X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fsearch.cpp;h=53811de04701c4705053dc0d3ed1e52049db0aed;hp=a40187b8024bfcda6b858045a7679a755e872ee1;hb=c1ea5ed6f7204afd6cb03a80ca8d124bd82cc40d;hpb=d2c2af9e1c4f5711e320555fe31ae4ed940802c6 diff --git a/src/search.cpp b/src/search.cpp index a40187b8..53811de0 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -109,7 +109,7 @@ namespace { class RootMoveList { public: - RootMoveList(Position &pos, Move searchMoves[]); + RootMoveList(Position& pos, Move searchMoves[]); inline Move get_move(int moveNum) const; inline Value get_move_score(int moveNum) const; inline void set_move_score(int moveNum, Value score); @@ -142,38 +142,38 @@ namespace { const bool UseIIDAtPVNodes = true; const bool UseIIDAtNonPVNodes = false; - // Internal iterative deepening margin. At Non-PV moves, when - // UseIIDAtNonPVNodes is true, we do an internal iterative deepening search - // when the static evaluation is at most IIDMargin below beta. + // Internal iterative deepening margin. At Non-PV moves, when + // UseIIDAtNonPVNodes is true, we do an internal iterative deepening + // search when the static evaluation is at most IIDMargin below beta. const Value IIDMargin = Value(0x100); - // Easy move margin. An easy move candidate must be at least this much + // Easy move margin. An easy move candidate must be at least this much // better than the second best move. const Value EasyMoveMargin = Value(0x200); - // Problem margin. If the score of the first move at iteration N+1 has + // Problem margin. If the score of the first move at iteration N+1 has // dropped by more than this since iteration N, the boolean variable // "Problem" is set to true, which will make the program spend some extra // time looking for a better move. const Value ProblemMargin = Value(0x28); - // No problem margin. If the boolean "Problem" is true, and a new move + // No problem margin. If the boolean "Problem" is true, and a new move // is found at the root which is less than NoProblemMargin worse than the // best move from the previous iteration, Problem is set back to false. const Value NoProblemMargin = Value(0x14); - // Null move margin. A null move search will not be done if the approximate + // Null move margin. A null move search will not be done if the approximate // evaluation of the position is more than NullMoveMargin below beta. const Value NullMoveMargin = Value(0x300); - // Pruning criterions. See the code and comments in ok_to_prune() to + // Pruning criterions. See the code and comments in ok_to_prune() to // understand their precise meaning. - const bool PruneEscapeMoves = false; + const bool PruneEscapeMoves = false; const bool PruneDefendingMoves = false; - const bool PruneBlockingMoves = false; + const bool PruneBlockingMoves = false; // Margins for futility pruning in the quiescence search, and at frontier - // and near frontier nodes + // and near frontier nodes. const Value FutilityMarginQS = Value(0x80); // Remaining depth: 1 ply 1.5 ply 2 ply 2.5 ply 3 ply 3.5 ply @@ -190,7 +190,7 @@ namespace { const Value RazorApprMargins[6] = { Value(0x520), Value(0x300), Value(0x300), Value(0x300), Value(0x300), Value(0x300) }; - /// Variables initialized from UCI options + /// Variables initialized by UCI options // Minimum number of full depth (i.e. non-reduced) moves at PV and non-PV nodes int LMRPVMoves, LMRNonPVMoves; // heavy SMP read access for the latter @@ -199,10 +199,10 @@ namespace { Depth ThreatDepth; // heavy SMP read access // Last seconds noise filtering (LSN) - bool UseLSNFiltering; - bool looseOnTime = false; - int LSNTime; // In milliseconds - Value LSNValue; + const