X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fsearch.cpp;h=2fdd2840ea2b38915c453baf46783cc097909b35;hp=27a67a639401e3d18e48a3416a1ea4592ce1f072;hb=3ef4fdeaa01f4d41fc723d54c0a17cea712cf035;hpb=927f1b0bd30a5b2cfdcdf163f26f528738509064 diff --git a/src/search.cpp b/src/search.cpp index 27a67a63..2fdd2840 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -32,7 +32,6 @@ #include "move.h" #include "movegen.h" #include "movepick.h" -#include "lock.h" #include "search.h" #include "timeman.h" #include "thread.h" @@ -44,62 +43,17 @@ using std::endl; namespace { - // Different node types, used as template parameter - enum NodeType { NonPV, PV }; - - // Set to true to force running with one thread. Used for debugging. + // Set to true to force running with one thread. Used for debugging const bool FakeSplit = false; - // Lookup table to check if a Piece is a slider and its access function - const bool Slidings[18] = { 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 }; - inline bool piece_is_slider(Piece p) { return Slidings[p]; } - - // ThreadsManager class is used to handle all the threads related stuff like init, - // starting, parking and, the most important, launching a slave thread at a split - // point. All the access to shared thread data is done through this class. - - class ThreadsManager { - /* As long as the single ThreadsManager object is defined as a global we don't - need to explicitly initialize to zero its data members because variables with - static storage duration are automatically set to zero before enter main() - */ - public: - void init_threads(); - void exit_threads(); - - int min_split_depth() const { return minimumSplitDepth; } - int active_threads() const { return activeThreads; } - void set_active_threads(int cnt) { activeThreads = cnt; } - - void read_uci_options(); - bool available_thread_exists(int master) const; - bool thread_is_available(int slave, int master) const; - bool cutoff_at_splitpoint(int threadID) const; - void wake_sleeping_thread(int threadID); - void idle_loop(int threadID, SplitPoint* sp); - - template - void split(Position& pos, SearchStack* ss, int ply, Value* alpha, const Value beta, Value* bestValue, - Depth depth, Move threatMove, bool mateThreat, int moveCount, MovePicker* mp, bool pvNode); - - private: - Depth minimumSplitDepth; - int maxThreadsPerSplitPoint; - bool useSleepingThreads; - int activeThreads; - volatile bool allThreadsShouldExit; - Thread threads[MAX_THREADS]; - Lock mpLock, sleepLock[MAX_THREADS]; - WaitCondition sleepCond[MAX_THREADS]; - }; - + // Different node types, used as template parameter + enum NodeType { NonPV, PV }; // RootMove struct is used for moves at the root of the tree. For each root // move, we store two scores, a node count, and a PV (really a refutation // in the case of moves which fail low). Value pv_score is normally set at // -VALUE_INFINITE for all non-pv moves, while non_pv_score is computed // according to the order in which moves are returned by MovePicker. - struct RootMove { RootMove(); @@ -118,18 +72,16 @@ namespace { void extract_pv_from_tt(Position& pos); void insert_pv_in_tt(Position& pos); - std::string pv_info_to_uci(Position& pos, int depth, Value alpha, Value beta, int pvIdx); - + std::string pv_info_to_uci(Position& pos, int depth, int selDepth, + Value alpha, Value beta, int pvIdx); int64_t nodes; Value pv_score; Value non_pv_score; Move pv[PLY_MAX_PLUS_2]; }; - - // RootMoveList struct is just a std::vector<> of RootMove objects, + // RootMoveList struct is just a vector of RootMove objects, // with an handful of methods above the standard ones. - struct RootMoveList : public std::vector { typedef std::vector Base; @@ -141,32 +93,45 @@ namespace { int bestMoveChanges; }; + // MovePickerExt template class extends MovePicker and allows to choose at compile + // time the proper moves source according to the type of node. In the default case + // we simply create and use a standard MovePicker object. + template struct MovePickerExt : public MovePicker { - // Overload operator<<() to make it easier to print moves in a coordinate - // notation compatible with UCI protocol. - std::ostream& operator<<(std::ostream& os, Move m) { + MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, SearchStack* ss, Value b) + : MovePicker(p, ttm, d, h, ss, b) {} - bool chess960 = (os.iword(0) != 0); // See set960() - return os << move_to_uci(m, chess960); - } + RootMoveList::iterator rm; // Dummy, needed to compile + }; + // In case of a SpNode we use split point's shared MovePicker object as moves source + template<> struct MovePickerExt : public MovePicker { - // When formatting a move for std::cout we must know if we are in Chess960 - // or not. To keep using the handy operator<<() on the move the trick is to - // embed this flag in the stream itself. Function-like named enum set960 is - // used as a custom manipulator and the stream internal general-purpose array, - // accessed through ios_base::iword(), is used to pass the flag to the move's - // operator<<() that will read it to properly format castling moves. - enum set960 {}; + MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, SearchStack* ss, Value b) + : MovePicker(p, ttm, d, h, ss, b), mp(ss->sp->mp) {} - std::ostream& operator<< (std::ostream& os, const set960& f) { + Move get_next_move() { return mp->get_next_move(); } - os.iword(0) = int(f); - return os; - } + RootMoveList::iterator rm; // Dummy, needed to compile + MovePicker* mp; + }; + + // In case of a Root node we use RootMoveList as moves source + template<> struct MovePickerExt : public MovePicker { + + MovePickerExt(const Position&, Move, Depth, const History&, SearchStack*, Value); + Move get_next_move(); + RootMoveList::iterator rm; + bool firstCall; + }; - /// Adjustments + + /// Constants + + // Lookup table to check if a Piece is a slider and its access function + const bool Slidings[18] = { 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 }; + inline bool piece_is_slider(Piece p) { return Slidings[p]; } // Step 6. Razoring @@ -182,7 +147,7 @@ namespace { // Step 9. Internal iterative deepening // Minimum depth for use of internal iterative deepening - const Depth IIDDepth[2] = { 8 * ONE_PLY /* non-PV */, 5 * ONE_PLY /* PV */}; + const Depth IIDDepth[] = { 8 * ONE_PLY, 5 * ONE_PLY }; // At Non-PV nodes we do an internal iterative deepening search // when the static evaluation is bigger then beta - IIDMargin. @@ -190,13 +155,14 @@ namespace { // Step 11. Decide the new search depth - // Extensions. Configurable UCI options - // Array index 0 is used at non-PV nodes, index 1 at PV nodes. - Depth CheckExtension[2], PawnPushTo7thExtension[2], PassedPawnExtension[2]; - Depth PawnEndgameExtension[2], MateThreatExtension[2]; + // Extensions. Array index 0 is used for non-PV nodes, index 1 for PV nodes + const Depth CheckExtension[] = { ONE_PLY / 2, ONE_PLY / 1 }; + const Depth PawnEndgameExtension[] = { ONE_PLY / 1, ONE_PLY / 1 }; + const Depth PawnPushTo7thExtension[] = { ONE_PLY / 2, ONE_PLY / 2 }; + const Depth PassedPawnExtension[] = { DEPTH_ZERO, ONE_PLY / 2 }; // Minimum depth for use of singular extension - const Depth SingularExtensionDepth[2] = { 8 * ONE_PLY /* non-PV */, 6 * ONE_PLY /* PV */}; + const Depth SingularExtensionDepth[] = { 8 * ONE_PLY, 6 * ONE_PLY }; // Step 12. Futility pruning @@ -204,19 +170,29 @@ namespace { const Value FutilityMarginQS = Value(0x80); // Futility lookup tables (initialized at startup) and their access functions - Value FutilityMarginsMatrix[16][64]; // [depth][moveNumber] - int FutilityMoveCountArray[32]; // [depth] + Value FutilityMargins[16][64]; // [depth][moveNumber] + int FutilityMoveCounts[32]; // [depth] - inline Value futility_margin(Depth d, int mn) { return d < 7 * ONE_PLY ? FutilityMarginsMatrix[Max(d, 1)][Min(mn, 63)] : 2 * VALUE_INFINITE; } - inline int futility_move_count(Depth d) { return d < 16 * ONE_PLY ? FutilityMoveCountArray[d] : 512; } + inline Value futility_margin(Depth d, int mn) { + + return d < 7 * ONE_PLY ? FutilityMargins[Max(d, 1)][Min(mn, 63)] + : 2 * VALUE_INFINITE; + } + + inline int futility_move_count(Depth d) { + + return d < 16 * ONE_PLY ? FutilityMoveCounts[d] : MAX_MOVES; + } // Step 14. Reduced search - // Reduction lookup tables (initialized at startup) and their getter functions - int8_t ReductionMatrix[2][64][64]; // [pv][depth][moveNumber] + // Reduction lookup tables (initialized at startup) and their access function + int8_t Reductions[2][64][64]; // [pv][depth][moveNumber] - template - inline Depth reduction(Depth d, int mn) { return (Depth) ReductionMatrix[PV][Min(d / 2, 63)][Min(mn, 63)]; } + template inline Depth reduction(Depth d, int mn) { + + return (Depth) Reductions[PV][Min(d / ONE_PLY, 63)][Min(mn, 63)]; + } // Easy move margin. An easy move candidate must be at least this much // better than the second best move. @@ -225,9 +201,6 @@ namespace { /// Namespace variables - // Book - Book OpeningBook; - // Root move list RootMoveList Rml; @@ -235,22 +208,16 @@ namespace { int MultiPV, UCIMultiPV; // Time management variables - int SearchStartTime, MaxNodes, MaxDepth, ExactMaxTime; - bool UseTimeManagement, InfiniteSearch, Pondering, StopOnPonderhit; - bool FirstRootMove, StopRequest, QuitRequest, AspirationFailLow; + bool StopOnPonderhit, FirstRootMove, StopRequest, QuitRequest, AspirationFailLow; TimeManager TimeMgr; + SearchLimits Limits; // Log file - bool UseLogFile; std::ofstream LogFile; // Skill level adjustment int SkillLevel; bool