] != compute_non_pawn_material(WHITE) + || st->npMaterial[BLACK] != compute_non_pawn_material(BLACK)) return false; } - // Piece counts OK? - if (failedStep) (*failedStep)++; - if (debugPieceCounts) + if ((*step)++, debugPieceCounts) for (Color c = WHITE; c <= BLACK; c++) for (PieceType pt = PAWN; pt <= KING; pt++) - if (pieceCount[c][pt] != count_1s(pieces(pt, c))) + if (pieceCount[c][pt] != popcount(pieces(c, pt))) return false; - if (failedStep) (*failedStep)++; - if (debugPieceList) - { + if ((*step)++, debugPieceList) for (Color c = WHITE; c <= BLACK; c++) for (PieceType pt = PAWN; pt <= KING; pt++) for (int i = 0; i < pieceCount[c][pt]; i++) { - if (piece_on(piece_list(c, pt, i)) != piece_of_color_and_type(c, pt)) + if (piece_on(piece_list(c, pt)[i]) != make_piece(c, pt)) return false; - if (index[piece_list(c, pt, i)] != i) + if (index[piece_list(c, pt)[i]] != i) return false; } - } - if (failedStep) (*failedStep)++; - if (debugCastleSquares) { - for (Color c = WHITE; c <= BLACK; c++) { - if (can_castle_kingside(c) && piece_on(initial_kr_square(c)) != piece_of_color_and_type(c, ROOK)) - return false; - if (can_castle_queenside(c) && piece_on(initial_qr_square(c)) != piece_of_color_and_type(c, ROOK)) - return false; - } - if (castleRightsMask[initial_kr_square(WHITE)] != (ALL_CASTLES ^ WHITE_OO)) - return false; - if (castleRightsMask[initial_qr_square(WHITE)] != (ALL_CASTLES ^ WHITE_OOO)) - return false; - if (castleRightsMask[initial_kr_square(BLACK)] != (ALL_CASTLES ^ BLACK_OO)) - return false; - if (castleRightsMask[initial_qr_square(BLACK)] != (ALL_CASTLES ^ BLACK_OOO)) - return false; - } + if ((*step)++, debugCastleSquares) + for (Color c = WHITE; c <= BLACK; c++) + for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1)) + { + CastleRight cr = make_castle_right(c, s); + + if (!can_castle(cr)) + continue; + + if ((castleRightsMask[king_square(c)] & cr) != cr) + return false; + + if ( piece_on(castleRookSquare[c][s]) != make_piece(c, ROOK) + || castleRightsMask[castleRookSquare[c][s]] != cr) + return false; + } - if (failedStep) *failedStep = 0; + *step = 0; return true; }