bool UseLSNFiltering = true; + const int LSNTime = 4000; // In milliseconds + const Value LSNValue = value_from_centipawns(200); + bool loseOnTime = false; // Extensions. Array index 0 is used at non-PV nodes, index 1 at PV nodes. // There is heavy SMP read access on these arrays @@ -223,8 +223,7 @@ namespace { // Time managment variables int SearchStartTime; int MaxNodes, MaxDepth; - int MaxSearchTime, AbsoluteMaxSearchTime, ExtraSearchTime; - Move EasyMove; + int MaxSearchTime, AbsoluteMaxSearchTime, ExtraSearchTime, ExactMaxTime; int RootMoveNumber; bool InfiniteSearch; bool PonderSearch; @@ -234,8 +233,6 @@ namespace { bool FailHigh; bool FailLow; bool Problem; - bool PonderingEnabled; - int ExactMaxTime; // Show current line? bool ShowCurrentLine; @@ -268,31 +265,31 @@ namespace { int NodesSincePoll; int NodesBetweenPolls = 30000; - // The main transposition table - TranspositionTable TT; + // History table + History H; /// Functions - Value id_loop(const Position &pos, Move searchMoves[]); - Value root_search(Position &pos, SearchStack ss[], RootMoveList &rml, Value alpha, Value beta); - Value search_pv(Position &pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID); - Value search(Position &pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID); - Value qsearch(Position &pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID); - void sp_search(SplitPoint *sp, int threadID); - void sp_search_pv(SplitPoint *sp, int threadID); + Value id_loop(const Position& pos, Move searchMoves[]); + Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value alpha, Value beta); + Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID); + Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID); + Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID); + void sp_search(SplitPoint* sp, int threadID); + void sp_search_pv(SplitPoint* sp, int threadID); void init_node(SearchStack ss[], int ply, int threadID); void update_pv(SearchStack ss[], int ply); - void sp_update_pv(SearchStack *pss, SearchStack ss[], int ply); - bool connected_moves(const Position &pos, Move m1, Move m2); + void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply); + bool connected_moves(const Position& pos, Move m1, Move m2); bool value_is_mate(Value value); bool move_is_killer(Move m, const SearchStack& ss); - Depth extension(const Position &pos, Move m, bool pvNode, bool capture, bool check, bool singleReply, bool mateThreat, bool* dangerous); - bool ok_to_do_nullmove(const Position &pos); - bool ok_to_prune(const Position &pos, Move m, Move threat, Depth d, const History& H); + Depth extension(const Position& pos, Move m, bool pvNode, bool capture, bool check, bool singleReply, bool mateThreat, bool* dangerous); + bool ok_to_do_nullmove(const Position& pos); + bool ok_to_prune(const Position& pos, Move m, Move threat, Depth d); bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply); - bool ok_to_history(const Position &pos, Move m); - void update_history(const Position& pos, Move m, Depth depth, History& H, Move movesSearched[], int moveCount); + bool ok_to_history(const Position& pos, Move m); + void update_history(const Position& pos, Move m, Depth depth, Move movesSearched[], int moveCount); void update_killers(Move m, SearchStack& ss); bool fail_high_ply_1(); @@ -302,14 +299,15 @@ namespace { void ponderhit(); void print_current_line(SearchStack ss[], int ply, int threadID); void wait_for_stop_or_ponderhit(); + void init_ss_array(SearchStack ss[]); - void idle_loop(int threadID, SplitPoint *waitSp); + void idle_loop(int threadID, SplitPoint* waitSp); void init_split_point_stack(); void destroy_split_point_stack(); bool