SkillLevelEnabled; - RKISS RK; - - // Multi-threads manager - ThreadsManager ThreadsMgr; // Node counters, used only by thread[0] but try to keep in different cache // lines (64 bytes each) from the heavy multi-thread read accessed variables. @@ -267,20 +234,20 @@ namespace { Move id_loop(Position& pos, Move searchMoves[], Move* ponderMove); template - Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply); + Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth); template - Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply); + Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth); template - inline Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply) { + inline Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth) { - return depth < ONE_PLY ? qsearch(pos, ss, alpha, beta, DEPTH_ZERO, ply) - : search(pos, ss, alpha, beta, depth, ply); + return depth < ONE_PLY ? qsearch(pos, ss, alpha, beta, DEPTH_ZERO) + : search(pos, ss, alpha, beta, depth); } template - Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck, bool mateThreat, bool* dangerous); + Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck, bool* dangerous); bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta, Value *bValue); bool connected_moves(const Position& pos, Move m1, Move m2); @@ -293,90 +260,40 @@ namespace { void update_gains(const Position& pos, Move move, Value before, Value after); void do_skill_level(Move* best, Move* ponder); - int current_search_time(); + int current_search_time(int set = 0); std::string value_to_uci(Value v); std::string speed_to_uci(int64_t nodes); void poll(const Position& pos); void wait_for_stop_or_ponderhit(); -#if !defined(_MSC_VER) - void* init_thread(void* threadID); -#else - DWORD WINAPI init_thread(LPVOID threadID); -#endif - - - // MovePickerExt is an extended MovePicker used to choose at compile time - // the proper move source according to the type of node. - template struct MovePickerExt; - - // In Root nodes use RootMoveList as source. Score and sort the root moves - // before to search them. - template<> struct MovePickerExt : public MovePicker { - - MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, SearchStack* ss, Value b) - : MovePicker(p, ttm, d, h, ss, b), firstCall(true) { - Move move; - Value score = VALUE_ZERO; - - // Score root moves using standard ordering used in main search, the moves - // are scored according to the order in which they are returned by MovePicker. - // This is the second order score that is used to compare the moves when - // the first orders pv_score of both moves are equal. - while ((move = MovePicker::get_next_move()) != MOVE_NONE) - for (rm = Rml.begin(); rm != Rml.end(); ++rm) - if (rm->pv[0] == move) - { - rm->non_pv_score = score--; - break; - } - - Rml.sort(); - rm = Rml.begin(); - } - - Move get_next_move() { - - if (!firstCall) - ++rm; - else - firstCall = false; - - return rm != Rml.end() ? rm->pv[0] : MOVE_NONE; - } - - RootMoveList::iterator rm; - bool firstCall; - }; - - // In SpNodes use split point's shared MovePicker object as move source - template<> struct MovePickerExt : public MovePicker { - - MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, SearchStack* ss, Value b) - : MovePicker(p, ttm, d, h, ss, b), mp(ss->sp->mp) {} - - Move get_next_move() { return mp->get_next_move(); } + // Overload operator<<() to make it easier to print moves in a coordinate + // notation compatible with UCI protocol. + std::ostream& operator<<(std::ostream& os, Move m) { - RootMoveList::iterator rm; // Dummy, needed to compile - MovePicker* mp; - }; + bool chess960 = (os.iword(0) != 0); // See set960() + return os << move_to_uci(m, chess960); + } - // Default case, create and use a MovePicker object as source - template<> struct MovePickerExt : public MovePicker { + // When formatting a move for std::cout we must know if we are in Chess960 + // or not. To keep using the handy operator<<() on the move the trick is to + // embed this flag in the stream itself. Function-like named enum set960 is + // used as a custom manipulator and the stream internal general-purpose array, + // accessed through ios_base::iword(), is used to pass the flag to the move's + // operator<<() that will read it to properly format castling moves. + enum set960 {}; - MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, SearchStack* ss, Value b) - : MovePicker(p, ttm, d, h, ss, b) {} + std::ostream& operator<< (std::ostream& os, const set960& f) { - RootMoveList::iterator rm; // Dummy, needed to compile - }; + os.iword(0) = int(f); + return os; + } } // namespace -/// init_threads() is called during startup. It initializes various lookup tables -/// and creates and launches search threads. +/// init_search() is called during startup to initialize various lookup tables -void init_threads() { +void init_search() { int d; // depth (ONE_PLY == 2) int hd; // half depth (ONE_PLY == 1) @@ -387,33 +304,26 @@ void init_threads() { { double pvRed = log(double(hd)) * log(double(mc)) / 3.0; double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25; - ReductionMatrix[PV][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0); - ReductionMatrix[NonPV][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0); + Reductions[PV][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0); + Reductions[NonPV][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0); } // Init futility margins array for (d = 1; d < 16; d++) for (mc = 0; mc < 64; mc++) - FutilityMarginsMatrix[d][mc] = Value(112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45); + FutilityMargins[d][mc] = Value(112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45); // Init futility move count array for (d = 0; d < 32; d++) - FutilityMoveCountArray[d] = int(3.001 + 0.25 * pow(d, 2.0)); - - // Create and startup threads - ThreadsMgr.init_threads(); + FutilityMoveCounts[d] = int(3.001 + 0.25 * pow(d, 2.0)); } -/// exit_threads() is a trampoline to access ThreadsMgr from outside of current file -void exit_threads() { ThreadsMgr.exit_threads(); } - - -/// perft() is our utility to verify move generation. All the legal moves up to -/// given depth are generated and counted and the sum returned. +/// perft() is our utility to verify move generation. All the leaf nodes up to +/// the given depth are generated and counted and the sum returned. int64_t perft(Position& pos, Depth depth) { - MoveStack mlist[MOVES_MAX]; + MoveStack mlist[MAX_MOVES]; StateInfo st; Move m; int64_t sum = 0; @@ -431,7 +341,7 @@ int64_t perft(Position& pos, Depth depth) { for (MoveStack* cur = mlist; cur != last; cur++) { m = cur->move; - pos.do_move(m, st, ci, pos.move_is_check(m, ci)); + pos.do_move(m, st, ci, pos.move_gives_check(m, ci)); sum += perft(pos, depth - ONE_PLY); pos.undo_move(m); } @@ -441,33 +351,40 @@ int64_t perft(Position& pos, Depth depth) { /// think() is the external interface to Stockfish's search, and is called when /// the program receives the UCI 'go' command. It initializes various global -/// variables, and calls id_loop(). It returns false when a quit command is +/// variables, and calls id_loop(). It returns false when a "quit" command is /// received during the search. -bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[], - int movesToGo, int maxDepth, int maxNodes, int maxTime, Move searchMoves[]) { +bool think(Position& pos, const SearchLimits& limits, Move searchMoves[]) { + + static Book book; // Initialize global search-related variables StopOnPonderhit = StopRequest = QuitRequest = AspirationFailLow = SendSearchedNodes = false; NodesSincePoll = 0; - SearchStartTime = get_system_time(); - ExactMaxTime = maxTime; - MaxDepth = maxDepth; - MaxNodes = maxNodes; - InfiniteSearch = infinite; - Pondering = ponder; - UseTimeManagement = !ExactMaxTime && !MaxDepth && !MaxNodes && !InfiniteSearch; - - // Look for a book move, only during games, not tests - if (UseTimeManagement && Options["OwnBook"].value()) + current_search_time(get_system_time()); + Limits = limits; + TimeMgr.init(Limits, pos.startpos_ply_counter()); + + // Set best NodesBetweenPolls interval to avoid lagging under time pressure + if (Limits.maxNodes) + NodesBetweenPolls = Min(Limits.maxNodes, 30000); + else if (Limits.time && Limits.time < 1000) + NodesBetweenPolls = 1000; + else if (Limits.time && Limits.time < 5000) + NodesBetweenPolls = 5000; + else + NodesBetweenPolls = 30000; + + // Look for a book move + if (Options["OwnBook"].value()) { - if (Options["Book File"].value() != OpeningBook.name()) - OpeningBook.open(Options["Book File"].value()); + if (Options["Book File"].value() != book.name()) + book.open(Options["Book File"].value()); - Move bookMove = OpeningBook.get_move(pos, Options["Best Book Move"].value()); + Move bookMove = book.get_move(pos, Options["Best Book Move"].value()); if (bookMove != MOVE_NONE) { - if (Pondering) + if (Limits.ponder) wait_for_stop_or_ponderhit(); cout << "bestmove " << bookMove << endl; @@ -476,86 +393,63 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[ } // Read UCI options - CheckExtension[1] = Options["Check Extension (PV nodes)"].value(); - CheckExtension[0] = Options["Check Extension (non-PV nodes)"].value(); - PawnPushTo7thExtension[1] = Options["Pawn Push to 7th Extension (PV nodes)"].value(); - PawnPushTo7thExtension[0] = Options["Pawn Push to 7th Extension (non-PV nodes)"].value(); - PassedPawnExtension[1] = Options["Passed Pawn Extension (PV nodes)"].value(); - PassedPawnExtension[0] = Options["Passed Pawn Extension (non-PV