X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fsearch.cpp;h=48cb4d6bdd9df3a36bacff4d04b3ce0dfd5dac34;hp=0839bd0fcc73999bc245b441abe083157d83b3ee;hb=103b368ab7f5fd696e0c6925917344d15a3c2d9c;hpb=a29dd88f7563c5af871d9adc137218c39586b09c;ds=sidebyside diff --git a/src/search.cpp b/src/search.cpp index 0839bd0f..48cb4d6b 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -24,7 +24,6 @@ #include #include #include -#include #include "book.h" #include "evaluate.h" @@ -42,7 +41,7 @@ namespace Search { volatile SignalsType Signals; LimitsType Limits; - std::set SearchMoves; + std::vector RootMoves; Position RootPosition; } @@ -59,33 +58,6 @@ namespace { // Different node types, used as template parameter enum NodeType { Root, PV, NonPV, SplitPointRoot, SplitPointPV, SplitPointNonPV }; - // RootMove struct is used for moves at the root of the tree. For each root - // move we store a score, a node count, and a PV (really a refutation in the - // case of moves which fail low). Score is normally set at -VALUE_INFINITE for - // all non-pv moves. - struct RootMove { - - RootMove(){} - RootMove(Move m) { - score = prevScore = -VALUE_INFINITE; - pv.push_back(m); - pv.push_back(MOVE_NONE); - } - - bool operator<(const RootMove& m) const { return score < m.score; } - bool operator==(const Move& m) const { return pv[0] == m; } - - void extract_pv_from_tt(Position& pos); - void insert_pv_in_tt(Position& pos); - - Value score; - Value prevScore; - std::vector pv; - }; - - - /// Constants - // Lookup table to check if a Piece is a slider and its access function const bool Slidings[18] = { 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 }; inline bool piece_is_slider(Piece p) { return Slidings[p]; } @@ -135,17 +107,14 @@ namespace { return (Depth) Reductions[PvNode][std::min(int(d) / ONE_PLY, 63)][std::min(mn, 63)]; } - // Easy move margin. An easy move candidate must be at least this much - // better than the second best move. + // Easy move margin. An easy move candidate must be at least this much better + // than the second best move. const Value EasyMoveMargin = Value(0x150); // This is the minimum interval in msec between two check_time() calls const int TimerResolution = 5; - /// Namespace variables - - std::vector RootMoves; size_t MultiPV, UCIMultiPV, PVIdx; TimeManager TimeMgr; int BestMoveChanges; @@ -154,8 +123,6 @@ namespace { History H; - /// Local functions - template Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth); @@ -289,13 +256,6 @@ void Search::think() { TimeMgr.init(Limits, pos.startpos_ply_counter()); TT.new_search(); H.clear(); - RootMoves.clear(); - - // Populate RootMoves with all the legal moves (default) or, if a SearchMoves - // is given, with the subset of legal moves to search. - for (MoveList ml(pos); !ml.end(); ++ml) - if (SearchMoves.empty() || SearchMoves.count(ml.move())) - RootMoves.push_back(RootMove(ml.move())); if (RootMoves.empty()) { @@ -1798,74 +1758,74 @@ split_point_start: // At split points actual search starts from here return best; } +} // namespace - // extract_pv_from_tt() builds a PV by adding moves from the transposition table. - // We consider also failing high nodes and not only VALUE_TYPE_EXACT nodes. This - // allow to always have a ponder move even when we fail high at root and also a - // long PV to print that is important for position analysis. - void RootMove::extract_pv_from_tt(Position& pos) { +/// RootMove::extract_pv_from_tt() builds a PV by adding moves from the TT table. +/// We consider also failing high nodes and not only VALUE_TYPE_EXACT nodes so +/// to allow to always have a ponder move even when we fail high at root, and +/// a long PV to print that is important for position analysis. - StateInfo state[MAX_PLY_PLUS_2], *st = state; - TTEntry* tte; - int ply = 1; - Move m = pv[0]; - - assert(m != MOVE_NONE && pos.is_pseudo_legal(m)); - - pv.clear(); - pv.push_back(m); - pos.do_move(m, *st++); - - while ( (tte = TT.probe(pos.key())) != NULL - && tte->move() != MOVE_NONE - && pos.is_pseudo_legal(tte->move()) - && pos.pl_move_is_legal(tte->move(), pos.pinned_pieces()) - && ply < MAX_PLY - && (!pos.is_draw() || ply < 2)) - { - pv.push_back(tte->move()); - pos.do_move(tte->move(), *st++); - ply++; - } - pv.push_back(MOVE_NONE); +void RootMove::extract_pv_from_tt(Position& pos) { + + StateInfo state[MAX_PLY_PLUS_2], *st = state; + TTEntry* tte; + int ply = 1; + Move m = pv[0]; + + assert(m != MOVE_NONE && pos.is_pseudo_legal(m)); - do pos.undo_move(pv[--ply]); while (ply); + pv.clear(); + pv.push_back(m); + pos.do_move(m, *st++); + + while ( (tte = TT.probe(pos.key())) != NULL + && tte->move() != MOVE_NONE + && pos.is_pseudo_legal(tte->move()) + && pos.pl_move_is_legal(tte->move(), pos.pinned_pieces()) + && ply < MAX_PLY + && (!pos.is_draw() || ply < 2)) + { + pv.push_back(tte->move()); + pos.do_move(tte->move(), *st++); + ply++; } + pv.push_back(MOVE_NONE); + do pos.undo_move(pv[--ply]); while (ply); +} - // insert_pv_in_tt() is called at the end of a search iteration, and inserts - // the PV back into the TT. This makes sure the old PV moves are searched - // first, even if the old TT entries have been overwritten. - void RootMove::insert_pv_in_tt(Position& pos) { +/// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and +/// inserts the PV back into the TT. This makes sure the old PV moves are searched +/// first, even if the old TT entries have been overwritten. - StateInfo state[MAX_PLY_PLUS_2], *st = state; - TTEntry* tte; - Key k; - Value v, m = VALUE_NONE; - int ply = 0; +void RootMove::insert_pv_in_tt(Position& pos) { - assert(pv[ply] != MOVE_NONE && pos.is_pseudo_legal(pv[ply])); + StateInfo state[MAX_PLY_PLUS_2], *st = state; + TTEntry* tte; + Key k; + Value v, m = VALUE_NONE; + int ply = 0; - do { - k = pos.key(); - tte = TT.probe(k); + assert(pv[ply] != MOVE_NONE && pos.is_pseudo_legal(pv[ply])); - // Don't overwrite existing correct entries - if (!tte || tte->move() != pv[ply]) - { - v = (pos.in_check() ? VALUE_NONE : evaluate(pos, m)); - TT.store(k, VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, pv[ply], v, m); - } - pos.do_move(pv[ply], *st++); + do { + k = pos.key(); + tte = TT.probe(k); - } while (pv[++ply] != MOVE_NONE); + // Don't overwrite existing correct entries + if (!tte || tte->move() != pv[ply]) + { + v = (pos.in_check() ? VALUE_NONE : evaluate(pos, m)); + TT.store(k, VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, pv[ply], v, m); + } + pos.do_move(pv[ply], *st++); - do pos.undo_move(pv[--ply]); while (ply); - } + } while (pv[++ply] != MOVE_NONE); -} // namespace + do pos.undo_move(pv[--ply]); while (ply); +} /// Thread::idle_loop() is where the thread is parked when it has no work to do.