thread_should_stop(int threadID); bool thread_is_available(int slave, int master); bool idle_thread_exists(int master); - bool split(const Position &pos, SearchStack *ss, int ply, + bool split(const Position& pos, SearchStack* ss, int ply, Value *alpha, Value *beta, Value *bestValue, Depth depth, int *moves, MovePicker *mp, Bitboard dcCandidates, int master, bool pvNode); void wake_sleeping_threads(); @@ -332,7 +330,7 @@ namespace { /// search-related global variables, and calls root_search(). It returns false /// when a quit command is received during the search. -bool think(const Position &pos, bool infinite, bool ponder, int side_to_move, +bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, int time[], int increment[], int movesToGo, int maxDepth, int maxNodes, int maxTime, Move searchMoves[]) { @@ -354,7 +352,6 @@ bool think(const Position &pos, bool infinite, bool ponder, int side_to_move, // Initialize global search variables Idle = false; SearchStartTime = get_system_time(); - EasyMove = MOVE_NONE; for (int i = 0; i < THREAD_MAX; i++) { Threads[i].nodes = 0ULL; @@ -374,9 +371,12 @@ bool think(const Position &pos, bool infinite, bool ponder, int side_to_move, // Read UCI option values TT.set_size(get_option_value_int("Hash")); if (button_was_pressed("Clear Hash")) + { TT.clear(); + loseOnTime = false; // reset at the beginning of a new game + } - PonderingEnabled = get_option_value_bool("Ponder"); + bool PonderingEnabled = get_option_value_bool("Ponder"); MultiPV = get_option_value_int("MultiPV"); CheckExtension[1] = Depth(get_option_value_int("Check Extension (PV nodes)")); @@ -397,9 +397,9 @@ bool think(const Position &pos, bool infinite, bool ponder, int side_to_move, MateThreatExtension[1] = Depth(get_option_value_int("Mate Threat Extension (PV nodes)")); MateThreatExtension[0] = Depth(get_option_value_int("Mate Threat Extension (non-PV nodes)")); - LMRPVMoves = get_option_value_int("Full Depth Moves (PV nodes)") + 1; - LMRNonPVMoves = get_option_value_int("Full Depth Moves (non-PV nodes)") + 1; - ThreatDepth = get_option_value_int("Threat Depth") * OnePly; + LMRPVMoves = get_option_value_int("Full Depth Moves (PV nodes)") + 1; + LMRNonPVMoves = get_option_value_int("Full Depth Moves (non-PV nodes)") + 1; + ThreatDepth = get_option_value_int("Threat Depth") * OnePly; Chess960 = get_option_value_bool("UCI_Chess960"); ShowCurrentLine = get_option_value_bool("UCI_ShowCurrLine"); @@ -407,15 +407,12 @@ bool think(const Position &pos, bool infinite, bool ponder, int side_to_move, if (UseLogFile) LogFile.open(get_option_value_string("Search Log Filename").c_str(), std::ios::out | std::ios::app); - UseLSNFiltering = get_option_value_bool("LSN filtering"); - LSNTime = get_option_value_int("LSN Time Margin (sec)") * 1000; - LSNValue = value_from_centipawns(get_option_value_int("LSN Value Margin")); - MinimumSplitDepth = get_option_value_int("Minimum Split Depth") * OnePly; MaxThreadsPerSplitPoint = get_option_value_int("Maximum Number of Threads per Split Point"); read_weights(pos.side_to_move()); + // Set the number of active threads int newActiveThreads = get_option_value_int("Threads"); if (newActiveThreads != ActiveThreads) { @@ -429,7 +426,7 @@ bool think(const Position &pos, bool infinite, bool ponder, int side_to_move, for (int i = 1; i < ActiveThreads; i++) assert(thread_is_available(i, 0)); - // Set thinking time: + // Set thinking time int myTime = time[side_to_move]; int myIncrement = increment[side_to_move]; @@ -449,7 +446,8 @@ bool think(const Position &pos, bool infinite, bool ponder, int side_to_move, if (movesToGo == 1) { MaxSearchTime = myTime / 2; - AbsoluteMaxSearchTime = Min(myTime / 2, myTime - 500); + AbsoluteMaxSearchTime = + (myTime > 3000)? (myTime - 500) : ((myTime * 3) / 4); } else { MaxSearchTime = myTime / Min(movesToGo, 20); AbsoluteMaxSearchTime = Min((4 * myTime) / movesToGo, myTime / 3); @@ -473,33 +471,37 @@ bool think(const Position &pos, bool infinite, bool ponder, int side_to_move, NodesBetweenPolls = Min(MaxNodes, 30000); InfiniteSearch = true; // HACK } + else if (myTime && myTime < 1000) + NodesBetweenPolls = 1000; + else if (myTime && myTime < 5000) + NodesBetweenPolls = 5000; else NodesBetweenPolls = 30000; - - // Write information to search log file: + // Write information to search log file if (UseLogFile) LogFile << "Searching: " << pos.to_fen() << std::endl - << "infinite: " << infinite - << " ponder: " << ponder - << " time: " << myTime + << "infinite: " << infinite + << " ponder: " << ponder + << " time: " << myTime << " increment: " << myIncrement << " moves to go: " << movesToGo << std::endl; - // We're ready to start thinking. Call the iterative deepening loop - // function: - if (!looseOnTime) + // We're ready to start thinking. Call the iterative deepening loop function + // + // FIXME we really need to cleanup all this LSN ugliness + if (!loseOnTime) { Value v = id_loop(pos, searchMoves); - looseOnTime = ( UseLSNFiltering - && myTime < LSNTime - && myIncrement == 0 - && v < -LSNValue); + loseOnTime = ( UseLSNFiltering + && myTime < LSNTime + && myIncrement == 0 + && v < -LSNValue); } else { - looseOnTime = false; // reset for next match + loseOnTime = false; // reset for next match while (SearchStartTime + myTime + 1000 > get_system_time()) ; // wait here id_loop(pos, searchMoves); // to fail gracefully @@ -528,7 +530,7 @@ void init_threads() { for (i = 0; i < THREAD_MAX; i++) Threads[i].activeSplitPoints = 0; - // Initialize global locks: + // Initialize global locks lock_init(&MPLock, NULL); lock_init(&IOLock, NULL); @@ -561,7 +563,7 @@ void init_threads() { CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, iID); #endif - // Wait until the thread has finished launching: + // Wait until the thread has finished launching while (!Threads[i].running); } } @@ -620,7 +622,7 @@ namespace { // been consumed, the user stops the search, or the maximum search depth is // reached. - Value id_loop(const Position &pos, Move searchMoves[]) { + Value id_loop(const Position& pos, Move searchMoves[]) { Position p(pos); SearchStack ss[PLY_MAX_PLUS_2]; @@ -628,20 +630,23 @@ namespace { // searchMoves are verified, copied, scored and sorted RootMoveList rml(p, searchMoves); + // Print RootMoveList c'tor startup scoring to the standard output, + // so that we print information also for iteration 1. + std::cout << "info depth " << 1 << "\ninfo depth " << 1 + << " score " << value_to_string(rml.get_move_score(0)) + << " time " << current_search_time() + << " nodes " << nodes_searched() + << " nps " << nps() + << " pv " << rml.get_move(0) << "\n"; + // Initialize TT.new_search(); - for (int i = 0; i < THREAD_MAX; i++) - Threads[i].H.clear(); - - for (int i = 0; i < 3; i++) - { - ss[i].init(i); - ss[i].initKillers(); - } + H.clear(); + init_ss_array(ss); IterationInfo[1] = IterationInfoType(rml.get_move_score(0), rml.get_move_score(0)); Iteration = 1; - EasyMove = rml.scan_for_easy_move(); + Move EasyMove = rml.scan_for_easy_move(); // Iterative deepening loop while (Iteration < PLY_MAX) @@ -658,7 +663,7 @@ namespace { // Calculate dynamic search window based on previous iterations Value alpha, beta; - if (MultiPV == 1 && Iteration >= 6) + if (MultiPV == 1 && Iteration >= 6 && abs(IterationInfo[Iteration - 1].value) < VALUE_KNOWN_WIN) { int