nodes)"].value(); - PawnEndgameExtension[1] = Options["Pawn Endgame Extension (PV nodes)"].value(); - PawnEndgameExtension[0] = Options["Pawn Endgame Extension (non-PV nodes)"].value(); - MateThreatExtension[1] = Options["Mate Threat Extension (PV nodes)"].value(); - MateThreatExtension[0] = Options["Mate Threat Extension (non-PV nodes)"].value(); - UCIMultiPV = Options["MultiPV"].value(); - SkillLevel = Options["Skill level"].value(); - UseLogFile = Options["Use Search Log"].value(); + UCIMultiPV = Options["MultiPV"].value(); + SkillLevel = Options["Skill Level"].value(); read_evaluation_uci_options(pos.side_to_move()); + Threads.read_uci_options(); + + // If needed allocate pawn and material hash tables and adjust TT size + Threads.init_hash_tables(); + TT.set_size(Options["Hash"].value()); if (Options["Clear Hash"].value()) { Options["Clear Hash"].set_value("false"); TT.clear(); } - TT.set_size(Options["Hash"].value()); // Do we have to play with skill handicap? In this case enable MultiPV that // we will use behind the scenes to retrieve a set of possible moves. SkillLevelEnabled = (SkillLevel < 20); MultiPV = (SkillLevelEnabled ? Max(UCIMultiPV, 4) : UCIMultiPV); - // Set the number of active threads - ThreadsMgr.read_uci_options(); - init_eval(ThreadsMgr.active_threads()); - - // Wake up needed threads. Main thread, with threadID == 0, is always active - for (int i = 1; i < ThreadsMgr.active_threads(); i++) - ThreadsMgr.wake_sleeping_thread(i); - - // Set thinking time - int myTime = time[pos.side_to_move()]; - int myIncrement = increment[pos.side_to_move()]; - if (UseTimeManagement) - TimeMgr.init(myTime, myIncrement, movesToGo, pos.startpos_ply_counter()); - - // Set best NodesBetweenPolls interval to avoid lagging under time pressure - if (MaxNodes) - NodesBetweenPolls = Min(MaxNodes, 30000); - else if (myTime && myTime < 1000) - NodesBetweenPolls = 1000; - else if (myTime && myTime < 5000) - NodesBetweenPolls = 5000; - else - NodesBetweenPolls = 30000; + // Wake up needed threads and reset maxPly counter + for (int i = 0; i < Threads.size(); i++) + { + Threads[i].wake_up(); + Threads[i].maxPly = 0; + } - // Write search information to log file - if (UseLogFile) + // Write to log file and keep it open to be accessed during the search + if (Options["Use Search Log"].value()) { std::string name = Options["Search Log Filename"].value(); LogFile.open(name.c_str(), std::ios::out | std::ios::app); - LogFile << "\nSearching: " << pos.to_fen() - << "\ninfinite: " << infinite - << " ponder: " << ponder - << " time: " << myTime - << " increment: " << myIncrement - << " moves to go: " << movesToGo - << endl; + if (LogFile.is_open()) + LogFile << "\nSearching: " << pos.to_fen() + << "\ninfinite: " << Limits.infinite + << " ponder: " << Limits.ponder + << " time: " << Limits.time + << " increment: " << Limits.increment + << " moves to go: " << Limits.movesToGo + << endl; } // We're ready to start thinking. Call the iterative deepening loop function Move ponderMove = MOVE_NONE; Move bestMove = id_loop(pos, searchMoves, &ponderMove); - // Print final search statistics cout << "info" << speed_to_uci(pos.nodes_searched()) << endl; - if (UseLogFile) + // Write final search statistics and close log file + if (LogFile.is_open()) { int t = current_search_time(); LogFile << "Nodes: " << pos.nodes_searched() - << "\nNodes/second: " << (t > 0 ? int(pos.nodes_searched() * 1000 / t) : 0) + << "\nNodes/second: " << (t > 0 ? pos.nodes_searched() * 1000 / t : 0) << "\nBest move: " << move_to_san(pos, bestMove); StateInfo st; @@ -566,11 +460,11 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[ } // This makes all the threads to go to sleep - ThreadsMgr.set_active_threads(1); + Threads.set_size(1); // If we are pondering or in infinite search, we shouldn't print the // best move before we are told to do so. - if (!StopRequest && (Pondering || InfiniteSearch)) + if (!StopRequest && (Limits.ponder || Limits.infinite)) wait_for_stop_or_ponderhit(); // Could be MOVE_NONE when searching on a stalemate position @@ -598,7 +492,7 @@ namespace { SearchStack ss[PLY_MAX_PLUS_2]; Value bestValues[PLY_MAX_PLUS_2]; int bestMoveChanges[PLY_MAX_PLUS_2]; - int depth, aspirationDelta, skillSamplingDepth; + int depth, selDepth, aspirationDelta; Value value, alpha, beta; Move bestMove, easyMove, skillBest, skillPonder; @@ -607,7 +501,7 @@ namespace { TT.new_search(); H.clear(); *ponderMove = bestMove = easyMove = skillBest = skillPonder = MOVE_NONE; - depth = aspirationDelta = skillSamplingDepth = 0; + depth = aspirationDelta = 0; alpha = -VALUE_INFINITE, beta = VALUE_INFINITE; ss->currentMove = MOVE_NULL; // Hack to skip update_gains() @@ -618,19 +512,14 @@ namespace { if (Rml.size() == 0) { cout << "info depth 0 score " - << value_to_uci(pos.is_check() ? -VALUE_MATE : VALUE_DRAW) + << value_to_uci(pos.in_check() ? -VALUE_MATE : VALUE_DRAW) << endl; return MOVE_NONE; } - // Choose a random sampling depth according to SkillLevel so that at low - // skills there is an higher risk to pick up a blunder. - if (SkillLevelEnabled) - skillSamplingDepth = 4 + SkillLevel + (RK.rand() % 4); - - // Iterative deepening loop - while (++depth <= PLY_MAX && (!MaxDepth || depth <= MaxDepth) && !StopRequest) + // Iterative deepening loop until requested to stop or target depth reached + while (!StopRequest && ++depth <= PLY_MAX && (!Limits.maxDepth || depth <= Limits.maxDepth)) { Rml.bestMoveChanges = 0; cout << set960(pos.is_chess960()) << "info depth " << depth << endl; @@ -652,7 +541,7 @@ namespace { // research with bigger window until not failing high/low anymore. do { // Search starting from ss+1 to allow calling update_gains() - value = search(pos, ss+1, alpha, beta, depth * ONE_PLY, 0); + value = search(pos, ss+1, alpha, beta, depth * ONE_PLY); // Write PV back to transposition table in case the relevant entries // have been overwritten during the search. @@ -692,14 +581,20 @@ namespace { bestMoveChanges[depth] = Rml.bestMoveChanges; // Do we need to pick now the best and the ponder moves ? - if (SkillLevelEnabled && depth == skillSamplingDepth) + if (SkillLevelEnabled && depth == 1 + SkillLevel) do_skill_level(&skillBest, &skillPonder); + // Retrieve max searched depth among threads + selDepth = 0; + for (int i = 0; i < Threads.size(); i++) + if (Threads[i].maxPly > selDepth) + selDepth = Threads[i].maxPly; + // Send PV line to GUI and to log file for (int i = 0; i < Min(UCIMultiPV, (int)Rml.size()); i++) - cout << Rml[i].pv_info_to_uci(pos, depth, alpha, beta, i) << endl; + cout << Rml[i].pv_info_to_uci(pos, depth, selDepth, alpha, beta, i) << endl; - if (UseLogFile) + if (LogFile.is_open()) LogFile << pretty_pv(pos, depth, value, current_search_time(), Rml[0].pv) << endl; // Init easyMove after first iteration or drop if differs from the best move @@ -708,20 +603,18 @@ namespace { else if (bestMove != easyMove) easyMove = MOVE_NONE; - if (UseTimeManagement && !StopRequest) + // Check for some early stop condition + if (!StopRequest && Limits.useTimeManagement()) { - // Time to stop? - bool noMoreTime = false; - // Stop search early when the last two iterations returned a mate score if ( depth >= 5 - && abs(bestValues[depth]) >= abs(VALUE_MATE) - 100 - && abs(bestValues[depth - 1]) >= abs(VALUE_MATE) - 100) - noMoreTime = true; + && abs(bestValues[depth]) >= VALUE_MATE_IN_PLY_MAX + && abs(bestValues[depth - 1]) >= VALUE_MATE_IN_PLY_MAX) + StopRequest = true; // Stop search early if one move seems to be much better than the - // others or if there is only a single legal move. In this latter - // case we search up to Iteration 8 anyway to get a proper score. + // others or if there is only a single legal move. Also in the latter + // case we search up to some depth anyway to get a proper score. if ( depth >= 7 && easyMove == bestMove && ( Rml.size() == 1 @@ -729,29 +622,27 @@ namespace { && current_search_time() > TimeMgr.available_time() / 16) ||( Rml[0].nodes > (pos.nodes_searched() * 98) / 100 && current_search_time() > TimeMgr.available_time() / 32))) - noMoreTime = true; + StopRequest = true; - // Add some extra time if the best move has changed during the last two iterations + // Take in account some extra time if the best move has changed if (depth > 4 && depth < 50) - TimeMgr.pv_instability(bestMoveChanges[depth], bestMoveChanges[depth-1]); + TimeMgr.pv_instability(bestMoveChanges[depth], bestMoveChanges[depth - 1]); - // Stop search if most of MaxSearchTime is consumed at the end of the - // iteration. We probably don't have enough time to search the first - // move at the next iteration anyway. - if (current_search_time() > (TimeMgr.available_time() * 80) / 128) - noMoreTime = true; + // Stop search if most of available time is already consumed. We probably don't + // have enough time to search the first move at the next iteration anyway. + if (current_search_time() > (TimeMgr.available_time() * 62) / 100) + StopRequest = true; - if (noMoreTime) + // If we are allowed to ponder do not stop the search now but keep pondering + if (StopRequest && Limits.ponder) { - if (Pondering) - StopOnPonderhit = true; - else - break; + StopRequest = false; + StopOnPonderhit = true; } } } - // When using skills fake best and ponder moves with the sub-optimal ones + // When using skills overwrite best and ponder moves with the sub-optimal ones if (SkillLevelEnabled) { if (skillBest == MOVE_NONE) // Still unassigned ? @@ -773,15 +664,14 @@ namespace { // here: This is taken care of after we return from the