X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fposition.cpp;h=cbaa07e86e6c7925aa810347fc63688f63810252;hp=3fc568eebf93a0e674d748ceee4095c8b92b7551;hb=15e21911110f9d459c4fef2bb17903d97345d0b9;hpb=d2a8ba329940655e4683a67a2528a92717700732 diff --git a/src/position.cpp b/src/position.cpp index 3fc568ee..cbaa07e8 100644 --- a/src/position.cpp +++ b/src/position.cpp @@ -172,6 +172,21 @@ Position& Position::operator=(const Position& pos) { } +/// Position::clear() erases the position object to a pristine state, with an +/// empty board, white to move, and no castling rights. + +void Position::clear() { + + std::memset(this, 0, sizeof(Position)); + startState.epSquare = SQ_NONE; + st = &startState; + + for (int i = 0; i < PIECE_TYPE_NB; ++i) + for (int j = 0; j < 16; ++j) + pieceList[WHITE][i][j] = pieceList[BLACK][i][j] = SQ_NONE; +} + + /// Position::set() initializes the position object with the given FEN string. /// This function is not very robust - make sure that input FENs are correct, /// this is assumed to be the responsibility of the GUI. @@ -211,7 +226,7 @@ void Position::set(const string& fenStr, bool isChess960, Thread* th) { incremented after Black's move. */ - char col, row, token; + unsigned char col, row, token; size_t idx; Square sq = SQ_A8; std::istringstream ss(fenStr); @@ -259,7 +274,7 @@ void Position::set(const string& fenStr, bool isChess960, Thread* th) { for (rsq = relative_square(c, SQ_A1); type_of(piece_on(rsq)) != ROOK; ++rsq) {} else if (token >= 'A' && token <= 'H') - rsq = File(token - 'A') | relative_rank(c, RANK_1); + rsq = make_square(File(token - 'A'), relative_rank(c, RANK_1)); else continue; @@ -271,7 +286,7 @@ void Position::set(const string& fenStr, bool isChess960, Thread* th) { if ( ((ss >> col) && (col >= 'a' && col <= 'h')) && ((ss >> row) && (row == '3' || row == '6'))) { - st->epSquare = File(col - 'a') | Rank(row - '1'); + st->epSquare = make_square(File(col - 'a'), Rank(row - '1')); if (!(attackers_to(st->epSquare) & pieces(sideToMove, PAWN))) st->epSquare = SQ_NONE; @@ -282,17 +297,11 @@ void Position::set(const string& fenStr, bool isChess960, Thread* th) { // Convert from fullmove starting from 1 to ply starting from 0, // handle also common incorrect FEN with fullmove = 0. - gamePly = std::max(2 * (gamePly - 1), 0) + int(sideToMove == BLACK); - - st->key = compute_key(); - st->pawnKey = compute_pawn_key(); - st->materialKey = compute_material_key(); - st->psq = compute_psq_score(); - st->npMaterial[WHITE] = compute_non_pawn_material(WHITE); - st->npMaterial[BLACK] = compute_non_pawn_material(BLACK); - st->checkersBB = attackers_to(king_square(sideToMove)) & pieces(~sideToMove); + gamePly = std::max(2 * (gamePly - 1), 0) + (sideToMove == BLACK); + chess960 = isChess960; thisThread = th; + set_state(st); assert(pos_is_ok()); } @@ -325,6 +334,52 @@ void Position::set_castling_right(Color c, Square rfrom) { } +/// Position::set_state() computes the hash keys of the position, and other +/// data that once computed is updated incrementally as moves are made. +/// The function is only used when a new position is set up, and to verify +/// the correctness of the StateInfo data when running in debug mode. + +void Position::set_state(StateInfo* si) const { + + si->key = si->pawnKey = si->materialKey = 0; + si->npMaterial[WHITE] = si->npMaterial[BLACK] = VALUE_ZERO; + si->psq = SCORE_ZERO; + + si->checkersBB = attackers_to(king_square(sideToMove)) & pieces(~sideToMove); + + for (Bitboard b = pieces(); b; ) + { + Square s = pop_lsb(&b); + Piece pc = piece_on(s); + si->key ^= Zobrist::psq[color_of(pc)][type_of(pc)][s]; + si->psq += psq[color_of(pc)][type_of(pc)][s]; + } + + if (ep_square() != SQ_NONE) + si->key ^= Zobrist::enpassant[file_of(ep_square())]; + + if (sideToMove == BLACK) + si->key ^= Zobrist::side; + + si->key ^= Zobrist::castling[st->castlingRights]; + + for (Bitboard b = pieces(PAWN); b; ) + { + Square s = pop_lsb(&b); + si->pawnKey ^= Zobrist::psq[color_of(piece_on(s))][PAWN][s]; + } + + for (Color c = WHITE; c <= BLACK; ++c) + for (PieceType pt = PAWN; pt <= KING; ++pt) + for (int cnt = 0; cnt < pieceCount[c][pt]; ++cnt) + si->materialKey ^= Zobrist::psq[c][pt][cnt]; + + for (Color c = WHITE; c <= BLACK; ++c) + for (PieceType pt = KNIGHT; pt <= QUEEN; ++pt) + si->npMaterial[c] += pieceCount[c][pt] * PieceValue[MG][pt]; +} + + /// Position::fen() returns a FEN representation of the position. In case of /// Chess960 the Shredder-FEN notation is used. This is mainly a debugging function. @@ -333,21 +388,21 @@ const string Position::fen() const { int emptyCnt; std::ostringstream ss; - for (Rank rank = RANK_8; rank >= RANK_1; --rank) + for (Rank r = RANK_8; r >= RANK_1; --r) { - for (File file = FILE_A; file <= FILE_H; ++file) + for (File f = FILE_A; f <= FILE_H; ++f) { - for (emptyCnt = 0; file <= FILE_H && empty(file | rank); ++file) + for (emptyCnt = 0; f <= FILE_H && empty(make_square(f, r)); ++f) ++emptyCnt; if (emptyCnt) ss << emptyCnt; - if (file <= FILE_H) - ss << PieceToChar[piece_on(file | rank)]; + if (f <= FILE_H) + ss << PieceToChar[piece_on(make_square(f, r))]; } - if (rank > RANK_1) + if (r > RANK_1) ss << '/'; } @@ -369,49 +424,51 @@ const string Position::fen() const { ss << '-'; ss << (ep_square() == SQ_NONE ? " - " : " " + to_string(ep_square()) + " ") - << st->rule50 << " " << 1 + (gamePly - int(sideToMove == BLACK)) / 2; + << st->rule50 << " " << 1 + (gamePly - (sideToMove == BLACK)) / 2; return ss.str(); } -/// Position::pretty() returns an ASCII representation of the position to be -/// printed to the standard output together with the move's san notation. +/// Position::pretty() returns an ASCII representation of the position -const string Position::pretty(Move move) const { +const string Position::pretty() const { - const string dottedLine = "\n+---+---+---+---+---+---+---+---+"; - const string twoRows = dottedLine + "\n| | . | | . | | . | | . |" - + dottedLine + "\n| . | | . | | . | | . | |"; + std::ostringstream ss; - string brd = twoRows + twoRows + twoRows + twoRows + dottedLine; + ss << "\n +---+---+---+---+---+---+---+---+\n"; - for (Bitboard b = pieces(); b; ) + for (Rank r = RANK_8; r >= RANK_1; --r) { - Square s = pop_lsb(&b); - brd[513 - 68 * rank_of(s) + 4 * file_of(s)] = PieceToChar[piece_on(s)]; - } + for (File f = FILE_A; f <= FILE_H; ++f) + ss << " | " << PieceToChar[piece_on(make_square(f, r))]; - std::ostringstream ss; - - if (move) - ss << "\nMove: " << (sideToMove == BLACK ? ".." : "") - << move_to_san(*const_cast(this), move); + ss << " |\n +---+---+---+---+---+---+---+---+\n"; + } - ss << brd << "\nFen: " << fen() << "\nKey: " << std::hex << std::uppercase + ss << "\nFen: " << fen() << "\nKey: " << std::hex << std::uppercase << std::setfill('0') << std::setw(16) << st->key << "\nCheckers: "; for (Bitboard b = checkers(); b; ) ss << to_string(pop_lsb(&b)) << " "; - ss << "\nLegal moves: "; - for (MoveList it(*this); *it; ++it) - ss << move_to_san(*const_cast(this), *it) << " "; - return ss.str(); } +/// Position::game_phase() calculates the game phase interpolating total non-pawn +/// material between endgame and midgame limits. + +Phase Position::game_phase() const { + + Value npm = st->npMaterial[WHITE] + st->npMaterial[BLACK]; + + npm = std::max(EndgameLimit, std::min(npm, MidgameLimit)); + + return Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit)); +} + + /// Position::check_blockers() returns a bitboard of all the pieces with color /// 'c' that are blocking check on the king with color 'kingColor'. A piece /// blocks a check if removing that piece from the board would result in a @@ -471,19 +528,18 @@ bool Position::legal(Move m, Bitboard pinned) const { // the move is made. if (type_of(m) == ENPASSANT) { - Color them = ~us; - Square to = to_sq(m); - Square capsq = to + pawn_push(them); Square ksq = king_square(us); - Bitboard b = (pieces() ^ from ^ capsq) | to; + Square to = to_sq(m); + Square capsq = to - pawn_push(us); + Bitboard occ = (pieces() ^ from ^ capsq) | to; assert(to == ep_square()); assert(moved_piece(m) == make_piece(us, PAWN)); - assert(piece_on(capsq) == make_piece(them, PAWN)); + assert(piece_on(capsq) == make_piece(~us, PAWN)); assert(piece_on(to) == NO_PIECE); - return !(attacks_bb< ROOK>(ksq, b) & pieces(them, QUEEN, ROOK)) - && !(attacks_bb(ksq, b) & pieces(them, QUEEN, BISHOP)); + return !(attacks_bb< ROOK>(ksq, occ) & pieces(~us, QUEEN, ROOK)) + && !(attacks_bb(ksq, occ) & pieces(~us, QUEEN, BISHOP)); } // If the moving piece is a king, check whether the destination @@ -596,12 +652,11 @@ bool Position::gives_check(Move m, const CheckInfo& ci) const { && !aligned(from, to, ci.ksq)) return true; - // Can we skip the ugly special cases? - if (type_of(m) == NORMAL) - return false; - switch (type_of(m)) { + case NORMAL: + return false; + case PROMOTION: return attacks_bb(Piece(promotion_type(m)), to, pieces() ^ from) & ci.ksq; @@ -611,7 +666,7 @@ bool Position::gives_check(Move m, const CheckInfo& ci) const { // the captured pawn. case ENPASSANT: { - Square capsq = file_of(to) | rank_of(from); + Square capsq = make_square(file_of(to), rank_of(from)); Bitboard b = (pieces() ^ from ^ capsq) | to; return (attacks_bb< ROOK>(ci.ksq, b) & pieces(sideToMove, QUEEN, ROOK)) @@ -685,14 +740,10 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI { assert(pc == make_piece(us, KING)); - bool kingSide = to > from; - Square rfrom = to; // Castling is encoded as "king captures friendly rook" - Square rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1); - to = relative_square(us, kingSide ? SQ_G1 : SQ_C1); - captured = NO_PIECE_TYPE; - - do_castling(from, to, rfrom, rto); + Square rfrom, rto; + do_castling(from, to, rfrom, rto); + captured = NO_PIECE_TYPE; st->psq += psq[us][ROOK][rto] - psq[us][ROOK][rfrom]; k ^= Zobrist::psq[us][ROOK][rfrom] ^ Zobrist::psq[us][ROOK][rto]; } @@ -756,9 +807,6 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI st->castlingRights &= ~cr; } - // Prefetch TT access as soon as we know the new hash key - prefetch((char*)TT.first_entry(k)); - // Move the piece. The tricky Chess960 castling is handled earlier if (type_of(m) != CASTLING) move_piece(from, to, us, pt); @@ -774,7 +822,7 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI k ^= Zobrist::enpassant[file_of(st->epSquare)]; } - if (type_of(m) == PROMOTION) + else if (type_of(m) == PROMOTION) { PieceType promotion = promotion_type(m); @@ -814,7 +862,7 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI // Update the key with the final value st->key = k; - // Update checkers bitboard: piece must be already moved + // Update checkers bitboard: piece must be already moved due to attacks_from() st->checkersBB = 0; if (moveIsCheck) @@ -828,7 +876,7 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI st->checkersBB |= to; // Discovered checks - if (ci.dcCandidates && (ci.dcCandidates & from)) + if (unlikely(ci.dcCandidates) && (ci.dcCandidates & from)) { if (pt != ROOK) st->checkersBB |= attacks_from(king_square(them)) & pieces(us, QUEEN, ROOK); @@ -855,56 +903,49 @@ void Position::undo_move(Move m) { sideToMove = ~sideToMove; Color us = sideToMove; - Color them = ~us; Square from = from_sq(m); Square to = to_sq(m); PieceType pt = type_of(piece_on(to)); - PieceType captured = st->capturedType; assert(empty(from) || type_of(m) == CASTLING); - assert(captured != KING); + assert(st->capturedType != KING); if (type_of(m) == PROMOTION) { - PieceType promotion = promotion_type(m); - - assert(promotion == pt); + assert(pt == promotion_type(m)); assert(relative_rank(us, to) == RANK_8); - assert(promotion >= KNIGHT && promotion <= QUEEN); + assert(promotion_type(m) >= KNIGHT && promotion_type(m) <= QUEEN); - remove_piece(to, us, promotion); + remove_piece(to, us, promotion_type(m)); put_piece(to, us, PAWN); pt = PAWN; } if (type_of(m) == CASTLING) { - bool kingSide = to > from; - Square rfrom = to; // Castling is encoded as "king captures friendly rook" - Square rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1); - to = relative_square(us, kingSide ? SQ_G1 : SQ_C1); - captured = NO_PIECE_TYPE; - pt = KING; - do_castling(to, from, rto, rfrom); + Square rfrom, rto; + do_castling(from, to, rfrom, rto); } else - move_piece(to, from, us, pt); // Put the piece back at the source square - - if (captured) { - Square capsq = to; + move_piece(to, from, us, pt); // Put the piece back at the source square - if (type_of(m) == ENPASSANT) + if (st->capturedType) { - capsq -= pawn_push(us); + Square capsq = to; - assert(pt == PAWN); - assert(to == st->previous->epSquare); - assert(relative_rank(us, to) == RANK_6); - assert(piece_on(capsq) == NO_PIECE); - } + if (type_of(m) == ENPASSANT) + { + capsq -= pawn_push(us); - put_piece(capsq, them, captured); // Restore the captured piece + assert(pt == PAWN); + assert(to == st->previous->epSquare); + assert(relative_rank(us, to) == RANK_6); + assert(piece_on(capsq) == NO_PIECE); + } + + put_piece(capsq, ~us, st->capturedType); // Restore the captured piece + } } // Finally point our state pointer back to the previous state @@ -917,15 +958,20 @@ void Position::undo_move(Move m) { /// Position::do_castling() is a helper used to do/undo a castling move. This /// is a bit tricky, especially in Chess960. +template +void Position::do_castling(Square from, Square& to, Square& rfrom, Square& rto) { -void Position::do_castling(Square kfrom, Square kto, Square rfrom, Square rto) { + bool kingSide = to > from; + rfrom = to; // Castling is encoded as "king captures friendly rook" + rto = relative_square(sideToMove, kingSide ? SQ_F1 : SQ_D1); + to = relative_square(sideToMove, kingSide ? SQ_G1 : SQ_C1); // Remove both pieces first since squares could overlap in Chess960 - remove_piece(kfrom, sideToMove, KING); - remove_piece(rfrom, sideToMove, ROOK); - board[kfrom] = board[rfrom] = NO_PIECE; // Since remove_piece doesn't do it for us - put_piece(kto, sideToMove, KING); - put_piece(rto, sideToMove, ROOK); + remove_piece(Do ? from : to, sideToMove, KING); + remove_piece(Do ? rfrom : rto, sideToMove, ROOK); + board[Do ? from : to] = board[Do ? rfrom : rto] = NO_PIECE; // Since remove_piece doesn't do it for us + put_piece(Do ? to : from, sideToMove, KING); + put_piece(Do ? rto : rfrom, sideToMove, ROOK); } @@ -967,6 +1013,26 @@ void Position::undo_null_move() { } +/// Position::key_after() computes the new hash key after the given moven. Needed +/// for speculative prefetch. It doesn't recognize special moves like castling, +/// en-passant and promotions. + +Key Position::key_after(Move m) const { + + Color us = sideToMove; + Square from = from_sq(m); + Square to = to_sq(m); + PieceType pt = type_of(piece_on(from)); + PieceType captured = type_of(piece_on(to)); + Key k = st->key ^ Zobrist::side; + + if (captured) + k ^= Zobrist::psq[~us][captured][to]; + + return k ^ Zobrist::psq[us][pt][to] ^ Zobrist::psq[us][pt][from]; +} + + /// Position::see() is a static exchange evaluator: It tries to estimate the /// material gain or loss resulting from a move. @@ -1063,130 +1129,11 @@ Value Position::see(Move m) const { } -/// Position::clear() erases the position object to a pristine state, with an -/// empty board, white to move, and no castling rights. - -void Position::clear() { - - std::memset(this, 0, sizeof(Position)); - startState.epSquare = SQ_NONE; - st = &startState; - - for (int i = 0; i < PIECE_TYPE_NB; ++i) - for (int j = 0; j < 16; ++j) - pieceList[WHITE][i][j] = pieceList[BLACK][i][j] = SQ_NONE; -} - - -/// Position::compute_key() computes the hash key of the position. The hash -/// key is usually updated incrementally as moves are made and unmade. The -/// compute_key() function is only used when a new position is set up, and -/// to verify the correctness of the hash key when running in debug mode. - -Key Position::compute_key() const { - - Key k = Zobrist::castling[st->castlingRights]; - - for (Bitboard b = pieces(); b; ) - { - Square s = pop_lsb(&b); - k ^= Zobrist::psq[color_of(piece_on(s))][type_of(piece_on(s))][s]; - } - - if (ep_square() != SQ_NONE) - k ^= Zobrist::enpassant[file_of(ep_square())]; - - if (sideToMove == BLACK) - k ^= Zobrist::side; - - return k; -} - - -/// Position::compute_pawn_key() computes the hash key of the position. The -/// hash key is usually updated incrementally as moves are made and unmade. -/// The compute_pawn_key() function is only used when a new position is set -/// up, and to verify the correctness of the pawn hash key when running in -/// debug mode. - -Key Position::compute_pawn_key() const { - - Key k = 0; - - for (Bitboard b = pieces(PAWN); b; ) - { - Square s = pop_lsb(&b); - k ^= Zobrist::psq[color_of(piece_on(s))][PAWN][s]; - } - - return k; -} - - -/// Position::compute_material_key() computes the hash key of the position. -/// The hash key is usually updated incrementally as moves are made and unmade. -/// The compute_material_key() function is only used when a new position