prevDelta1 = IterationInfo[Iteration - 1].speculatedValue - IterationInfo[Iteration - 2].speculatedValue; int prevDelta2 = IterationInfo[Iteration - 2].speculatedValue - IterationInfo[Iteration - 3].speculatedValue; @@ -723,7 +728,7 @@ namespace { // Time to stop? bool stopSearch = false; - // Stop search early if there is only a single legal move: + // Stop search early if there is only a single legal move if (Iteration >= 6 && rml.move_count() == 1) stopSearch = true; @@ -821,7 +826,7 @@ namespace { // scheme (perhaps we should try to use this at internal PV nodes, too?) // and prints some information to the standard output. - Value root_search(Position &pos, SearchStack ss[], RootMoveList &rml, Value alpha, Value beta) { + Value root_search(Position& pos, SearchStack ss[], RootMoveList &rml, Value alpha, Value beta) { Value oldAlpha = alpha; Value value; @@ -861,8 +866,9 @@ namespace { << " currmovenumber " << i + 1 << std::endl; // Decide search depth for this move + bool moveIsCapture = pos.move_is_capture(move); bool dangerous; - ext = extension(pos, move, true, pos.move_is_capture(move), pos.move_is_check(move), false, false, &dangerous); + ext = extension(pos, move, true, moveIsCapture, pos.move_is_check(move), false, false, &dangerous); newDepth = (Iteration - 2) * OnePly + ext + InitialDepth; // Make the move, and search it @@ -886,15 +892,30 @@ namespace { } else { - value = -search(pos, ss, -alpha, newDepth, 1, true, 0); + if ( newDepth >= 3*OnePly + && i >= MultiPV + LMRPVMoves + && !dangerous + && !moveIsCapture + && !move_is_promotion(move) + && !move_is_castle(move)) + { + ss[0].reduction = OnePly; + value = -search(pos, ss, -alpha, newDepth-OnePly, 1, true, 0); + } else + value = alpha + 1; // Just to trigger next condition + if (value > alpha) { - // Fail high! Set the boolean variable FailHigh to true, and - // re-search the move with a big window. The variable FailHigh is - // used for time managment: We try to avoid aborting the search - // prematurely during a fail high research. - FailHigh = true; - value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0); + value = -search(pos, ss, -alpha, newDepth, 1, true, 0); + if (value > alpha) + { + // Fail high! Set the boolean variable FailHigh to true, and + // re-search the move with a big window. The variable FailHigh is + // used for time managment: We try to avoid aborting the search + // prematurely during a fail high research. + FailHigh = true; + value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0); + } } } @@ -928,6 +949,7 @@ namespace { // Update PV rml.set_move_score(i, value); update_pv(ss, 0); + TT.extract_pv(pos, ss[0].pv, PLY_MAX); rml.set_move_pv(i, ss[0].pv); if (MultiPV == 1) @@ -938,9 +960,11 @@ namespace { if (i > 0) BestMoveChangesByIteration[Iteration]++; - // Print search information to the standard output: + // Print search information to the standard output std::cout << "info depth " << Iteration << " score " << value_to_string(value) + << ((value >= beta)? + " lowerbound" : ((value <= alpha)? " upperbound" : "")) << " time " << current_search_time() << " nodes " << nodes_searched() << " nps " << nps() @@ -952,7 +976,10 @@ namespace { std::cout << std::endl; if (UseLogFile) - LogFile << pretty_pv(pos, current_search_time(), Iteration, nodes_searched(), value, ss[0].pv) + LogFile << pretty_pv(pos, current_search_time(), Iteration, nodes_searched(), value, + ((value >= beta)? VALUE_TYPE_LOWER + : ((value <= alpha)? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT)), + ss[0].pv) << std::endl; if (value > alpha) @@ -996,7 +1023,7 @@ namespace { // search_pv() is the main search function for PV nodes. - Value search_pv(Position &pos, SearchStack ss[], Value alpha, Value beta, + Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID) { assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); @@ -1021,7 +1048,7 @@ namespace { EvalInfo ei; if (ply >= PLY_MAX - 1) - return evaluate(pos, ei, threadID); + return pos.is_check() ? quick_evaluate(pos) : evaluate(pos, ei, threadID); // Mate distance pruning Value oldAlpha = alpha; @@ -1044,16 +1071,16 @@ namespace { // Initialize a MovePicker object for the current position, and prepare // to search all moves - MovePicker mp = MovePicker(pos, ttMove, depth, Threads[threadID].H, &ss[ply]); - Move move, movesSearched[256]; int moveCount = 0; Value value, bestValue = -VALUE_INFINITE; - Bitboard dcCandidates = mp.discovered_check_candidates(); Color us = pos.side_to_move(); bool isCheck = pos.is_check(); bool mateThreat = pos.has_mate_threat(opposite_color(us)); + MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]); + Bitboard dcCandidates = mp.discovered_check_candidates(); + // Loop through all legal moves until no moves remain or a beta cutoff // occurs. while ( alpha < beta @@ -1062,7 +1089,7 @@ namespace { { assert(move_is_ok(move)); - bool singleReply = (isCheck && mp.number_of_moves() == 1); + bool singleReply = (isCheck && mp.number_of_evasions() == 1); bool moveIsCheck = pos.move_is_check(move, dcCandidates); bool moveIsCapture = pos.move_is_capture(move); @@ -1083,11 +1110,11 @@ namespace { { // Try to reduce non-pv search depth by one ply if move seems not problematic, // if the move fails high will be re-searched at full depth. - if ( depth >= 2*OnePly + if ( depth >= 3*OnePly && moveCount >= LMRPVMoves && !dangerous && !moveIsCapture - && !move_promotion(move) + && !move_is_promotion(move) && !move_is_castle(move) && !move_is_killer(move, ss[ply])) { @@ -1134,7 +1161,7 @@ namespace { } // If we are at ply 1, and we are searching the first root move at // ply 0, set the 'Problem' variable if the score has dropped a lot - // (from the computer's point of view) since the previous iteration: + // (from the computer's point of view) since the previous iteration. if ( ply == 1 && Iteration >= 2 && -value <= IterationInfo[Iteration-1].value - ProblemMargin) @@ -1155,7 +1182,7 @@ namespace { } // All legal moves have been searched. A special case: If there were - // no legal moves, it must be mate or stalemate: + // no legal moves, it must be mate or stalemate. if (moveCount == 0) return (isCheck ? value_mated_in(ply) : VALUE_DRAW); @@ -1173,7 +1200,7 @@ namespace { Move m = ss[ply].pv[ply]; if (ok_to_history(pos, m)) // Only non capture moves are considered { - update_history(pos, m, depth, Threads[threadID].H, movesSearched, moveCount); + update_history(pos, m, depth, movesSearched, moveCount); update_killers(m, ss[ply]); } TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, m); @@ -1187,7 +1214,7 @@ namespace { // search() is the search function for zero-width nodes. - Value search(Position &pos, SearchStack ss[], Value beta, Depth depth, + Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID) { assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE); @@ -1211,7 +1238,7 @@ namespace { EvalInfo ei; if (ply >= PLY_MAX - 1) - return evaluate(pos, ei, threadID); + return pos.is_check() ? quick_evaluate(pos) : evaluate(pos, ei, threadID); // Mate distance pruning if (value_mated_in(ply) >= beta) @@ -1252,11 +1279,7 @@ namespace { pos.undo_null_move(); - if (value_is_mate(nullValue)) - { - /* Do not return unproven mates */ - } - else if (nullValue >= beta) + if (nullValue >= beta) { if (depth < 6 * OnePly) return