X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fsearch.cpp;h=22f9edf37b1b3509cd3856d637e0ec191c2e71a7;hp=71b974b677d893f3325734f0de639de984c9e2b5;hb=4bfa0c429e66879d99e896e04ef68d8799c35e13;hpb=1588a4e84695e48e47c5c8b83d14ead285530c45 diff --git a/src/search.cpp b/src/search.cpp index 71b974b6..22f9edf3 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -53,26 +53,6 @@ namespace { /// Types - // IterationInfoType stores search results for each iteration - // - // Because we use relatively small (dynamic) aspiration window, - // there happens many fail highs and fail lows in root. And - // because we don't do researches in those cases, "value" stored - // here is not necessarily exact. Instead in case of fail high/low - // we guess what the right value might be and store our guess - // as a "speculated value" and then move on. Speculated values are - // used just to calculate aspiration window width, so also if are - // not exact is not big a problem. - - struct IterationInfoType { - - IterationInfoType(Value v = Value(0), Value sv = Value(0)) - : value(v), speculatedValue(sv) {} - - Value value, speculatedValue; - }; - - // The BetaCounterType class is used to order moves at ply one. // Apart for the first one that has its score, following moves // normally have score -VALUE_INFINITE, so are ordered according @@ -146,9 +126,6 @@ namespace { // Search depth at iteration 1 const Depth InitialDepth = OnePly; - // Depth limit for selective search - const Depth SelectiveDepth = 7 * OnePly; - // Use internal iterative deepening? const bool UseIIDAtPVNodes = true; const bool UseIIDAtNonPVNodes = true; @@ -162,17 +139,6 @@ namespace { // better than the second best move. const Value EasyMoveMargin = Value(0x200); - // Problem margin. If the score of the first move at iteration N+1 has - // dropped by more than this since iteration N, the boolean variable - // "Problem" is set to true, which will make the program spend some extra - // time looking for a better move. - const Value ProblemMargin = Value(0x28); - - // No problem margin. If the boolean "Problem" is true, and a new move - // is found at the root which is less than NoProblemMargin worse than the - // best move from the previous iteration, Problem is set back to false. - const Value NoProblemMargin = Value(0x14); - // Null move margin. A null move search will not be done if the static // evaluation of the position is more than NullMoveMargin below beta. const Value NullMoveMargin = Value(0x200); @@ -181,13 +147,6 @@ namespace { // remaining ones we will extend it. const Value SingleReplyMargin = Value(0x20); - // Margins for futility pruning in the quiescence search, and at frontier - // and near frontier nodes. - const Value FutilityMarginQS = Value(0x80); - - // Each move futility margin is decreased - const Value IncrementalFutilityMargin = Value(0x8); - // Depth limit for razoring const Depth RazorDepth = 4 * OnePly; @@ -211,9 +170,12 @@ namespace { BetaCounterType BetaCounter; // Scores and number of times the best move changed for each iteration - IterationInfoType IterationInfo[PLY_MAX_PLUS_2]; + Value ValueByIteration[PLY_MAX_PLUS_2]; int BestMoveChangesByIteration[PLY_MAX_PLUS_2]; + // Search window management + int AspirationDelta; + // MultiPV mode int MultiPV; @@ -224,7 +186,7 @@ namespace { int MaxSearchTime, AbsoluteMaxSearchTime, ExtraSearchTime, ExactMaxTime; bool UseTimeManagement, InfiniteSearch, PonderSearch, StopOnPonderhit; bool AbortSearch, Quit; - bool FailHigh, FailLow, Problem; + bool AspirationFailLow; // Show current line? bool ShowCurrentLine; @@ -233,9 +195,19 @@ namespace { bool UseLogFile; std::ofstream LogFile; - // Natural logarithmic lookup table and its getter function - double lnArray[512]; - inline double ln(int i) { return lnArray[i]; } + // Futility lookup tables and their getter functions + const Value FutilityMarginQS = Value(0x80); + int32_t FutilityMarginsMatrix[14][64]; // [depth][moveNumber] + + inline Value futility_margin(Depth d, int mn) { return (Value) (d < 14? FutilityMarginsMatrix[Max(d, 0)][Min(mn, 63)] : 2*VALUE_INFINITE); } + + // Reduction lookup tables and their getter functions + // Initialized at startup + int8_t PVReductionMatrix[64][64]; // [depth][moveNumber] + int8_t NonPVReductionMatrix[64][64]; // [depth][moveNumber] + + inline Depth pv_reduction(Depth d, int mn) { return (Depth) PVReductionMatrix[Min(d / 2, 63)][Min(mn, 63)]; } + inline Depth nonpv_reduction(Depth d, int mn) { return (Depth) NonPVReductionMatrix[Min(d / 2, 63)][Min(mn, 63)]; } // MP related variables int ActiveThreads = 1; @@ -263,11 +235,10 @@ namespace { // History table History H; - /// Functions Value id_loop(const Position& pos, Move searchMoves[]); - Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value alpha, Value beta); + Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value& oldAlpha, Value& beta); Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID); Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID, Move excludedMove = MOVE_NONE); Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID); @@ -286,8 +257,8 @@ namespace { Value refine_eval(const TTEntry* tte, Value defaultEval, int ply); void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount); void update_killers(Move m, SearchStack& ss); + void update_gains(const Position& pos, Move move, Value before, Value after); - bool fail_high_ply_1(); int current_search_time(); int nps(); void poll(); @@ -363,7 +334,7 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, // Initialize global search variables Idle = StopOnPonderhit = AbortSearch = Quit = false; - FailHigh = FailLow = Problem = false; + AspirationFailLow = false; NodesSincePoll = 0; SearchStartTime = get_system_time(); ExactMaxTime = maxTime; @@ -374,7 +345,7 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, UseTimeManagement = !ExactMaxTime && !MaxDepth && !MaxNodes && !InfiniteSearch; // Look for a book move, only during games, not tests - if (UseTimeManagement && !ponder && get_option_value_bool("OwnBook")) + if (UseTimeManagement && get_option_value_bool("OwnBook")) { Move bookMove; if (get_option_value_string("Book File") != OpeningBook.file_name()) @@ -383,6 +354,9 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, bookMove = OpeningBook.get_move(pos); if (bookMove != MOVE_NONE) { + if (PonderSearch) + wait_for_stop_or_ponderhit(); + cout << "bestmove " << bookMove << endl; return true; } @@ -391,7 +365,6 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, for (int i = 0; i < THREAD_MAX; i++) { Threads[i].nodes = 0ULL; - Threads[i].failHighPly1 = false; } if (button_was_pressed("New Game")) @@ -524,7 +497,6 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, // We're ready to start thinking. Call the iterative deepening loop function Value v = id_loop(pos, searchMoves); - if (UseLSNFiltering) { // Step 1. If this is sudden death game and our position is hopeless, @@ -559,14 +531,28 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, void init_threads() { volatile int i; + bool ok; #if !defined(_MSC_VER) pthread_t pthread[1]; #endif - // Init our logarithmic lookup table - for (i = 0; i < 512; i++) - lnArray[i] = log(double(i)); // log() returns base-e logarithm + // Init our reduction lookup tables + for (i = 1; i < 64; i++) // i == depth + for (int j = 1; j < 64; j++) // j == moveNumber + { + double pvRed = 0.5 + log(double(i)) * log(double(j)) / 6.0; + double nonPVRed = 0.5 + log(double(i)) * log(double(j)) / 3.0; + PVReductionMatrix[i][j] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(OnePly)) : 0); + NonPVReductionMatrix[i][j] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(OnePly)) : 0); + } + + // Init futility margins array + for (i = 0; i < 14; i++) // i == depth (OnePly = 2) + for (int j = 0; j < 64; j++) // j == moveNumber + { + FutilityMarginsMatrix[i][j] = (i < 2 ? 0 : 112 * bitScanReverse32(i * i / 2)) - 8 * j; // FIXME: test using log instead of BSR + } for (i = 0; i < THREAD_MAX; i++) Threads[i].activeSplitPoints = 0; @@ -598,12 +584,18 @@ void init_threads() { for (i = 1; i < THREAD_MAX; i++) { #if !defined(_MSC_VER) - pthread_create(pthread, NULL, init_thread, (void*)(&i)); + ok = (pthread_create(pthread, NULL, init_thread, (void*)(&i)) == 0); #else DWORD iID[1]; - CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, iID); + ok = (CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, iID) != NULL); #endif + if (!ok) + { + cout << "Failed to create thread number " << i << endl; + Application::exit_with_failure(); + } + // Wait until the thread has finished launching while (!Threads[i].running); } @@ -673,6 +665,7 @@ namespace { // searchMoves are verified, copied, scored and sorted RootMoveList rml(p, searchMoves); + // Handle special case of searching on a mate/stale position if (rml.move_count() == 0) { if (PonderSearch) @@ -694,7 +687,7 @@ namespace { TT.new_search(); H.clear(); init_ss_array(ss); - IterationInfo[1] = IterationInfoType(rml.get_move_score(0), rml.get_move_score(0)); + ValueByIteration[1] = rml.get_move_score(0); Iteration = 1; // Is one move significantly better than others after initial scoring ? @@ -718,15 +711,16 @@ namespace { // Calculate dynamic search window based on previous iterations Value alpha, beta; - if (MultiPV == 1 && Iteration >= 6 && abs(IterationInfo[Iteration - 1].value) < VALUE_KNOWN_WIN) + if (MultiPV == 1 && Iteration >= 6 && abs(ValueByIteration[Iteration - 1]) < VALUE_KNOWN_WIN) { - int prevDelta1 = IterationInfo[Iteration - 1].speculatedValue - IterationInfo[Iteration - 2].speculatedValue; - int prevDelta2 = IterationInfo[Iteration - 2].speculatedValue - IterationInfo[Iteration - 3].speculatedValue; + int prevDelta1 = ValueByIteration[Iteration - 1] - ValueByIteration[Iteration - 2]; + int prevDelta2 = ValueByIteration[Iteration - 2] - ValueByIteration[Iteration - 3]; - int delta = Max(2 * abs(prevDelta1) + abs(prevDelta2), ProblemMargin); + AspirationDelta = Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16); + AspirationDelta = (AspirationDelta + 7) / 8 * 8; // Round to match grainSize - alpha = Max(IterationInfo[Iteration - 1].value - delta, -VALUE_INFINITE); - beta = Min(IterationInfo[Iteration - 1].value + delta, VALUE_INFINITE); + alpha = Max(ValueByIteration[Iteration - 1] - AspirationDelta, -VALUE_INFINITE); + beta = Min(ValueByIteration[Iteration - 1] + AspirationDelta, VALUE_INFINITE); } else { @@ -745,39 +739,12 @@ namespace { break; // Value cannot be trusted. Break out immediately! //Save info about search result - Value speculatedValue; - bool fHigh = false; - bool fLow = false; - Value delta = value - IterationInfo[Iteration - 1].value; - - if (value >= beta) - { - assert(delta > 0); - - fHigh = true; - speculatedValue = value + delta; - BestMoveChangesByIteration[Iteration] += 2; // Allocate more time - } - else if (value <= alpha) - { - assert(value == alpha); - assert(delta < 0); - - fLow = true; - speculatedValue = value + delta; - BestMoveChangesByIteration[Iteration] += 3; // Allocate more time - } else - speculatedValue = value; - - speculatedValue = Min(Max(speculatedValue, -VALUE_INFINITE), VALUE_INFINITE); - IterationInfo[Iteration] = IterationInfoType(value, speculatedValue); + ValueByIteration[Iteration] = value; // Drop the easy move if it differs from the new best move if (ss[0].pv[0] != EasyMove) EasyMove = MOVE_NONE; - Problem = false; - if (UseTimeManagement) { // Time to stop? @@ -790,15 +757,13 @@ namespace { // Stop search early when the last two iterations returned a mate score if ( Iteration >= 6 - && abs(IterationInfo[Iteration].value) >= abs(VALUE_MATE) - 100 - && abs(IterationInfo[Iteration-1].value) >= abs(VALUE_MATE) - 100) + && abs(ValueByIteration[Iteration]) >= abs(VALUE_MATE) - 100 + && abs(ValueByIteration[Iteration-1]) >= abs(VALUE_MATE) - 100) stopSearch = true; // Stop search early if one move seems to be much better than the rest int64_t nodes = nodes_searched(); if ( Iteration >= 8 - && !fLow - && !fHigh && EasyMove == ss[0].pv[0] && ( ( rml.get_move_cumulative_nodes(0) > (nodes * 85) / 100 && current_search_time() > MaxSearchTime / 16) @@ -834,7 +799,7 @@ namespace { // If we are pondering or in infinite search, we shouldn't print the // best move before we are told to do so. - if (!AbortSearch && !ExactMaxTime && (PonderSearch || InfiniteSearch)) + if (!AbortSearch && (PonderSearch || InfiniteSearch)) wait_for_stop_or_ponderhit(); else // Print final search statistics @@ -879,148 +844,118 @@ namespace { // similar to search_pv except that it uses a different move ordering // scheme and prints some information to the standard output. - Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value alpha, Value beta) { + Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value& oldAlpha, Value& beta) { - Value oldAlpha = alpha; - Value value = -VALUE_INFINITE; + int64_t nodes; + Move move; + StateInfo st; + Depth depth, ext, newDepth; + Value value; CheckInfo ci(pos); + int researchCount = 0; + bool moveIsCheck, captureOrPromotion, dangerous; + Value alpha = oldAlpha; + bool isCheck = pos.is_check(); - // Loop through all the moves in the root move list - for (int i = 0; i < rml.move_count() && !AbortSearch; i++) - { - if (alpha >= beta) - { - // We failed high, invalidate and skip next moves, leave node-counters - // and beta-counters as they are and quickly return, we will try to do - // a research at the next iteration with a bigger aspiration window. - rml.set_move_score(i, -VALUE_INFINITE); - continue; - } - int64_t nodes; - Move move; - StateInfo st; - Depth depth, ext, newDepth; - - RootMoveNumber = i + 1; - FailHigh = false; + // Evaluate the position statically + EvalInfo ei; + ss[0].eval = !isCheck ? evaluate(pos, ei, 0) : VALUE_NONE; - // Save the current node count before the move is searched - nodes = nodes_searched(); + while (1) // Fail low loop + { - // Reset beta cut-off counters - BetaCounter.clear(); + // Loop through all the moves in the root move list + for (int i = 0; i < rml.move_count() && !AbortSearch; i++) + { + if (alpha >= beta) + { + // We failed high, invalidate and skip next moves, leave node-counters + // and beta-counters as they are and quickly return, we will try to do + // a research at the next iteration with a bigger aspiration window. + rml.set_move_score(i, -VALUE_INFINITE); + continue; + } - // Pick the next root move, and print the move and the move number to - // the standard output. - move = ss[0].currentMove = rml.get_move(i); + RootMoveNumber = i + 1; - if (current_search_time() >= 1000) - cout << "info currmove " << move - << " currmovenumber " << RootMoveNumber << endl; + // Save the current node count before the move is searched + nodes = nodes_searched(); - // Decide search depth for this move - bool moveIsCheck = pos.move_is_check(move); - bool captureOrPromotion = pos.move_is_capture_or_promotion(move); - bool dangerous; - depth = (Iteration - 2) * OnePly + InitialDepth; - ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous); - newDepth = depth + ext; + // Reset beta cut-off counters + BetaCounter.clear(); - // Make the move, and search it - pos.do_move(move, st, ci, moveIsCheck); + // Pick the next root move, and print the move and the move number to + // the standard output. + move = ss[0].currentMove = rml.get_move(i); - if (i < MultiPV) - { - // Aspiration window is disabled in multi-pv case - if (MultiPV > 1) - alpha = -VALUE_INFINITE; + if (current_search_time() >= 1000) + cout << "info currmove " << move + << " currmovenumber " << RootMoveNumber << endl; - value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0); + // Decide search depth for this move + moveIsCheck = pos.move_is_check(move); + captureOrPromotion = pos.move_is_capture_or_promotion(move); + depth = (Iteration - 2) * OnePly + InitialDepth; + ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous); + newDepth = depth + ext; - // If the value has dropped a lot compared to the last iteration, - // set the boolean variable Problem to true. This variable is used - // for time managment: When Problem is true, we try to complete the - // current iteration before playing a move. - Problem = ( Iteration >= 2 - && value <= IterationInfo[Iteration - 1].value - ProblemMargin); + value = - VALUE_INFINITE; - if (Problem && StopOnPonderhit) - StopOnPonderhit = false; - } - else - { - // Try to reduce non-pv search depth by one ply if move seems not problematic, - // if the move fails high will be re-searched at full depth. - bool doFullDepthSearch = true; - - if ( depth >= 3*OnePly // FIXME was newDepth - && !dangerous - && !captureOrPromotion - && !move_is_castle(move)) + while (1) // Fail high loop { - double red = 0.5 + ln(RootMoveNumber - MultiPV + 1) * ln(depth / 2) / 6.0; - if (red >= 1.0) - { - ss[0].reduction = Depth(int(floor(red * int(OnePly)))); - value = -search(pos, ss, -alpha, newDepth-ss[0].reduction, 1, true, 0); - doFullDepthSearch = (value > alpha); - } - } - if (doFullDepthSearch) - { - value = -search(pos, ss, -alpha, newDepth, 1, true, 0); + // Make the move, and search it + pos.do_move(move, st, ci, moveIsCheck); - if (value > alpha) + if (i < MultiPV || value > alpha) { - // Fail high! Set the boolean variable FailHigh to true, and - // re-search the move using a PV search. The variable FailHigh - // is used for time managment: We try to avoid aborting the - // search prematurely during a fail high research. - FailHigh = true; + // Aspiration window is disabled in multi-pv case + if (MultiPV > 1) + alpha = -VALUE_INFINITE; + value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0); } - } - } - - pos.undo_move(move); - - // Finished searching the move. If AbortSearch is true, the search - // was aborted because the user interrupted the search or because we - // ran out of time. In this case, the return value of the search cannot - // be trusted, and we break out of the loop without updating the best - // move and/or PV. - if (AbortSearch) - break; - - // Remember beta-cutoff and searched nodes counts for this move. The - // info is used to sort the root moves at the next iteration. - int64_t