split point. template - Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply) { + Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth) { assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); assert(beta > alpha && beta <= VALUE_INFINITE); assert(PvNode || alpha == beta - 1); - assert((Root || ply > 0) && ply < PLY_MAX); - assert(pos.thread() >= 0 && pos.thread() < ThreadsMgr.active_threads()); + assert(pos.thread() >= 0 && pos.thread() < Threads.size()); - Move movesSearched[MOVES_MAX]; + Move movesSearched[MAX_MOVES]; int64_t nodes; StateInfo st; const TTEntry *tte; @@ -791,15 +681,19 @@ namespace { ValueType vt; Value bestValue, value, oldAlpha; Value refinedValue, nullValue, futilityBase, futilityValueScaled; // Non-PV specific - bool isPvMove, isCheck, singularExtensionNode, moveIsCheck, captureOrPromotion, dangerous, isBadCap; - bool mateThreat = false; + bool isPvMove, inCheck, singularExtensionNode, givesCheck, captureOrPromotion, dangerous; int moveCount = 0, playedMoveCount = 0; int threadID = pos.thread(); SplitPoint* sp = NULL; refinedValue = bestValue = value = -VALUE_INFINITE; oldAlpha = alpha; - isCheck = pos.is_check(); + inCheck = pos.in_check(); + ss->ply = (ss-1)->ply + 1; + + // Used to send selDepth info to GUI + if (PvNode && Threads[threadID].maxPly < ss->ply) + Threads[threadID].maxPly = ss->ply; if (SpNode) { @@ -807,7 +701,6 @@ namespace { tte = NULL; ttMove = excludedMove = MOVE_NONE; threatMove = sp->threatMove; - mateThreat = sp->mateThreat; goto split_point_start; } else if (Root) @@ -826,14 +719,14 @@ namespace { // Step 2. Check for aborted search and immediate draw if (( StopRequest - || ThreadsMgr.cutoff_at_splitpoint(threadID) + || Threads[threadID].cutoff_occurred() || pos.is_draw() - || ply >= PLY_MAX - 1) && !Root) + || ss->ply > PLY_MAX) && !Root) return VALUE_DRAW; // Step 3. Mate distance pruning - alpha = Max(value_mated_in(ply), alpha); - beta = Min(value_mate_in(ply+1), beta); + alpha = Max(value_mated_in(ss->ply), alpha); + beta = Min(value_mate_in(ss->ply+1), beta); if (alpha >= beta) return alpha; @@ -843,7 +736,7 @@ namespace { excludedMove = ss->excludedMove; posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key(); - tte = TT.retrieve(posKey); + tte = TT.probe(posKey); ttMove = tte ? tte->move() : MOVE_NONE; // At PV nodes we check for exact scores, while at non-PV nodes we check for @@ -852,15 +745,15 @@ namespace { if ( !Root && tte && (PvNode ? tte->depth() >= depth && tte->type() == VALUE_TYPE_EXACT - : ok_to_use_TT(tte, depth, beta, ply))) + : ok_to_use_TT(tte, depth, beta, ss->ply))) { TT.refresh(tte); ss->bestMove = ttMove; // Can be MOVE_NONE - return value_from_tt(tte->value(), ply); + return value_from_tt(tte->value(), ss->ply); } // Step 5. Evaluate the position statically and update parent's gain statistics - if (isCheck) + if (inCheck) ss->eval = ss->evalMargin = VALUE_NONE; else if (tte) { @@ -868,7 +761,7 @@ namespace { ss->eval = tte->static_value(); ss->evalMargin = tte->static_value_margin(); - refinedValue = refine_eval(tte, ss->eval, ply); + refinedValue = refine_eval(tte, ss->eval, ss->ply); } else { @@ -882,14 +775,14 @@ namespace { // Step 6. Razoring (is omitted in PV nodes) if ( !PvNode && depth < RazorDepth - && !isCheck + && !inCheck && refinedValue + razor_margin(depth) < beta && ttMove == MOVE_NONE && abs(beta) < VALUE_MATE_IN_PLY_MAX && !pos.has_pawn_on_7th(pos.side_to_move())) { Value rbeta = beta - razor_margin(depth); - Value v = qsearch(pos, ss, rbeta-1, rbeta, DEPTH_ZERO, ply); + Value v = qsearch(pos, ss, rbeta-1, rbeta, DEPTH_ZERO); if (v < rbeta) // Logically we should return (v + razor_margin(depth)), but // surprisingly this did slightly weaker in tests. @@ -902,7 +795,7 @@ namespace { if ( !PvNode && !ss->skipNullMove && depth < RazorDepth - && !isCheck + && !inCheck && refinedValue - futility_margin(depth, 0) >= beta && abs(beta) < VALUE_MATE_IN_PLY_MAX && pos.non_pawn_material(pos.side_to_move())) @@ -912,7 +805,7 @@ namespace { if ( !PvNode && !ss->skipNullMove && depth > ONE_PLY - && !isCheck + && !inCheck && refinedValue >= beta && abs(beta) < VALUE_MATE_IN_PLY_MAX && pos.non_pawn_material(pos.side_to_move())) @@ -928,7 +821,7 @@ namespace { pos.do_null_move(st); (ss+1)->skipNullMove = true; - nullValue = -search(pos, ss+1, -beta, -alpha, depth-R*ONE_PLY, ply+1); + nullValue = -search(pos, ss+1, -beta, -alpha, depth-R*ONE_PLY); (ss+1)->skipNullMove = false; pos.undo_null_move(); @@ -943,7 +836,7 @@ namespace { // Do verification search at high depths ss->skipNullMove = true; - Value v = search(pos, ss, alpha, beta, depth-R*ONE_PLY, ply); + Value v = search(pos, ss, alpha, beta, depth-R*ONE_PLY); ss->skipNullMove = false; if (v >= beta) @@ -957,9 +850,6 @@ namespace { // move which was reduced. If a connection is found, return a fail // low score (which will cause the reduced move to fail high in the // parent node, which will trigger a re-search with full depth). - if (nullValue == value_mated_in(ply + 2)) - mateThreat = true; - threatMove = (ss+1)->bestMove; if ( depth < ThreatDepth @@ -973,22 +863,18 @@ namespace { // Step 9. Internal iterative deepening if ( depth >= IIDDepth[PvNode] && ttMove == MOVE_NONE - && (PvNode || (!isCheck && ss->eval + IIDMargin >= beta))) + && (PvNode || (!inCheck && ss->eval + IIDMargin >= beta))) { Depth d = (PvNode ? depth - 2 * ONE_PLY : depth / 2); ss->skipNullMove = true; - search(pos, ss, alpha, beta, d, ply); + search(pos, ss, alpha, beta, d); ss->skipNullMove = false; - ttMove = ss->bestMove; - tte = TT.retrieve(posKey); + tte = TT.probe(posKey); + ttMove = tte ? tte->move() : MOVE_NONE; } - // Mate threat detection for PV nodes, otherwise we use null move search - if (PvNode) - mateThreat = pos.has_mate_threat(); - split_point_start: // At split points actual search starts from here // Initialize a MovePicker object for the current position @@ -999,8 +885,7 @@ split_point_start: // At split points actual search starts from here singularExtensionNode = !Root && !SpNode && depth >= SingularExtensionDepth[PvNode] - && tte - && tte->move() + && ttMove != MOVE_NONE && !excludedMove // Do not allow recursive singular extension search && (tte->type() & VALUE_TYPE_LOWER) && tte->depth() >= depth - 3 * ONE_PLY; @@ -1014,7 +899,7 @@ split_point_start: // At split points actual search starts from here // Loop through all legal moves until no moves remain or a beta cutoff occurs while ( bestValue < beta && (move = mp.get_next_move()) != MOVE_NONE - && !ThreadsMgr.cutoff_at_splitpoint(threadID)) + && !Threads[threadID].cutoff_occurred()) { assert(move_is_ok(move)); @@ -1051,11 +936,11 @@ split_point_start: // At split points actual search starts from here // At Root and at first iteration do a PV search on all the moves to score root moves isPvMove = (PvNode && moveCount <= (Root ? depth <= ONE_PLY ? 1000 : MultiPV : 1)); - moveIsCheck = pos.move_is_check(move, ci); - captureOrPromotion = pos.move_is_capture_or_promotion(move); + givesCheck = pos.move_gives_check(move, ci); + captureOrPromotion = pos.move_is_capture(move) || move_is_promotion(move); // Step 11. Decide the new search depth - ext = extension(pos, move, captureOrPromotion, moveIsCheck, mateThreat, &dangerous); + ext = extension(pos, move, captureOrPromotion, givesCheck, &dangerous); // Singular extension search. If all moves but one fail low on a search of // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move @@ -1063,17 +948,17 @@ split_point_start: // At split points actual search starts from here // on all the other moves but the ttMove, if result is lower than ttValue minus // a margin then we extend ttMove. if ( singularExtensionNode - && move == tte->move() + && move == ttMove && ext < ONE_PLY) { - Value ttValue = value_from_tt(tte->value(), ply); + Value ttValue = value_from_tt(tte->value(), ss->ply); if (abs(ttValue) < VALUE_KNOWN_WIN) { Value rBeta = ttValue - int(depth); ss->excludedMove = move; ss->skipNullMove = true; - Value v = search(pos, ss, rBeta - 1, rBeta, depth / 2, ply); + Value v = search(pos, ss, rBeta - 1, rBeta, depth / 2); ss->skipNullMove = false; ss->excludedMove = MOVE_NONE; ss->bestMove = MOVE_NONE; @@ -1089,7 +974,7 @@ split_point_start: // At split points actual search starts from here // Step 12. Futility pruning (is omitted in PV nodes) if ( !PvNode && !captureOrPromotion - && !isCheck + && !inCheck && !dangerous && move != ttMove && !move_is_castle(move)) @@ -1138,18 +1023,8 @@ split_point_start: // At split points actual search starts from here } } - // Bad capture detection. Will be used by prob-cut search - isBadCap = depth >= 3 * ONE_PLY - && depth < 8 * ONE_PLY - && captureOrPromotion - && move != ttMove - && !dangerous - && !move_is_promotion(move) - && abs(alpha) < VALUE_MATE_IN_PLY_MAX - && pos.see_sign(move) < 0; - // Step 13. Make the move - pos.do_move(move, st, ci, moveIsCheck); + pos.do_move(move, st, ci, givesCheck); if (!SpNode && !captureOrPromotion) movesSearched[playedMoveCount++] = move; @@ -1162,7 +1037,7 @@ split_point_start: // At split points actual search starts from here if (Root && MultiPV > 1) alpha = -VALUE_INFINITE; - value = -search(pos, ss+1, -beta, -alpha, newDepth, ply+1); + value = -search(pos, ss+1, -beta, -alpha, newDepth); } else { @@ -1181,9 +1056,8 @@ split_point_start: // At split points actual search starts from here ss->reduction = reduction(depth, moveCount); if (ss->reduction) { - alpha = SpNode ? sp->alpha : alpha; Depth d = newDepth - ss->reduction; - value = -search(pos, ss+1, -(alpha+1), -alpha, d, ply+1); + value = -search(pos, ss+1, -(alpha+1), -alpha, d); doFullDepthSearch = (value > alpha); } @@ -1192,12 +1066,18 @@ split_point_start: // At split points actual search starts from here // Probcut search for bad captures. If a reduced search returns a value // very below beta then we can (almost) safely prune the bad capture. - if (isBadCap) + if ( depth >= 3 * ONE_PLY + && depth < 8 * ONE_PLY + && mp.isBadCapture() + && move != ttMove + && !dangerous + && !move_is_promotion(move) + && abs(alpha) < VALUE_MATE_IN_PLY_MAX) { ss->reduction = 3 * ONE_PLY; Value rAlpha = alpha - 300; Depth d = newDepth - ss->reduction; - value = -search(pos, ss+1, -(rAlpha+1), -rAlpha, d, ply+1); + value = -search(pos, ss+1, -(rAlpha+1), -rAlpha, d); doFullDepthSearch = (value > rAlpha); ss->reduction = DEPTH_ZERO; // Restore original reduction } @@ -1206,13 +1086,13 @@ split_point_start: // At split points actual search starts from here if (doFullDepthSearch) { alpha = SpNode ? sp->alpha : alpha; - value = -search(pos, ss+1, -(alpha+1), -alpha, newDepth, ply+1); + value = -search(pos, ss+1, -(alpha+1), -alpha, newDepth); // Step extra. pv search (only in PV nodes) // Search only for possible new PV nodes, if instead value >= beta then // parent node fails low with value <= alpha and tries another move. if (PvNode && value > alpha && (Root || value < beta)) - value = -search(pos, ss+1, -beta, -alpha, newDepth, ply+1); + value = -search(pos, ss+1, -beta, -alpha, newDepth); } } @@ -1229,7 +1109,7 @@ split_point_start: // At split points actual search starts from here alpha = sp->alpha; } - if (value > bestValue && !(SpNode && ThreadsMgr.cutoff_at_splitpoint(threadID))) + if (value > bestValue && !(SpNode && Threads[threadID].cutoff_occurred())) { bestValue = value; @@ -1246,9 +1126,9 @@ split_point_start: // At split points actual search starts from here sp->alpha = value; } else if (SpNode) - sp->betaCutoff = true; + sp->is_betaCutoff = true; - if (value == value_mate_in(ply + 1)) + if (value == value_mate_in(ss->ply + 1)) ss->mateKiller = move; ss->bestMove = move; @@ -1302,14 +1182,13 @@ split_point_start: // At split points actual search starts from here // Step 18. Check for split if ( !Root && !SpNode - && depth >= ThreadsMgr.min_split_depth() - && ThreadsMgr.active_threads() > 1 + && depth >= Threads.min_split_depth() && bestValue < beta - && ThreadsMgr.available_thread_exists(threadID) + && Threads.available_slave_exists(threadID) && !StopRequest - && !ThreadsMgr.cutoff_at_splitpoint(threadID)) - ThreadsMgr.split(pos, ss, ply, &alpha, beta, &bestValue, depth, - threatMove, mateThreat, moveCount, &mp, PvNode); + && !Threads[threadID].cutoff_occurred()) + Threads.split(pos, ss, &alpha, beta, &bestValue, depth, + threatMove, moveCount, &mp, PvNode); } // Step 19. Check for mate and stalemate @@ -1317,22 +1196,23 @@ split_point_start: // At split points actual search starts from here // no legal moves, it must be mate or stalemate. // If one move was excluded return fail low score. if (!SpNode && !moveCount) - return excludedMove ? oldAlpha : isCheck ? value_mated_in(ply) : VALUE_DRAW; + return excludedMove ? oldAlpha : inCheck ? value_mated_in(ss->ply) : VALUE_DRAW; // Step 20. Update tables // If the search is not aborted, update the transposition table, // history counters, and killer moves. - if (!SpNode && !StopRequest && !ThreadsMgr.cutoff_at_splitpoint(threadID)) + if (!SpNode && !StopRequest && !Threads[threadID].cutoff_occurred()) { move = bestValue <= oldAlpha ? MOVE_NONE : ss->bestMove; vt = bestValue <= oldAlpha ? VALUE_TYPE_UPPER : bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT; - TT.store(posKey, value_to_tt(bestValue, ply), vt, depth, move, ss->eval, ss->evalMargin); + TT.store(posKey, value_to_tt(bestValue, ss->ply), vt, depth, move, ss->eval, ss->evalMargin); // Update killers and history only for non capture moves that fails high if ( bestValue >= beta - && !pos.move_is_capture_or_promotion(move)) + && !pos.move_is_capture(move) + && !move_is_promotion(move)) { if (move != ss->killers[0]) { @@ -1346,7 +1226,7 @@ split_point_start: // At split points actual search starts from here if (SpNode) { // Here we have the lock still grabbed - sp->slaves[threadID] = 0; + sp->is_slave[threadID] = false; sp->nodes += pos.nodes_searched(); lock_release(&(sp->lock)); } @@ -1361,48 +1241,48 @@ split_point_start: // At split points actual search starts from here // less than ONE_PLY). template - Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply) { + Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth) { assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE); assert(PvNode || alpha == beta - 1); assert(depth <= 0); - assert(ply > 0 && ply < PLY_MAX); - assert(pos.thread() >= 0 && pos.thread() < ThreadsMgr.active_threads()); + assert(pos.thread() >= 0 && pos.thread() < Threads.size()); StateInfo st; Move ttMove, move; Value bestValue, value, evalMargin, futilityValue, futilityBase; - bool isCheck, enoughMaterial, moveIsCheck, evasionPrunable; + bool inCheck, enoughMaterial, givesCheck, evasionPrunable; const TTEntry* tte; Depth ttDepth; Value oldAlpha = alpha; ss->bestMove = ss->currentMove = MOVE_NONE; + ss->ply = (ss-1)->ply + 1; // Check for an instant draw or maximum ply reached - if (pos.is_draw() || ply >= PLY_MAX - 1) + if (ss->ply > PLY_MAX || pos.is_draw()) return VALUE_DRAW; // Decide whether or not to include checks, this fixes also the type of // TT entry depth that we are going to use. Note that in qsearch we use // only two types of depth in TT: DEPTH_QS_CHECKS or DEPTH_QS_NO_CHECKS. - isCheck = pos.is_check(); - ttDepth = (isCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS : DEPTH_QS_NO_CHECKS); + inCheck = pos.in_check(); + ttDepth = (inCheck || depth >= DEPTH_QS_CHECKS ? DEPTH_QS_CHECKS : DEPTH_QS_NO_CHECKS); // Transposition table lookup. At PV nodes, we don't use the TT for // pruning, but only for move ordering. - tte = TT.retrieve(pos.get_key()); + tte = TT.probe(pos.get_key()); ttMove = (tte ? tte->move() : MOVE_NONE); - if (!PvNode && tte && ok_to_use_TT(tte, ttDepth, beta, ply)) + if (!PvNode && tte && ok_to_use_TT(tte, ttDepth, beta, ss->ply)) { ss->bestMove = ttMove; // Can be MOVE_NONE - return value_from_tt(tte->value(), ply); + return value_from_tt(tte->value(), ss->ply); } // Evaluate the position statically - if (isCheck) + if (inCheck) { bestValue = futilityBase = -VALUE_INFINITE; ss->eval = evalMargin = VALUE_NONE; @@ -1426,7 +1306,7 @@ split_point_start: // At split points actual search starts from here if (bestValue >= beta) { if (!tte) - TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, DEPTH_NONE, MOVE_NONE, ss->eval, evalMargin); + TT.store(pos.get_key(), value_to_tt(bestValue, ss->ply), VALUE_TYPE_LOWER, DEPTH_NONE, MOVE_NONE, ss->eval, evalMargin); return bestValue; } @@ -1452,12 +1332,12 @@ split_point_start: // At split points actual search starts from here { assert(move_is_ok(move)); - moveIsCheck = pos.move_is_check(move, ci); + givesCheck = pos.move_gives_check(move, ci); // Futility pruning if ( !PvNode - && !isCheck - && !moveIsCheck + && !inCheck + && !givesCheck && move != ttMove && enoughMaterial && !move_is_promotion(move) @@ -1482,14 +1362,14 @@ split_point_start: // At split points actual search starts from here } // Detect non-capture evasions that are candidate to be pruned - evasionPrunable = isCheck + evasionPrunable = inCheck && bestValue > VALUE_MATED_IN_PLY_MAX && !pos.move_is_capture(move) && !pos.can_castle(pos.side_to_move()); // Don't search moves with negative SEE values if ( !PvNode - && (!isCheck || evasionPrunable) + && (!inCheck || evasionPrunable) && move != ttMove && !move_is_promotion(move) && pos.see_sign(move) < 0) @@ -1497,10 +1377,11 @@ split_point_start: // At split points actual search starts from here // Don't search useless checks if ( !PvNode - && !isCheck - && moveIsCheck + && !inCheck + && givesCheck && move != ttMove - && !pos.move_is_capture_or_promotion(move) + && !pos.move_is_capture(move) + && !move_is_promotion(move) && ss->eval + PawnValueMidgame / 4 < beta && !check_is_dangerous(pos, move, futilityBase, beta, &bestValue)) { @@ -1514,8 +1395,8 @@ split_point_start: // At split points actual search starts from here ss->currentMove = move; // Make and search the move - pos.do_move(move, st, ci, moveIsCheck); - value = -qsearch(pos, ss+1, -beta, -alpha, depth-ONE_PLY, ply+1); + pos.do_move(move, st, ci, givesCheck); + value = -qsearch(pos, ss+1, -beta, -alpha, depth-ONE_PLY); pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); @@ -1534,12 +1415,12 @@ split_point_start: // At split points actual search starts from here // All legal moves have been searched. A special case: If we're in check // and no legal moves were found, it is checkmate. - if (isCheck && bestValue == -VALUE_INFINITE) - return value_mated_in(ply); + if (inCheck && bestValue == -VALUE_INFINITE) + return value_mated_in(ss->ply); // Update transposition table ValueType vt = (bestValue <= oldAlpha ? VALUE_TYPE_UPPER : bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT); - TT.store(pos.get_key(), value_to_tt(bestValue, ply), vt, ttDepth, ss->bestMove, ss->eval, evalMargin); + TT.store(pos.get_key(), value_to_tt(bestValue, ss->ply), vt, ttDepth, ss->bestMove, ss->eval, evalMargin); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); @@ -1696,21 +1577,15 @@ split_point_start: // At split points actual search starts from here // the move is