is set -/// up, and to verify the correctness of the material hash key when running in -/// debug mode. - -Key Position::compute_material_key() const { - - Key k = 0; - - for (Color c = WHITE; c <= BLACK; ++c) - for (PieceType pt = PAWN; pt <= KING; ++pt) - for (int cnt = 0; cnt < pieceCount[c][pt]; ++cnt) - k ^= Zobrist::psq[c][pt][cnt]; - - return k; -} - - -/// Position::compute_psq_score() computes the incremental scores for the middlegame -/// and the endgame. These functions are used to initialize the incremental scores -/// when a new position is set up, and to verify that the scores are correctly -/// updated by do_move and undo_move when the program is running in debug mode. - -Score Position::compute_psq_score() const { - - Score score = SCORE_ZERO; - - for (Bitboard b = pieces(); b; ) - { - Square s = pop_lsb(&b); - Piece pc = piece_on(s); - score += psq[color_of(pc)][type_of(pc)][s]; - } - - return score; -} - - -/// Position::compute_non_pawn_material() computes the total non-pawn middlegame -/// material value for the given side. Material values are updated incrementally -/// during the search. This function is only used when initializing a new Position -/// object. - -Value Position::compute_non_pawn_material(Color c) const { - - Value value = VALUE_ZERO; - - for (PieceType pt = KNIGHT; pt <= QUEEN; ++pt) - value += pieceCount[c][pt] * PieceValue[MG][pt]; - - return value; -} - - /// Position::is_draw() tests whether the position is drawn by material, 50 moves /// rule or repetition. It does not detect stalemates. bool Position::is_draw() const { - if ( !pieces(PAWN) - && (non_pawn_material(WHITE) + non_pawn_material(BLACK) <= BishopValueMg)) - return true; - if (st->rule50 > 99 && (!checkers() || MoveList(*this).size())) return true; @@ -1215,9 +1162,9 @@ void Position::flip() { string f, token; std::stringstream ss(fen()); - for (Rank rank = RANK_8; rank >= RANK_1; --rank) // Piece placement + for (Rank r = RANK_8; r >= RANK_1; --r) // Piece placement { - std::getline(ss, token, rank > RANK_1 ? '/' : ' '); + std::getline(ss, token, r > RANK_1 ? '/' : ' '); f.insert(0, token + (f.empty() ? " " : "/")); } @@ -1244,57 +1191,30 @@ void Position::flip() { /// Position::pos_is_ok() performs some consistency checks for the position object. /// This is meant to be helpful when debugging. -bool Position::pos_is_ok(int* failedStep) const { - - int dummy, *step = failedStep ? failedStep : &dummy; +bool Position::pos_is_ok(int* step) const { - // What features of the position should be verified? + // Which parts of the position should be verified? const bool all = false; - const bool debugBitboards = all || false; - const bool debugKingCount = all || false; - const bool debugKingCapture = all || false; - const bool debugCheckerCount = all || false; - const bool debugKey = all || false; - const bool debugMaterialKey = all || false; - const bool debugPawnKey = all || false; - const bool debugIncrementalEval = all || false; - const bool debugNonPawnMaterial = all || false; - const bool debugPieceCounts = all || false; - const bool debugPieceList = all || false; - const bool debugCastlingSquares = all || false; - - *step = 1; - - if (sideToMove != WHITE && sideToMove != BLACK) - return false; - - if ((*step)++, piece_on(king_square(WHITE)) != W_KING) - return false; - - if ((*step)++, piece_on(king_square(BLACK)) != B_KING) + const