our, their; - BetaCounter.read(pos.side_to_move(), our, their); - rml.set_beta_counters(i, our, their); - rml.set_move_nodes(i, nodes_searched() - nodes); - - assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE); + else + { + // Try to reduce non-pv search depth by one ply if move seems not problematic, + // if the move fails high will be re-searched at full depth. + bool doFullDepthSearch = true; + + if ( depth >= 3*OnePly // FIXME was newDepth + && !dangerous + && !captureOrPromotion + && !move_is_castle(move)) + { + ss[0].reduction = pv_reduction(depth, RootMoveNumber - MultiPV + 1); + if (ss[0].reduction) + { + value = -search(pos, ss, -alpha, newDepth-ss[0].reduction, 1, true, 0); + doFullDepthSearch = (value > alpha); + } + } + + if (doFullDepthSearch) + { + ss[0].reduction = Depth(0); + value = -search(pos, ss, -alpha, newDepth, 1, true, 0); + + if (value > alpha) + value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0); + } + } - if (value <= alpha && i >= MultiPV) - rml.set_move_score(i, -VALUE_INFINITE); - else - { - // PV move or new best move! + pos.undo_move(move); - // Update PV - rml.set_move_score(i, value); - update_pv(ss, 0); - TT.extract_pv(pos, ss[0].pv, PLY_MAX); - rml.set_move_pv(i, ss[0].pv); + // Can we exit fail high loop ? + if (AbortSearch || value < beta) + break; - if (MultiPV == 1) - { - // We record how often the best move has been changed in each - // iteration. This information is used for time managment: When - // the best move changes frequently, we allocate some more time. - if (i > 0) - BestMoveChangesByIteration[Iteration]++; + // We are failing high and going to do a research. It's important to update score + // before research in case we run out of time while researching. + rml.set_move_score(i, value); + update_pv(ss, 0); + TT.extract_pv(pos, ss[0].pv, PLY_MAX); + rml.set_move_pv(i, ss[0].pv); // Print search information to the standard output cout << "info depth " << Iteration @@ -1045,40 +980,117 @@ namespace { LogFile << pretty_pv(pos, current_search_time(), Iteration, nodes_searched(), value, type, ss[0].pv) << endl; } - if (value > alpha) - alpha = value; - // Reset the global variable Problem to false if the value isn't too - // far below the final value from the last iteration. - if (value > IterationInfo[Iteration - 1].value - NoProblemMargin) - Problem = false; - } - else // MultiPV > 1 + // Prepare for a research after a fail high, each time with a wider window + researchCount++; + beta = Min(beta + AspirationDelta * (1 << researchCount), VALUE_INFINITE); + + } // End of fail high loop + + // Finished searching the move. If AbortSearch is true, the search + // was aborted because the user interrupted the search or because we + // ran out of time. In this case, the return value of the search cannot + // be trusted, and we break out of the loop without updating the best + // move and/or PV. + if (AbortSearch) + break; + + // Remember beta-cutoff and searched nodes counts for this move. The + // info is used to sort the root moves at the next iteration. + int64_t our, their; + BetaCounter.read(pos.side_to_move(), our, their); + rml.set_beta_counters(i, our, their); + rml.set_move_nodes(i, nodes_searched() - nodes); + + assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE); + + if (value <= alpha && i >= MultiPV) + rml.set_move_score(i, -VALUE_INFINITE); + else { - rml.sort_multipv(i); - for (int j = 0; j < Min(MultiPV, rml.move_count()); j++) + // PV move or new best move! + + // Update PV + rml.set_move_score(i, value); + update_pv(ss, 0); + TT.extract_pv(pos, ss[0].pv, PLY_MAX); + rml.set_move_pv(i, ss[0].pv); + + if (MultiPV == 1) { - cout << "info multipv " << j + 1 - << " score " << value_to_string(rml.get_move_score(j)) - << " depth " << ((j <= i)? Iteration : Iteration - 1) - << " time " << current_search_time() + // We record how often the best move has been changed in each + // iteration. This information is used for time managment: When + // the best move changes frequently, we allocate some more time. + if (i > 0) + BestMoveChangesByIteration[Iteration]++; + + // Print search information to the standard output + cout << "info depth " << Iteration + << " score " << value_to_string(value) + << ((value >= beta) ? " lowerbound" : + ((value <= alpha)? " upperbound" : "")) + << " time " << current_search_time() << " nodes " << nodes_searched() - << " nps " << nps() + << " nps " << nps() << " pv "; - for (int k = 0; rml.get_move_pv(j, k) != MOVE_NONE && k < PLY_MAX; k++) - cout << rml.get_move_pv(j, k) << " "; + for (int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++) + cout << ss[0].pv[j] << " "; cout << endl; + + if (UseLogFile) + { + ValueType type = (value >= beta ? VALUE_TYPE_LOWER + : (value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT)); + + LogFile << pretty_pv(pos, current_search_time(), Iteration, + nodes_searched(), value, type, ss[0].pv) << endl; + } + if (value > alpha) + alpha = value; } - alpha = rml.get_move_score(Min(i, MultiPV-1)); - } - } // PV move or new best move + else // MultiPV > 1 + { + rml.sort_multipv(i); + for (int j = 0; j < Min(MultiPV, rml.move_count()); j++) + { + cout << "info multipv " << j + 1 + << " score " << value_to_string(rml.get_move_score(j)) + << " depth " << ((j <= i)? Iteration : Iteration - 1) + << " time " << current_search_time() + << " nodes " << nodes_searched() + << " nps " << nps() + << " pv "; + + for (int k = 0; rml.get_move_pv(j, k) != MOVE_NONE && k < PLY_MAX; k++) + cout << rml.get_move_pv(j, k) << " "; + + cout << endl; + } + alpha = rml.get_move_score(Min(i, MultiPV-1)); + } + } // PV move or new best move - assert(alpha >= oldAlpha); + assert(alpha >= oldAlpha); + + AspirationFailLow = (alpha == oldAlpha); + + if (AspirationFailLow && StopOnPonderhit) + StopOnPonderhit = false; + } + + // Can we exit fail low loop ? + if (AbortSearch || alpha > oldAlpha) + break; + + // Prepare for a research after a fail low, each time with a wider window + researchCount++; + alpha = Max(alpha - AspirationDelta * (1 << researchCount), -VALUE_INFINITE); + oldAlpha = alpha; + + } // Fail low loop - FailLow = (alpha == oldAlpha); - } return alpha; } @@ -1146,9 +1158,18 @@ namespace { tte = TT.retrieve(pos.get_key()); } + isCheck = pos.is_check(); + if (!isCheck) + { + // Update gain statistics of the previous move that lead + // us in this position. + EvalInfo ei; + ss[ply].eval = evaluate(pos, ei, threadID); + update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval); + } + // Initialize a MovePicker object for the current position, and prepare // to search all moves - isCheck = pos.is_check(); mateThreat = pos.has_mate_threat(opposite_color(pos.side_to_move())); CheckInfo ci(pos); MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]); @@ -1211,13 +1232,12 @@ namespace { && !move_is_castle(move) && !move_is_killer(move, ss[ply])) { - double red = 0.5 + ln(moveCount) * ln(depth / 2) / 6.0; - if (red >= 1.0) - { - ss[ply].reduction = Depth(int(floor(red * int(OnePly)))); - value = -search(pos, ss, -alpha, newDepth-ss[ply].reduction, ply+1, true, threadID); - doFullDepthSearch = (value > alpha); - } + ss[ply].reduction = pv_reduction(depth, moveCount); + if (ss[ply].reduction) + { + value = -search(pos, ss, -alpha, newDepth-ss[ply].reduction, ply+1, true, threadID); + doFullDepthSearch = (value > alpha); + } } if (doFullDepthSearch) // Go with full depth non-pv search @@ -1225,19 +1245,7 @@ namespace { ss[ply].reduction = Depth(0); value = -search(pos, ss, -alpha, newDepth, ply+1, true, threadID); if (value > alpha && value < beta) - { - // When the search fails high at ply 1 while searching the first - // move at the root, set the flag failHighPly1. This is used for - // time managment: We don't want to stop the search early in - // such cases, because resolving the fail high at ply 1 could - // result in a big drop in score at the root. - if (ply == 1 && RootMoveNumber == 1) - Threads[threadID].failHighPly1 = true; - - // A fail high occurred. Re-search at full window (pv search) value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID); - Threads[threadID].failHighPly1 = false; - } } } pos.undo_move(move); @@ -1255,13 +1263,6 @@ namespace { if (value == value_mate_in(ply + 1)) ss[ply].mateKiller = move; } - // If we are at ply 1, and we are searching the first root move at - // ply 0, set the 'Problem' variable if the score has dropped a lot - // (from the computer's point of view) since the previous iteration. - if ( ply == 1 - && Iteration >= 2 - && -value <= IterationInfo[Iteration-1].value - ProblemMargin) - Problem = true; } // Split? @@ -1324,7 +1325,7 @@ namespace { Move ttMove, move; Depth ext, newDepth; Value bestValue, staticValue, nullValue, value, futilityValue, futilityValueScaled; - bool isCheck, useFutilityPruning, singleEvasion, moveIsCheck, captureOrPromotion, dangerous; + bool isCheck, singleEvasion, moveIsCheck, captureOrPromotion, dangerous; bool mateThreat = false; int moveCount = 0; futilityValue = staticValue = bestValue = value = -VALUE_INFINITE; @@ -1368,7 +1369,6 @@ namespace { // Calculate depth dependant futility pruning parameters const int FutilityMoveCountMargin = 3 + (1 << (3 * int(depth) / 8)); - const int FutilityValueMargin = 112 * bitScanReverse32(int(depth) * int(depth) / 2); // Evaluate the position statically if (!isCheck) @@ -1382,10 +1382,20 @@ namespace { } ss[ply].eval = staticValue; - futilityValue = staticValue + FutilityValueMargin; + futilityValue = staticValue + futility_margin(depth, 0); //FIXME: Remove me, only for split staticValue = refine_eval(tte, staticValue, ply); // Enhance accuracy with TT value if possible + update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval); } + // Static null move pruning. We're betting that the opponent doesn't have + // a move that will reduce the score by more than FutilityMargins[int(depth)] + // if we do a null move. + if ( !isCheck + && allowNullmove + && depth < RazorDepth + && staticValue - futility_margin(depth, 0) >= beta) + return staticValue - futility_margin(depth, 0); + // Null move search if ( allowNullmove && depth > OnePly @@ -1456,14 +1466,13 @@ namespace { { search(pos, ss, beta, Min(depth/2, depth-2*OnePly), ply, false, threadID); ttMove = ss[ply].pv[ply]; - tte = TT.retrieve(pos.get_key()); + tte = TT.retrieve(posKey); } // Initialize a MovePicker object for the current position, and prepare // to search all moves. MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]); CheckInfo ci(pos); - useFutilityPruning = depth < SelectiveDepth && !isCheck; // Loop through all legal moves until no moves remain or a beta cutoff occurs while ( bestValue < beta @@ -1510,9 +1519,10 @@ namespace { movesSearched[moveCount++] = ss[ply].currentMove = move; // Futility pruning - if ( useFutilityPruning + if ( !isCheck && !dangerous && !captureOrPromotion + && !move_is_castle(move) && move != ttMove) { // Move count based pruning @@ -1522,7 +1532,8 @@ namespace { continue; // Value based pruning - futilityValueScaled = futilityValue - moveCount * IncrementalFutilityMargin; + Depth predictedDepth = newDepth - nonpv_reduction(depth, moveCount); //FIXME: We are ignoring condition: depth >= 3*OnePly, BUG?? + futilityValueScaled = ss[ply].eval + futility_margin(predictedDepth, moveCount) + H.gain(pos.piece_on(move_from(move)), move_to(move)) + 45; if (futilityValueScaled < beta) { @@ -1543,13 +1554,11 @@ namespace { && !dangerous && !captureOrPromotion && !move_is_castle(move) - && !move_is_killer(move, ss[ply]) - /* && move != ttMove*/) + && !move_is_killer(move, ss[ply])) { - double red = 0.5 + ln(moveCount) * ln(depth / 2) / 3.0; - if (red >= 1.0) + ss[ply].reduction = nonpv_reduction(depth, moveCount); + if (ss[ply].reduction) { - ss[ply].reduction = Depth(int(floor(red * int(OnePly)))); value = -search(pos, ss, -(beta-1), newDepth-ss[ply].reduction, ply+1, true, threadID); doFullDepthSearch = (value >= beta); } @@ -1583,7 +1592,7 @@ namespace { && idle_thread_exists(threadID) && !AbortSearch && !thread_should_stop(threadID) - && split(pos, ss, ply, &beta, &beta, &bestValue, futilityValue, + && split(pos, ss, ply, &beta, &beta, &bestValue, futilityValue, //FIXME: SMP & futilityValue depth, &moveCount, &mp, threadID, false)) break; } @@ -1636,10 +1645,11 @@ namespace { StateInfo st; Move ttMove, move; Value staticValue, bestValue, value, futilityBase, futilityValue; - bool isCheck, enoughMaterial, moveIsCheck; + bool isCheck, enoughMaterial, moveIsCheck, evasionPrunable; const TTEntry* tte = NULL; int moveCount = 0; bool pvNode = (beta - alpha != 1); + Value oldAlpha = alpha; // Initialize, and make an early exit in case of an aborted search, // an instant draw, maximum ply reached, etc. @@ -1675,6 +1685,12 @@ namespace { else staticValue = evaluate(pos, ei, threadID); + if (!isCheck) + { + ss[ply].eval = staticValue; + update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval); + } + // Initialize "stand pat score", and return it immediately if it is // at least beta. bestValue = staticValue; @@ -1682,7 +1698,7 @@ namespace { if (bestValue >= beta) { // Store the score to avoid a future costly evaluation() call - if (!isCheck && !tte && ei.futilityMargin == 0) + if (!isCheck && !tte && ei.futilityMargin[pos.side_to_move()] == 0) TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EV_LO, Depth(-127*OnePly), MOVE_NONE); return bestValue; @@ -1701,7 +1717,7 @@ namespace { MovePicker mp = MovePicker(pos, ttMove, deepChecks ? Depth(0) : depth, H); CheckInfo ci(pos); enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame; - futilityBase = staticValue + FutilityMarginQS + ei.futilityMargin; + futilityBase = staticValue + FutilityMarginQS + ei.futilityMargin[pos.side_to_move()]; // Loop through the moves until no moves remain or a beta cutoff // occurs. @@ -1737,8 +1753,15 @@ namespace { } } - // Don't search captures and checks with negative SEE values - if ( !isCheck + // Detect blocking evasions that are candidate to be pruned + evasionPrunable = isCheck + && bestValue != -VALUE_INFINITE + && !pos.move_is_capture(move) + && pos.type_of_piece_on(move_from(move)) != KING + && !pos.can_castle(pos.side_to_move()); + + // Don't search moves with negative SEE values + if ( (!isCheck || evasionPrunable) && move != ttMove && !move_is_promotion(move) && pos.see_sign(move) < 0) @@ -1770,14 +1793,14 @@ namespace { // Update transposition table Depth d = (depth == Depth(0) ? Depth(0) : Depth(-1)); - if (bestValue < beta) + if (bestValue <= oldAlpha) { // If bestValue isn't changed it means it is still the static evaluation // of the node, so keep this info to avoid a future evaluation() call. - ValueType type = (bestValue == staticValue && !ei.futilityMargin ? VALUE_TYPE_EV_UP : VALUE_TYPE_UPPER); + ValueType type = (bestValue == staticValue && !ei.futilityMargin[pos.side_to_move()] ? VALUE_TYPE_EV_UP : VALUE_TYPE_UPPER); TT.store(pos.get_key(), value_to_tt(bestValue, ply), type, d, MOVE_NONE); } - else + else if (bestValue >= beta) { move = ss[ply].pv[ply]; TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, d, move); @@ -1786,6 +1809,8 @@ namespace { if (!pos.move_is_capture_or_promotion(move)) update_killers(move, ss[ply]); } + else + TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, d, ss[ply].pv[ply]); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); @@ -1806,33 +1831,34 @@ namespace { assert(threadID >= 0 && threadID < ActiveThreads); assert(ActiveThreads > 1); - Position pos = Position(sp->pos); + Position pos(*sp->pos); CheckInfo ci(pos); SearchStack* ss = sp->sstack[threadID]; Value value = -VALUE_INFINITE; Move move; + int moveCount; bool isCheck = pos.is_check(); - bool useFutilityPruning = sp->depth < SelectiveDepth + bool useFutilityPruning = sp->depth < 7 * OnePly //FIXME: sync with search && !isCheck; const int FutilityMoveCountMargin = 3 + (1 << (3 * int(sp->depth) / 8)); - while ( sp->bestValue < sp->beta + while ( lock_grab_bool(&(sp->lock)) + && sp->bestValue < sp->beta && !thread_should_stop(threadID) - && (move = sp->mp->get_next_move(sp->lock)) != MOVE_NONE) + && (move = sp->mp->get_next_move()) != MOVE_NONE) { + moveCount = ++sp->moves; + lock_release(&(sp->lock)); + assert(move_is_ok(move)); bool moveIsCheck = pos.move_is_check(move, ci); bool captureOrPromotion = pos.move_is_capture_or_promotion(move); - lock_grab(&(sp->lock)); - int moveCount = ++sp->moves; - lock_release(&(sp->lock)); - ss[sp->ply].currentMove = move; - // Decide the new search depth. + // Decide the new search depth bool dangerous; Depth ext = extension(pos, move, false, captureOrPromotion, moveIsCheck, false, false, &dangerous); Depth newDepth = sp->depth - OnePly + ext; @@ -1849,7 +1875,7 @@ namespace { continue; // Value based pruning - Value futilityValueScaled = sp->futilityValue - moveCount * IncrementalFutilityMargin; + Value futilityValueScaled = sp->futilityValue - moveCount * 8; //FIXME: sync with search if (futilityValueScaled < sp->beta) { @@ -1877,10 +1903,9 @@ namespace { && !move_is_castle(move) && !move_is_killer(move, ss[sp->ply])) { - double red = 0.5 + ln(moveCount) * ln(sp->depth / 2) / 3.0; - if (red >= 1.0) + ss[sp->ply].reduction = nonpv_reduction(sp->depth, moveCount); + if (ss[sp->ply].reduction) { - ss[sp->ply].reduction = Depth(int(floor(red * int(OnePly)))); value = -search(pos, ss, -(sp->beta-1), newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID); doFullDepthSearch = (value >= sp->beta); } @@ -1896,7 +1921,10 @@ namespace { assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); if (thread_should_stop(threadID)) + { + lock_grab(&(sp->lock)); break; + } // New best move? if (value > sp->bestValue) // Less then 2% of cases @@ -1919,7 +1947,7 @@ namespace { } } - lock_grab(&(sp->lock)); + /* Here we have the lock still grabbed */ // If this is the master thread and we have been asked to stop because of // a beta cutoff higher up in the tree, stop all slave threads. @@ -1948,28 +1976,29 @@ namespace { assert(threadID >= 0 && threadID < ActiveThreads); assert(ActiveThreads > 1); - Position pos = Position(sp->pos); + Position pos(*sp->pos); CheckInfo ci(pos); SearchStack* ss = sp->sstack[threadID]; Value value = -VALUE_INFINITE; + int