marked as 'dangerous' so, at least, we avoid to prune it. template Depth extension(const Position& pos, Move m, bool captureOrPromotion, - bool moveIsCheck, bool mateThreat, bool* dangerous) { + bool moveIsCheck, bool* dangerous) { assert(m != MOVE_NONE); Depth result = DEPTH_ZERO; - *dangerous = moveIsCheck | mateThreat; + *dangerous = moveIsCheck; - if (*dangerous) - { - if (moveIsCheck && pos.see_sign(m) >= 0) - result += CheckExtension[PvNode]; - - if (mateThreat) - result += MateThreatExtension[PvNode]; - } + if (moveIsCheck && pos.see_sign(m) >= 0) + result += CheckExtension[PvNode]; if (pos.type_of_piece_on(move_from(m)) == PAWN) { @@ -1731,8 +1606,7 @@ split_point_start: // At split points actual search starts from here && pos.type_of_piece_on(move_to(m)) != PAWN && ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) - pos.midgame_value_of_piece_on(move_to(m)) == VALUE_ZERO) - && !move_is_promotion(m) - && !move_is_ep(m)) + && !move_is_special(m)) { result += PawnEndgameExtension[PvNode]; *dangerous = true; @@ -1749,8 +1623,8 @@ split_point_start: // At split points actual search starts from here assert(move_is_ok(m)); assert(threat && move_is_ok(threat)); - assert(!pos.move_is_check(m)); - assert(!pos.move_is_capture_or_promotion(m)); + assert(!pos.move_gives_check(m)); + assert(!pos.move_is_capture(m) && !move_is_promotion(m)); assert(!pos.move_is_passed_pawn_push(m)); Square mfrom, mto, tfrom, tto; @@ -1854,9 +1728,14 @@ split_point_start: // At split points actual search starts from here // current_search_time() returns the number of milliseconds which have passed // since the beginning of the current search. - int current_search_time() { + int current_search_time(int set) { - return get_system_time() - SearchStartTime; + static int searchStartTime; + + if (set) + searchStartTime = set; + + return get_system_time() - searchStartTime; } @@ -1872,9 +1751,9 @@ split_point_start: // At split points actual search starts from here std::stringstream s; if (abs(v) < VALUE_MATE - PLY_MAX * ONE_PLY) - s << "cp " << int(v) * 100 / int(PawnValueMidgame); // Scale to centipawns + s << "cp " << int(v) * 100 / int(PawnValueMidgame); // Scale to centipawns else - s << "mate " << (v > 0 ? VALUE_MATE - v + 1 : -VALUE_MATE - v) / 2; + s << "mate " << (v > 0 ? VALUE_MATE - v + 1 : -VALUE_MATE - v) / 2; return s.str(); } @@ -1914,7 +1793,7 @@ split_point_start: // At split points actual search starts from here if (!std::getline(std::cin, command) || command == "quit") { // Quit the program as soon as possible - Pondering = false; + Limits.ponder = false; QuitRequest = StopRequest = true; return; } @@ -1922,7 +1801,7 @@ split_point_start: // At split points actual search starts from here { // Stop calculating as soon as possible, but still send the "bestmove" // and possibly the "ponder" token when finishing the search. - Pondering = false; + Limits.ponder = false; StopRequest = true; } else if (command == "ponderhit") @@ -1930,7 +1809,7 @@ split_point_start: // At split points actual search starts from here // The opponent has played the expected move. GUI sends "ponderhit" if // we were told to ponder on the same move the opponent has played. We // should continue searching but switching from pondering to normal search. - Pondering = false; + Limits.ponder = false; if (StopOnPonderhit) StopRequest = true; @@ -1950,18 +1829,15 @@ split_point_start: // At split points actual search starts from here { lastInfoTime = t; - if (dbg_show_mean) - dbg_print_mean(); - - if (dbg_show_hit_rate) - dbg_print_hit_rate(); + dbg_print_mean(); + dbg_print_hit_rate(); // Send info on searched nodes as soon as we return to root SendSearchedNodes = true; } // Should we stop the search? - if (Pondering) + if (Limits.ponder) return; bool stillAtFirstMove = FirstRootMove @@ -1971,9 +1847,9 @@ split_point_start: // At split points actual search starts from here bool noMoreTime = t > TimeMgr.maximum_time() || stillAtFirstMove; - if ( (UseTimeManagement && noMoreTime) - || (ExactMaxTime && t >= ExactMaxTime) - || (MaxNodes && pos.nodes_searched() >= MaxNodes)) // FIXME + if ( (Limits.useTimeManagement() && noMoreTime) + || (Limits.maxTime && t >= Limits.maxTime) + || (Limits.maxNodes && pos.nodes_searched() >= Limits.maxNodes)) // FIXME StopRequest = true; } @@ -1998,431 +1874,47 @@ split_point_start: // At split points actual search starts from here } - // init_thread() is the function which is called when a new thread is - // launched. It simply calls the idle_loop() function with the supplied - // threadID. There are two versions of this function; one for POSIX - // threads and one for Windows threads. - -#if !defined(_MSC_VER) - - void* init_thread(void* threadID) { - - ThreadsMgr.idle_loop(*(int*)threadID, NULL); - return NULL; - } - -#else - - DWORD WINAPI init_thread(LPVOID threadID) { - - ThreadsMgr.idle_loop(*(int*)threadID, NULL); - return 0; - } - -#endif - - - /// The ThreadsManager class - - - // read_uci_options() updates number of active threads and other internal - // parameters according to the UCI options values. It is called before - // to start a new search. - - void ThreadsManager::read_uci_options() { - - maxThreadsPerSplitPoint = Options["Maximum Number of Threads per Split Point"].value(); - minimumSplitDepth = Options["Minimum Split Depth"].value() * ONE_PLY; - useSleepingThreads = Options["Use Sleeping Threads"].value(); - activeThreads = Options["Threads"].value(); - } - - - // idle_loop() is where the threads are parked when they have no work to do. - // The parameter 'sp', if non-NULL, is a pointer to an active SplitPoint - // object for which the current thread is the master. - - void ThreadsManager::idle_loop(int threadID, SplitPoint* sp) { - - assert(threadID >= 0 && threadID < MAX_THREADS); - - int i; - bool allFinished = false; - - while (true) - { - // Slave threads can exit as soon as AllThreadsShouldExit raises, - // master should exit as last one. - if (allThreadsShouldExit) - { - assert(!sp); - threads[threadID].state = THREAD_TERMINATED; - return; - } - - // If we are not thinking, wait for a condition to be signaled - // instead of wasting CPU time polling for work. - while ( threadID >= activeThreads || threads[threadID].state == THREAD_INITIALIZING - || (useSleepingThreads && threads[threadID].state == THREAD_AVAILABLE)) - { - assert(!sp || useSleepingThreads); - assert(threadID != 0 || useSleepingThreads); - - if (threads[threadID].state == THREAD_INITIALIZING) - threads[threadID].state = THREAD_AVAILABLE; - - // Grab the lock to avoid races with wake_sleeping_thread() - lock_grab(&sleepLock[threadID]); - - // If we are master and all slaves have finished do not go to sleep - for (i = 0; sp && i < activeThreads && !sp->slaves[i]; i++) {} - allFinished = (i == activeThreads); - - if (allFinished || allThreadsShouldExit) - { - lock_release(&sleepLock[threadID]); - break; - } - - // Do sleep here after retesting sleep conditions - if (threadID >= activeThreads || threads[threadID].state == THREAD_AVAILABLE) - cond_wait(&sleepCond[threadID], &sleepLock[threadID]); - - lock_release(&sleepLock[threadID]); - } - - // If this thread has been assigned work, launch a search - if (threads[threadID].state == THREAD_WORKISWAITING) - { - assert(!allThreadsShouldExit); - - threads[threadID].state = THREAD_SEARCHING; - - // Copy SplitPoint position and search stack and call search() - // with SplitPoint template parameter set to true. - SearchStack ss[PLY_MAX_PLUS_2]; - SplitPoint* tsp = threads[threadID].splitPoint; - Position pos(*tsp->pos, threadID); - - memcpy(ss, tsp->ss - 1, 4 * sizeof(SearchStack)); - (ss+1)->sp = tsp; - - if (tsp->pvNode) - search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth, tsp->ply); - else - search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth, tsp->ply); - - assert(threads[threadID].state == THREAD_SEARCHING); - - threads[threadID].state = THREAD_AVAILABLE; - - // Wake up master thread so to allow it to return from the idle loop in - // case we are the last slave of the split point. - if (useSleepingThreads && threadID != tsp->master && threads[tsp->master].state == THREAD_AVAILABLE) - wake_sleeping_thread(tsp->master); - } - - // If this thread is the master of a split point and all slaves have - // finished their work at this split point, return from the idle loop. - for (i = 0; sp && i < activeThreads && !sp->slaves[i]; i++) {} - allFinished = (i == activeThreads); - - if (allFinished) - { - // Because sp->slaves[] is reset under lock protection, - // be sure sp->lock has been released before to return. - lock_grab(&(sp->lock)); - lock_release(&(sp->lock)); - - // In helpful master concept a master can help only a sub-tree, and - // because here is all finished is not possible master is booked. - assert(threads[threadID].state == THREAD_AVAILABLE); - - threads[threadID].state = THREAD_SEARCHING; - return; - } - } - } - + // When playing with strength handicap choose best move among the MultiPV set + // using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen. + void do_skill_level(Move* best, Move* ponder) { - // init_threads() is called during startup. It launches all helper threads, - // and initializes the split point stack and the global locks and condition - // objects. + assert(MultiPV > 1); - void ThreadsManager::init_threads() { + static RKISS rk; - int i, arg[MAX_THREADS]; - bool ok; + // Rml list is already sorted by pv_score in descending order + int s; + int max_s = -VALUE_INFINITE; + int size = Min(MultiPV, (int)Rml.size()); + int max = Rml[0].pv_score; + int var = Min(max - Rml[size - 1].pv_score, PawnValueMidgame); + int wk = 120 - 2 * SkillLevel; - // Initialize global locks - lock_init(&mpLock); + // PRNG sequence should be non deterministic + for (int i = abs(get_system_time() % 50); i > 0; i--) + rk.rand(); - for (i = 0; i < MAX_THREADS; i++) + // Choose best move. For each move's score we add two terms both dependent + // on wk, one deterministic and bigger for weaker moves, and one random, + // then we choose the move with the resulting highest score. + for (int i = 0; i < size; i++) { - lock_init(&sleepLock[i]); - cond_init(&sleepCond[i]); - } - - // Initialize splitPoints[] locks - for (i = 0; i < MAX_THREADS; i++) - for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++) - lock_init(&(threads[i].splitPoints[j].lock)); - - // Will be set just before program exits to properly end the threads - allThreadsShouldExit = false; + s = Rml[i].pv_score; - // Threads will be put all threads to sleep as soon as created - activeThreads = 1; + // Don't allow crazy blunders even at very low skills + if (i > 0 && Rml[i-1].pv_score > s + EasyMoveMargin) + break; - // All threads except the main thread should be initialized to THREAD_INITIALIZING - threads[0].state = THREAD_SEARCHING; - for (i = 1; i < MAX_THREADS; i++) - threads[i].state = THREAD_INITIALIZING; + // This is our magical formula + s += ((max - s) * wk + var * (rk.rand() % wk)) / 128; - // Launch the helper threads - for (i = 1; i < MAX_THREADS; i++) - { - arg[i] = i; - -#if !defined(_MSC_VER) - pthread_t pthread[1]; - ok = (pthread_create(pthread, NULL, init_thread, (void*)(&arg[i])) == 0); - pthread_detach(pthread[0]); -#else - ok = (CreateThread(NULL, 0, init_thread, (LPVOID)(&arg[i]), 0, NULL) != NULL); -#endif - if (!ok) + if (s > max_s) { - cout << "Failed to create thread number " << i << endl; - exit(EXIT_FAILURE); + max_s = s; + *best = Rml[i].pv[0]; + *ponder = Rml[i].pv[1]; } - - // Wait until the thread has finished launching and is gone to sleep - while (threads[i].state == THREAD_INITIALIZING) {} - } - } - - - // exit_threads() is called when the program exits. It makes all the - // helper threads exit cleanly. - - void ThreadsManager::exit_threads() { - - allThreadsShouldExit = true; // Let the woken up threads to exit idle_loop() - - // Wake up all the threads and waits for termination - for (int i = 1; i < MAX_THREADS; i++) - { - wake_sleeping_thread(i); - while (threads[i].state != THREAD_TERMINATED) {} - } - - // Now we can safely destroy the locks - for (int i = 0; i < MAX_THREADS; i++) - for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++) - lock_destroy(&(threads[i].splitPoints[j].lock)); - - lock_destroy(&mpLock); - - // Now we can safely destroy the wait conditions - for (int i = 0; i < MAX_THREADS; i++) - { - lock_destroy(&sleepLock[i]); - cond_destroy(&sleepCond[i]); - } - } - - - // cutoff_at_splitpoint() checks whether a beta cutoff has occurred in - // the thread's currently active split point, or in some ancestor of - // the current split point. - - bool ThreadsManager::cutoff_at_splitpoint(int threadID) const { - - assert(threadID >= 0 && threadID < activeThreads); - - SplitPoint* sp = threads[threadID].splitPoint; - - for ( ; sp && !sp->betaCutoff; sp = sp->parent) {} - return sp != NULL; - } - - - // thread_is_available() checks whether the thread with threadID "slave" is - // available to help the thread with threadID "master" at a split point. An - // obvious requirement is that "slave" must be idle. With more than two - // threads, this is not by itself sufficient: If "slave" is the master of - // some active split point, it is only available as a slave to the other - // threads which are busy searching the split point at the top of "slave"'s - // split point stack (the "helpful master concept" in YBWC terminology). - - bool ThreadsManager::thread_is_available(int slave, int master) const { - - assert(slave >= 0 && slave < activeThreads); - assert(master >= 0 && master < activeThreads); - assert(activeThreads > 1); - - if (threads[slave].state != THREAD_AVAILABLE || slave == master) - return false; - - // Make a local copy to be sure doesn't change under our feet - int localActiveSplitPoints = threads[slave].activeSplitPoints; - - // No active split points means that the thread is available as - // a slave for any other thread. - if (localActiveSplitPoints == 0 || activeThreads == 2) - return true; - - // Apply the "helpful master" concept if possible. Use localActiveSplitPoints - // that is known to be > 0, instead of threads[slave].activeSplitPoints that - // could have been set to 0 by another thread leading to an out of bound access. - if (threads[slave].splitPoints[localActiveSplitPoints - 1].slaves[master]) - return true; - - return false; - } - - - // available_thread_exists() tries to find an idle thread which is available as - // a slave for the thread with threadID "master". - - bool ThreadsManager::available_thread_exists(int master) const { - - assert(master >= 0 && master < activeThreads); - assert(activeThreads > 1); - - for (int i = 0; i < activeThreads; i++) - if (thread_is_available(i, master)) - return true; - - return false; - } - - - // split() does the actual work of distributing the work at a node between - // several available threads. If it does not succeed in splitting the - // node (because no idle threads are available, or because we have no unused - // split point objects), the function immediately returns. If splitting is - // possible, a SplitPoint object is initialized with all the data that must be - // copied to the helper threads and we tell our helper threads that they have - // been assigned work. This will cause them to instantly leave their idle loops and - // call search().When all threads have returned from search() then split() returns. - - template - void ThreadsManager::split(Position& pos, SearchStack* ss, int ply, Value* alpha, - const Value beta, Value* bestValue, Depth depth, Move threatMove, - bool mateThreat, int moveCount, MovePicker* mp, bool pvNode) { - assert(pos.is_ok()); - assert(ply > 0 && ply < PLY_MAX); - assert(*bestValue >= -VALUE_INFINITE); - assert(*bestValue <= *alpha); - assert(*alpha < beta); - assert(beta <= VALUE_INFINITE); - assert(depth > DEPTH_ZERO); - assert(pos.thread() >= 0 && pos.thread() < activeThreads); - assert(activeThreads > 1); - - int i, master = pos.thread(); - Thread& masterThread = threads[master]; - - lock_grab(&mpLock); - - // If no other thread is available to help us, or if we have too many - // active split points, don't split. - if ( !available_thread_exists(master) - || masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS) - { - lock_release(&mpLock); - return; } - - // Pick the next available split point object from the split point stack - SplitPoint& splitPoint = masterThread.splitPoints[masterThread.activeSplitPoints++]; - - // Initialize the split point object - splitPoint.parent = masterThread.splitPoint; - splitPoint.master = master; - splitPoint.betaCutoff = false; - splitPoint.ply = ply; - splitPoint.depth = depth; - splitPoint.threatMove = threatMove; - splitPoint.mateThreat = mateThreat; - splitPoint.alpha = *alpha; - splitPoint.beta = beta; - splitPoint.pvNode = pvNode; - splitPoint.bestValue = *bestValue; - splitPoint.mp = mp; - splitPoint.moveCount = moveCount; - splitPoint.pos = &pos; - splitPoint.nodes = 0; - splitPoint.ss = ss; - for (i = 0; i < activeThreads; i++) - splitPoint.slaves[i] = 0; - - masterThread.splitPoint = &splitPoint; - - // If we are here it means we are not available - assert(masterThread.state != THREAD_AVAILABLE); - - int workersCnt = 1; // At least the master is included - - // Allocate available threads setting state to THREAD_BOOKED - for (i = 0; !Fake && i < activeThreads && workersCnt < maxThreadsPerSplitPoint; i++) - if (thread_is_available(i, master)) - { - threads[i].state = THREAD_BOOKED; - threads[i].splitPoint = &splitPoint; - splitPoint.slaves[i] = 1; - workersCnt++; - } - - assert(Fake || workersCnt > 1); - - // We can release the lock because slave threads are already booked and master is not available - lock_release(&mpLock); - - // Tell the threads that they have work to do. This will make them leave - // their idle loop. - for (i = 0; i < activeThreads; i++) - if (i == master || splitPoint.slaves[i]) - { - assert(i == master || threads[i].state == THREAD_BOOKED); - - threads[i].state = THREAD_WORKISWAITING; // This makes the slave to exit from idle_loop() - - if (useSleepingThreads && i != master) - wake_sleeping_thread(i); - } - - // Everything is set up. The master thread enters the idle loop, from - // which it will instantly launch a search, because its state is - // THREAD_WORKISWAITING. We send the split point as a second parameter to the - // idle loop, which means that the main thread will return from the idle - // loop when all threads have finished their work at this split point. - idle_loop(master, &splitPoint); - - // We have returned from the idle loop, which means that all threads are - // finished. Update alpha and bestValue, and return. - lock_grab(&mpLock); - - *alpha = splitPoint.alpha; - *bestValue = splitPoint.bestValue; - masterThread.activeSplitPoints--; - masterThread.splitPoint = splitPoint.parent; - pos.set_nodes_searched(pos.nodes_searched() + splitPoint.nodes); - - lock_release(&mpLock); - } - - - // wake_sleeping_thread() wakes up the thread with the given threadID - // when it is time to start a new search. - - void ThreadsManager::wake_sleeping_thread(int threadID) { - - lock_grab(&sleepLock[threadID]); - cond_signal(&sleepCond[threadID]); - lock_release(&sleepLock[threadID]); } @@ -2449,6 +1941,33 @@ split_point_start: // At split points actual search starts from here return *this; } + void RootMoveList::init(Position& pos, Move searchMoves[]) { + + MoveStack mlist[MAX_MOVES]; + Move* sm; + + clear(); + bestMoveChanges = 0; + + // Generate all legal moves and add them to RootMoveList + MoveStack* last = generate(pos, mlist); + for (MoveStack* cur = mlist; cur != last; cur++) + { + // If we have a searchMoves[] list then verify cur->move + // is in the list before to add it. + for (sm = searchMoves; *sm && *sm != cur->move; sm++) {} + + if (searchMoves[0] && *sm != cur->move) + continue; + + RootMove rm; + rm.pv[0] = cur->move; + rm.pv[1] = MOVE_NONE; + rm.pv_score = -VALUE_INFINITE; + push_back(rm); + } + } + // extract_pv_from_tt() builds a PV by adding moves from the transposition table. // We consider also failing high nodes and not only VALUE_TYPE_EXACT nodes. This // allow to always have a ponder move even when we fail high at root and also a @@ -2460,13 +1979,13 @@ split_point_start: // At split points actual search starts from here TTEntry* tte; int ply = 1; - assert(pv[0] != MOVE_NONE && move_is_legal(pos, pv[0])); + assert(pv[0] != MOVE_NONE && pos.move_is_legal(pv[0])); pos.do_move(pv[0], *st++); - while ( (tte = TT.retrieve(pos.get_key())) != NULL + while ( (tte = TT.probe(pos.get_key())) != NULL && tte->move() != MOVE_NONE - && move_is_legal(pos, tte->move()) + && pos.move_is_legal(tte->move()) && ply < PLY_MAX && (!pos.is_draw() || ply < 2)) { @@ -2490,16 +2009,16 @@ split_point_start: // At split points actual search starts from here Value v, m = VALUE_NONE; int ply = 0; - assert(pv[0] != MOVE_NONE && move_is_legal(pos, pv[0])); + assert(pv[0] != MOVE_NONE && pos.move_is_legal(pv[0])); do { k = pos.get_key(); - tte = TT.retrieve(k); + tte = TT.probe(k); // Don't overwrite existing correct entries if (!tte || tte->move() != pv[ply]) { - v = (pos.is_check() ? VALUE_NONE : evaluate(pos, m)); + v = (pos.in_check() ? VALUE_NONE : evaluate(pos, m)); TT.store(k, VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, pv[ply], v, m); } pos.do_move(pv[ply], *st++); @@ -2512,93 +2031,165 @@ split_point_start: // At split points actual search starts from here // pv_info_to_uci() returns a string with information on the current PV line // formatted according to UCI specification. - std::string RootMove::pv_info_to_uci(Position& pos, int depth, Value alpha, + std::string RootMove::pv_info_to_uci(Position& pos, int depth, int selDepth, Value alpha, Value beta, int pvIdx) { - std::stringstream s, l; - Move* m = pv; - - while (*m != MOVE_NONE) - l << *m++ << " "; + std::stringstream s; s << "info depth " << depth - << " seldepth " << int(m - pv) + << " seldepth " << selDepth << " multipv " << pvIdx + 1 << " score " << value_to_uci(pv_score) << (pv_score >= beta ? " lowerbound" : pv_score <= alpha ? " upperbound" : "") << speed_to_uci(pos.nodes_searched()) - << " pv " << l.str(); + << " pv "; + + for (Move* m = pv; *m != MOVE_NONE; m++) + s << *m << " "; return s.str(); } + // Specializations for MovePickerExt in case of Root node + MovePickerExt::MovePickerExt(const Position& p, Move ttm, Depth d, + const History& h, SearchStack* ss, Value b) + : MovePicker(p, ttm, d, h, ss, b), firstCall(true) { + Move move; + Value score = VALUE_ZERO; + + // Score root moves using standard ordering used in main search, the moves + // are scored according to the order in which they are returned by MovePicker. + // This is the second order score that is used to compare the moves when + // the first orders pv_score of both moves are equal. + while ((move = MovePicker::get_next_move()) != MOVE_NONE) + for (rm = Rml.begin(); rm != Rml.end(); ++rm) + if (rm->pv[0] == move) + { + rm->non_pv_score = score--; + break; + } - void RootMoveList::init(Position& pos, Move searchMoves[]) { + Rml.sort(); + rm = Rml.begin(); + } - MoveStack mlist[MOVES_MAX]; - Move* sm; + Move MovePickerExt::get_next_move() { - clear(); - bestMoveChanges = 0; + if (!firstCall) + ++rm; + else + firstCall = false; - // Generate all legal moves and add them to RootMoveList - MoveStack* last = generate(pos, mlist); - for (MoveStack* cur = mlist; cur != last; cur++) - { - // If we have a searchMoves[] list then verify cur->move - // is in the list before to add it. - for (sm = searchMoves; *sm && *sm != cur->move; sm++) {} + return rm != Rml.end() ? rm->pv[0] : MOVE_NONE; + } - if (searchMoves[0] && *sm != cur->move) - continue; +} // namespace - RootMove rm; - rm.pv[0] = cur->move; - rm.pv[1] = MOVE_NONE; - rm.pv_score = -VALUE_INFINITE; - push_back(rm); - } - } +// ThreadsManager::idle_loop() is where the threads are parked when they have no work +// to do. The parameter 'sp', if non-NULL, is a pointer to an active SplitPoint +// object for which the current thread is the master. - // When playing with strength handicap choose best move among the MultiPV set - // using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen. - void do_skill_level(Move* best, Move* ponder) { +void ThreadsManager::idle_loop(int threadID, SplitPoint* sp) { - assert(MultiPV > 1); + assert(threadID >= 0 && threadID < MAX_THREADS); - // Rml list is already sorted by pv_score in descending order - int s; - int max_s = -VALUE_INFINITE; - int size = Min(MultiPV, (int)Rml.size()); - int max = Rml[0].pv_score; - int var = Min(max - Rml[size - 1].pv_score, PawnValueMidgame); - int wk = 120 - 2 * SkillLevel; + int i; + bool allFinished; - // PRNG sequence should be non deterministic - for (int i = abs(get_system_time() % 50); i > 0; i--) - RK.rand(); + while (true) + { + // Slave threads can exit as soon as AllThreadsShouldExit raises, + // master should exit as last one. + if (allThreadsShouldExit) + { + assert(!sp); + threads[threadID].state = Thread::TERMINATED; + return; + } - // Choose best move. For each move's score we add two terms both dependent - // on wk, one deterministic and bigger for weaker moves, and one random, - // then we choose the move with the resulting highest score. - for (int i = 0; i < size; i++) - { - s = Rml[i].pv_score; + // If we are not thinking, wait for a condition to be signaled + // instead of wasting CPU time polling for work. + while ( threadID >= activeThreads + || threads[threadID].state == Thread::INITIALIZING + || (useSleepingThreads && threads[threadID].state == Thread::AVAILABLE)) + { + assert(!sp || useSleepingThreads); + assert(threadID != 0 || useSleepingThreads); - // Don't allow crazy blunders even at very low skills - if (i > 0 && Rml[i-1].pv_score > s + EasyMoveMargin) - break; + if (threads[threadID].state == Thread::INITIALIZING) + threads[threadID].state = Thread::AVAILABLE; - // This is our magical formula - s += ((max - s) * wk + var * (RK.rand() % wk)) / 128; + // Grab the lock to avoid races with Thread::wake_up() + lock_grab(&threads[threadID].sleepLock); - if (s > max_s) - { - max_s = s; - *best = Rml[i].pv[0]; - *ponder = Rml[i].pv[1]; - } - } - } + // If we are master and all slaves have finished do not go to sleep + for (i = 0; sp && i < activeThreads && !sp->is_slave[i]; i++) {} + allFinished = (i == activeThreads); -} // namespace + if (allFinished || allThreadsShouldExit) + { + lock_release(&threads[threadID].sleepLock); + break; + } + + // Do sleep here after retesting sleep conditions + if (threadID >= activeThreads || threads[threadID].state == Thread::AVAILABLE) + cond_wait(&threads[threadID].sleepCond, &threads[threadID].sleepLock); + + lock_release(&threads[threadID].sleepLock); + } + + // If this thread has been assigned work, launch a search + if (threads[threadID].state == Thread::WORKISWAITING) + { + assert(!allThreadsShouldExit); + + threads[threadID].state = Thread::SEARCHING; + + // Copy split point position and search stack and call search() + // with SplitPoint template parameter set to true. + SearchStack ss[PLY_MAX_PLUS_2]; + SplitPoint* tsp = threads[threadID].splitPoint; + Position pos(*tsp->pos, threadID); + + memcpy(ss, tsp->ss - 1, 4 * sizeof(SearchStack)); + (ss+1)->sp = tsp; + + if (tsp->pvNode) + search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth); + else + search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth); + + assert(threads[threadID].state == Thread::SEARCHING); + + threads[threadID].state = Thread::AVAILABLE; + + // Wake up master thread so to allow it to return from the idle loop in + // case we are the last slave of the split point. + if ( useSleepingThreads + && threadID != tsp->master + && threads[tsp->master].state == Thread::AVAILABLE) + threads[tsp->master].wake_up(); + } + + // If this thread is the master of a split point and all slaves have + // finished their work at this split point, return from the idle loop. + for (i = 0; sp && i < activeThreads && !sp->is_slave[i]; i++) {} + allFinished = (i == activeThreads); + + if (allFinished) + { + // Because sp->slaves[] is reset under lock protection, + // be sure sp->lock has been released before to return. + lock_grab(&(sp->lock)); + lock_release(&(sp->lock)); + + // In helpful master concept a master can help only a sub-tree, and + // because here is all finished is not possible master is booked. + assert(threads[threadID].state == Thread::AVAILABLE); + + threads[threadID].state = Thread::SEARCHING; + return; + } + } +}