bool testBitboards = all || false; + const bool testState = all || false; + const bool testKingCount = all || false; + const bool testKingCapture = all || false; + const bool testPieceCounts = all || false; + const bool testPieceList = all || false; + const bool testCastlingSquares = all || false; + + if (step) + *step = 1; + + if ( (sideToMove != WHITE && sideToMove != BLACK) + || piece_on(king_square(WHITE)) != W_KING + || piece_on(king_square(BLACK)) != B_KING + || ( ep_square() != SQ_NONE + && relative_rank(sideToMove, ep_square()) != RANK_6)) return false; - if ((*step)++, debugKingCount) - { - int kingCount[COLOR_NB] = {}; - - for (Square s = SQ_A1; s <= SQ_H8; ++s) - if (type_of(piece_on(s)) == KING) - ++kingCount[color_of(piece_on(s))]; - - if (kingCount[0] != 1 || kingCount[1] != 1) - return false; - } - - if ((*step)++, debugKingCapture) - if (attackers_to(king_square(~sideToMove)) & pieces(sideToMove)) - return false; - - if ((*step)++, debugCheckerCount && popcount(st->checkersBB) > 2) - return false; - - if ((*step)++, debugBitboards) + if (step && ++*step, testBitboards) { // The intersection of the white and black pieces must be empty if (pieces(WHITE) & pieces(BLACK)) @@ -1312,33 +1232,36 @@ bool Position::pos_is_ok(int* failedStep) const { return false; } - if ((*step)++, ep_square() != SQ_NONE && relative_rank(sideToMove, ep_square()) != RANK_6) - return false; - - if ((*step)++, debugKey && st->key != compute_key()) - return false; - - if ((*step)++, debugPawnKey && st->pawnKey != compute_pawn_key()) - return false; - - if ((*step)++, debugMaterialKey && st->materialKey != compute_material_key()) - return false; + if (step && ++*step, testState) + { + StateInfo si; + set_state(&si); + if ( st->key != si.key + || st->pawnKey != si.pawnKey + || st->materialKey != si.materialKey + || st->npMaterial[WHITE] != si.npMaterial[WHITE] + || st->npMaterial[BLACK] != si.npMaterial[BLACK] + || st->psq != si.psq + || st->checkersBB != si.checkersBB) + return false; + } - if ((*step)++, debugIncrementalEval && st->psq != compute_psq_score()) - return false; + if (step && ++*step, testKingCount) + if ( std::count(board, board + SQUARE_NB, W_KING) != 1 + || std::count(board, board + SQUARE_NB, B_KING) != 1) + return false; - if ((*step)++, debugNonPawnMaterial) - if ( st->npMaterial[WHITE] != compute_non_pawn_material(WHITE) - || st->npMaterial[BLACK] != compute_non_pawn_material(BLACK)) + if (step && ++*step, testKingCapture) + if (attackers_to(king_square(~sideToMove)) & pieces(sideToMove)) return false; - if ((*step)++, debugPieceCounts) + if (step && ++*step, testPieceCounts) for (Color c = WHITE; c <= BLACK; ++c) for (PieceType pt = PAWN; pt <= KING; ++pt) if (pieceCount[c][pt] != popcount(pieces(c, pt))) return false; - if ((*step)++, debugPieceList) + if (step && ++*step, testPieceList) for (Color c = WHITE; c <= BLACK; ++c) for (PieceType pt = PAWN; pt <= KING; ++pt) for (int i = 0; i < pieceCount[c][pt]; ++i) @@ -1346,7 +1269,7 @@ bool Position::pos_is_ok(int* failedStep) const { || index[pieceList[c][pt][i]] != i) return false; - if ((*step)++, debugCastlingSquares) + if (step && ++*step, testCastlingSquares) for (Color c = WHITE; c <= BLACK; ++c) for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1)) { @@ -1359,6 +1282,5 @@ bool Position::pos_is_ok(int* failedStep) const { return false; } - *step = 0; return true; }