moveCount; Move move; - while ( sp->alpha < sp->beta + while ( lock_grab_bool(&(sp->lock)) + && sp->alpha < sp->beta && !thread_should_stop(threadID) - && (move = sp->mp->get_next_move(sp->lock)) != MOVE_NONE) + && (move = sp->mp->get_next_move()) != MOVE_NONE) { - bool moveIsCheck = pos.move_is_check(move, ci); - bool captureOrPromotion = pos.move_is_capture_or_promotion(move); + moveCount = ++sp->moves; + lock_release(&(sp->lock)); assert(move_is_ok(move)); - lock_grab(&(sp->lock)); - int moveCount = ++sp->moves; - lock_release(&(sp->lock)); + bool moveIsCheck = pos.move_is_check(move, ci); + bool captureOrPromotion = pos.move_is_capture_or_promotion(move); ss[sp->ply].currentMove = move; - // Decide the new search depth. + // Decide the new search depth bool dangerous; Depth ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous); Depth newDepth = sp->depth - OnePly + ext; @@ -1987,11 +2016,10 @@ namespace { && !move_is_castle(move) && !move_is_killer(move, ss[sp->ply])) { - double red = 0.5 + ln(moveCount) * ln(sp->depth / 2) / 6.0; - if (red >= 1.0) + ss[sp->ply].reduction = pv_reduction(sp->depth, moveCount); + if (ss[sp->ply].reduction) { Value localAlpha = sp->alpha; - ss[sp->ply].reduction = Depth(int(floor(red * int(OnePly)))); value = -search(pos, ss, -localAlpha, newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID); doFullDepthSearch = (value > localAlpha); } @@ -2005,14 +2033,6 @@ namespace { if (value > localAlpha && value < sp->beta) { - // When the search fails high at ply 1 while searching the first - // move at the root, set the flag failHighPly1. This is used for - // time managment: We don't want to stop the search early in - // such cases, because resolving the fail high at ply 1 could - // result in a big drop in score at the root. - if (sp->ply == 1 && RootMoveNumber == 1) - Threads[threadID].failHighPly1 = true; - // If another thread has failed high then sp->alpha has been increased // to be higher or equal then beta, if so, avoid to start a PV search. localAlpha = sp->alpha; @@ -2020,8 +2040,6 @@ namespace { value = -search_pv(pos, ss, -sp->beta, -localAlpha, newDepth, sp->ply+1, threadID); else assert(thread_should_stop(threadID)); - - Threads[threadID].failHighPly1 = false; } } pos.undo_move(move); @@ -2029,43 +2047,42 @@ namespace { assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); if (thread_should_stop(threadID)) + { + lock_grab(&(sp->lock)); break; + } // New best move? - lock_grab(&(sp->lock)); - if (value > sp->bestValue && !thread_should_stop(threadID)) + if (value > sp->bestValue) // Less then 2% of cases { - sp->bestValue = value; - if (value > sp->alpha) + lock_grab(&(sp->lock)); + if (value > sp->bestValue && !thread_should_stop(threadID)) { - // Ask threads to stop before to modify sp->alpha - if (value >= sp->beta) + sp->bestValue = value; + if (value > sp->alpha) { - for (int i = 0; i < ActiveThreads; i++) - if (i != threadID && (i == sp->master || sp->slaves[i])) - Threads[i].stop = true; + // Ask threads to stop before to modify sp->alpha + if (value >= sp->beta) + { + for (int i = 0; i < ActiveThreads; i++) + if (i != threadID && (i == sp->master || sp->slaves[i])) + Threads[i].stop = true; - sp->finished = true; - } + sp->finished = true; + } - sp->alpha = value; + sp->alpha = value; - sp_update_pv(sp->parentSstack, ss, sp->ply); - if (value == value_mate_in(sp->ply + 1)) - ss[sp->ply].mateKiller = move; - } - // If we are at ply 1, and we are searching the first root move at - // ply 0, set the 'Problem' variable if the score has dropped a lot - // (from the computer's point of view) since the previous iteration. - if ( sp->ply == 1 - && Iteration >= 2 - && -value <= IterationInfo[Iteration-1].value - ProblemMargin) - Problem = true; + sp_update_pv(sp->parentSstack, ss, sp->ply); + if (value == value_mate_in(sp->ply + 1)) + ss[sp->ply].mateKiller = move; + } + } + lock_release(&(sp->lock)); } - lock_release(&(sp->lock)); } - lock_grab(&(sp->lock)); + /* Here we have the lock still grabbed */ // If this is the master thread and we have been asked to stop because of // a beta cutoff higher up in the tree, stop all slave threads. @@ -2113,7 +2130,9 @@ namespace { RootMoveList::RootMoveList(Position& pos, Move searchMoves[]) : count(0) { + SearchStack ss[PLY_MAX_PLUS_2]; MoveStack mlist[MaxRootMoves]; + StateInfo st; bool includeAllMoves = (searchMoves[0] == MOVE_NONE); // Generate all legal moves @@ -2131,16 +2150,13 @@ namespace { continue; // Find a quick score for the move - StateInfo st; - SearchStack ss[PLY_MAX_PLUS_2]; init_ss_array(ss); - + pos.do_move(cur->move, st); moves[count].move = cur->move; - pos.do_move(moves[count].move, st); moves[count].score = -qsearch(pos, ss, -VALUE_INFINITE, VALUE_INFINITE, Depth(0), 1, 0); - pos.undo_move(moves[count].move); - moves[count].pv[0] = moves[count].move; + moves[count].pv[0] = cur->move; moves[count].pv[1] = MOVE_NONE; + pos.undo_move(cur->move); count++; } sort(); @@ -2444,9 +2460,8 @@ namespace { Square mfrom, mto, tfrom, tto; - // Prune if there isn't any threat move and - // is not a castling move (common case). - if (threat == MOVE_NONE && !move_is_castle(m)) + // Prune if there isn't any threat move + if (threat == MOVE_NONE) return true; mfrom = move_from(m); @@ -2454,15 +2469,11 @@ namespace { tfrom = move_from(threat); tto = move_to(threat); - // Case 1: Castling moves are never pruned - if (move_is_castle(m)) - return false; - - // Case 2: Don't prune moves which move the threatened piece + // Case 1: Don't prune moves which move the threatened piece if (mfrom == tto) return false; - // Case 3: If the threatened piece has value less than or equal to the + // Case 2: If the threatened piece has value less than or equal to the // value of the threatening piece, don't prune move which defend it. if ( pos.move_is_capture(threat) && ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto) @@ -2470,7 +2481,7 @@ namespace { && pos.move_attacks_square(m, tto)) return false; - // Case 4: If the moving piece in the threatened move is a slider, don't + // Case 3: If the moving piece in the threatened move is a slider, don't // prune safe moves which block its ray. if ( piece_is_slider(pos.piece_on(tfrom)) && bit_is_set(squares_between(tfrom, tto), mto) @@ -2514,6 +2525,7 @@ namespace { return defaultEval; } + // update_history() registers a good move that produced a beta-cutoff // in history and marks as failures all the other moves of that ply. @@ -2551,17 +2563,18 @@ namespace { } - // fail_high_ply_1() checks if some thread is currently resolving a fail - // high at ply 1 at the node below the first root node. This information - // is used for time management. - - bool fail_high_ply_1() { + // update_gains() updates the gains table of a non-capture move given + // the static position evaluation before and after the move. - for (int i = 0; i < ActiveThreads; i++) - if (Threads[i].failHighPly1) - return true; + void update_gains(const Position& pos, Move m, Value before, Value after) { - return false; + if ( m != MOVE_NULL + && before != VALUE_NONE + && after != VALUE_NONE + && pos.captured_piece() == NO_PIECE_TYPE + && !move_is_castle(m) + && !move_is_promotion(m)) + H.set_gain(pos.piece_on(move_to(m)), move_to(m), -(before + after)); } @@ -2651,18 +2664,11 @@ namespace { return; bool stillAtFirstMove = RootMoveNumber == 1 - && !FailLow + && !AspirationFailLow && t > MaxSearchTime + ExtraSearchTime; - bool noProblemFound = !FailHigh - && !FailLow - && !fail_high_ply_1() - && !Problem - && t > 6 * (MaxSearchTime + ExtraSearchTime); - bool noMoreTime = t > AbsoluteMaxSearchTime - || stillAtFirstMove //FIXME: We are not checking any problem flags, BUG? - || noProblemFound; + || stillAtFirstMove; if ( (Iteration >= 3 && UseTimeManagement && noMoreTime) || (ExactMaxTime && t >= ExactMaxTime) @@ -2681,18 +2687,11 @@ namespace { PonderSearch = false; bool stillAtFirstMove = RootMoveNumber == 1 - && !FailLow + && !AspirationFailLow && t > MaxSearchTime + ExtraSearchTime; - bool noProblemFound = !FailHigh - && !FailLow - && !fail_high_ply_1() - && !Problem - && t > 6 * (MaxSearchTime + ExtraSearchTime); - bool noMoreTime = t > AbsoluteMaxSearchTime - || stillAtFirstMove - || noProblemFound; + || stillAtFirstMove; if (Iteration >= 3 && UseTimeManagement && (noMoreTime || StopOnPonderhit)) AbortSearch = true; @@ -2796,6 +2795,8 @@ namespace { // If this thread has been assigned work, launch a search if (Threads[threadID].workIsWaiting) { + assert(!Threads[threadID].idle); + Threads[threadID].workIsWaiting = false; if (Threads[threadID].splitPoint->pvNode) sp_search_pv(Threads[threadID].splitPoint, threadID); @@ -2882,7 +2883,10 @@ namespace { if (!Threads[slave].idle || slave == master) return false; - if (Threads[slave].activeSplitPoints == 0) + // Make a local copy to be sure doesn't change under our feet + int localActiveSplitPoints = Threads[slave].activeSplitPoints; + + if (localActiveSplitPoints == 0) // No active split points means that the thread is available as // a slave for any other thread. return true; @@ -2890,8 +2894,10 @@ namespace { if (ActiveThreads == 2) return true; - // Apply the "helpful master" concept if possible - if (SplitPointStack[slave][Threads[slave].activeSplitPoints - 1].slaves[master]) + // Apply the "helpful master" concept if possible. Use localActiveSplitPoints + // that is known to be > 0, instead of Threads[slave].activeSplitPoints that + // could have been set to 0 by another thread leading to an out of bound access. + if (SplitPointStack[slave][localActiveSplitPoints - 1].slaves[master]) return true; return false; @@ -2941,7 +2947,6 @@ namespace { assert(ActiveThreads > 1); SplitPoint* splitPoint; - int i; lock_grab(&MPLock); @@ -2958,7 +2963,7 @@ namespace { splitPoint = SplitPointStack[master] + Threads[master].activeSplitPoints; Threads[master].activeSplitPoints++; - // Initialize the split point object and copy current position + // Initialize the split point object splitPoint->parent = Threads[master].splitPoint; splitPoint->finished = false; splitPoint->ply = ply; @@ -2972,37 +2977,40 @@ namespace { splitPoint->mp = mp; splitPoint->moves = *moves; splitPoint->cpus = 1; - splitPoint->pos.copy(p); + splitPoint->pos = &p; splitPoint->parentSstack = sstck; - for (i = 0; i < ActiveThreads; i++) + for (int i = 0; i < ActiveThreads; i++) splitPoint->slaves[i] = 0; - // Copy the current search stack to the master thread - memcpy(splitPoint->sstack[master], sstck, (ply+1) * sizeof(SearchStack)); + Threads[master].idle = false; + Threads[master].stop = false; Threads[master].splitPoint = splitPoint; - // Make copies of the current position and search stack for each thread - for (i = 0; i < ActiveThreads && splitPoint->cpus < MaxThreadsPerSplitPoint; i++) + // Allocate available threads setting idle flag to false + for (int i = 0; i < ActiveThreads && splitPoint->cpus < MaxThreadsPerSplitPoint; i++) if (thread_is_available(i, master)) { - memcpy(splitPoint->sstack[i], sstck, (ply+1) * sizeof(SearchStack)); + Threads[i].idle = false; + Threads[i].stop = false; Threads[i].splitPoint = splitPoint; splitPoint->slaves[i] = 1; splitPoint->cpus++; } + assert(splitPoint->cpus > 1); + + // We can release the lock because master and slave threads are already booked + lock_release(&MPLock); + // Tell the threads that they have work to do. This will make them leave - // their idle loop. - for (i = 0; i < ActiveThreads; i++) + // their idle loop. But before copy search stack tail for each thread. + for (int i = 0; i < ActiveThreads; i++) if (i == master || splitPoint->slaves[i]) { - Threads[i].workIsWaiting = true; - Threads[i].idle = false; - Threads[i].stop = false; + memcpy(splitPoint->sstack[i] + ply - 1, sstck + ply - 1, 4 * sizeof(SearchStack)); + Threads[i].workIsWaiting = true; // This makes the slave to exit from idle_loop() } - lock_release(&MPLock); - // Everything is set up. The master thread enters the idle loop, from // which it will instantly launch a search, because its workIsWaiting // slot is 'true'. We send the split point as a second parameter to the