beta; @@ -1304,8 +1327,8 @@ namespace { } // Initialize a MovePicker object for the current position, and prepare - // to search all moves: - MovePicker mp = MovePicker(pos, ttMove, depth, Threads[threadID].H, &ss[ply]); + // to search all moves. + MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]); Move move, movesSearched[256]; int moveCount = 0; @@ -1315,6 +1338,10 @@ namespace { bool useFutilityPruning = depth < SelectiveDepth && !isCheck; + // Avoid calling evaluate() if we already have the score in TT + if (tte && (tte->type() & VALUE_TYPE_EVAL)) + futilityValue = value_from_tt(tte->value(), ply) + FutilityMargins[int(depth) - 2]; + // Loop through all legal moves until no moves remain or a beta cutoff // occurs. while ( bestValue < beta @@ -1323,7 +1350,7 @@ namespace { { assert(move_is_ok(move)); - bool singleReply = (isCheck && mp.number_of_moves() == 1); + bool singleReply = (isCheck && mp.number_of_evasions() == 1); bool moveIsCheck = pos.move_is_check(move, dcCandidates); bool moveIsCapture = pos.move_is_capture(move); @@ -1338,11 +1365,12 @@ namespace { if ( useFutilityPruning && !dangerous && !moveIsCapture - && !move_promotion(move)) + && !move_is_promotion(move)) { // History pruning. See ok_to_prune() definition if ( moveCount >= 2 + int(depth) - && ok_to_prune(pos, move, ss[ply].threatMove, depth, Threads[threadID].H)) + && ok_to_prune(pos, move, ss[ply].threatMove, depth) + && bestValue > value_mated_in(PLY_MAX)) continue; // Value based pruning @@ -1367,11 +1395,11 @@ namespace { // Try to reduce non-pv search depth by one ply if move seems not problematic, // if the move fails high will be re-searched at full depth. - if ( depth >= 2*OnePly + if ( depth >= 3*OnePly && moveCount >= LMRNonPVMoves && !dangerous && !moveIsCapture - && !move_promotion(move) + && !move_is_promotion(move) && !move_is_castle(move) && !move_is_killer(move, ss[ply])) { @@ -1432,7 +1460,7 @@ namespace { Move m = ss[ply].pv[ply]; if (ok_to_history(pos, m)) // Only non capture moves are considered { - update_history(pos, m, depth, Threads[threadID].H, movesSearched, moveCount); + update_history(pos, m, depth, movesSearched, moveCount); update_killers(m, ss[ply]); } TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, m); @@ -1448,7 +1476,7 @@ namespace { // search function when the remaining depth is zero (or, to be more precise, // less than OnePly). - Value qsearch(Position &pos, SearchStack ss[], Value alpha, Value beta, + Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID) { assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); @@ -1492,10 +1520,9 @@ namespace { if (isCheck) staticValue = -VALUE_INFINITE; - else if (tte && tte->type() == VALUE_TYPE_EVAL) + else if (tte && (tte->type() & VALUE_TYPE_EVAL)) { // Use the cached evaluation score if possible - assert(tte->value() == evaluate(pos, ei, threadID)); assert(ei.futilityMargin == Value(0)); staticValue = tte->value(); @@ -1503,8 +1530,8 @@ namespace { else staticValue = evaluate(pos, ei, threadID); - if (ply == PLY_MAX - 1) - return evaluate(pos, ei, threadID); + if (ply >= PLY_MAX - 1) + return pos.is_check() ? quick_evaluate(pos) : evaluate(pos, ei, threadID); // Initialize "stand pat score", and return it immediately if it is // at least beta. @@ -1514,7 +1541,7 @@ namespace { { // Store the score to avoid a future costly evaluation() call if (!isCheck && !tte && ei.futilityMargin == 0) - TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EVAL, Depth(-127*OnePly), MOVE_NONE); + TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EV_LO, Depth(-127*OnePly), MOVE_NONE); return bestValue; } @@ -1525,7 +1552,7 @@ namespace { // Initialize a MovePicker object for the current position, and prepare // to search the moves. Because the depth is <= 0 here, only captures, // queen promotions and checks (only if depth == 0) will be generated. - MovePicker mp = MovePicker(pos, ttMove, depth, Threads[threadID].H); + MovePicker mp = MovePicker(pos, ttMove, depth, H); Move move; int moveCount = 0; Bitboard dcCandidates = mp.discovered_check_candidates(); @@ -1546,7 +1573,7 @@ namespace { if ( enoughMaterial && !isCheck && !pvNode - && !move_promotion(move) + && !move_is_promotion(move) && !pos.move_is_check(move, dcCandidates) && !pos.move_is_passed_pawn_push(move)) { @@ -1567,10 +1594,8 @@ namespace { // Don't search captures and checks with negative SEE values if ( !isCheck - && !move_promotion(move) - && (pos.midgame_value_of_piece_on(move_from(move)) > - pos.midgame_value_of_piece_on(move_to(move))) - && pos.see(move) < 0) + && !move_is_promotion(move) + && pos.see_sign(move) < 0) continue; // Make and search the move. @@ -1594,7 +1619,7 @@ namespace { } // All legal moves have been searched. A special case: If we're in check - // and no legal moves were found, it is checkmate: + // and no legal moves were found, it is checkmate. if (pos.is_check() && moveCount == 0) // Mate! return value_mated_in(ply); @@ -1604,9 +1629,13 @@ namespace { Move m = ss[ply].pv[ply]; if (!pvNode) { + // If bestValue isn't changed it means it is still the static evaluation of + // the node, so keep this info to avoid a future costly evaluation() call. + ValueType type = (bestValue == staticValue && !ei.futilityMargin ? VALUE_TYPE_EV_UP : VALUE_TYPE_UPPER); Depth d = (depth == Depth(0) ? Depth(0) : Depth(-1)); + if (bestValue < beta) - TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, d, MOVE_NONE); + TT.store(pos.get_key(), value_to_tt(bestValue, ply), type, d, MOVE_NONE); else TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, d, m); } @@ -1627,13 +1656,13 @@ namespace { // also don't need to store anything to the hash table here: This is taken // care of after we return from the split point. - void sp_search(SplitPoint *sp, int threadID) { + void sp_search(SplitPoint* sp, int threadID) { assert(threadID >= 0 && threadID < ActiveThreads); assert(ActiveThreads > 1); Position pos = Position(sp->pos); - SearchStack *ss = sp->sstack[threadID]; + SearchStack* ss = sp->sstack[threadID]; Value value; Move move; bool isCheck = pos.is_check(); @@ -1664,9 +1693,9 @@ namespace { if ( useFutilityPruning && !dangerous && !moveIsCapture - && !move_promotion(move) + && !move_is_promotion(move) && moveCount >= 2 + int(sp->depth) - && ok_to_prune(pos, move, ss[sp->ply].threatMove, sp->depth, Threads[threadID].H)) + && ok_to_prune(pos, move, ss[sp->ply].threatMove, sp->depth)) continue; // Make and search the move. @@ -1678,7 +1707,7 @@ namespace { if ( !dangerous && moveCount >= LMRNonPVMoves && !moveIsCapture - && !move_promotion(move) + && !move_is_promotion(move) && !move_is_castle(move) && !move_is_killer(move, ss[sp->ply])) { @@ -1721,7 +1750,7 @@ namespace { lock_grab(&(sp->lock)); // If this is the master thread and we have been asked to stop because of - // a beta cutoff higher up in the tree, stop all slave threads: + // a beta cutoff higher up in the tree, stop all slave threads. if (sp->master == threadID && thread_should_stop(threadID)) for (int i = 0; i < ActiveThreads; i++) if (sp->slaves[i]) @@ -1739,16 +1768,16 @@ namespace { // the normal search_pv() function, but simpler. Because we have already // probed the hash table and searched the first move before splitting, we // don't have to repeat all this work in sp_search_pv(). We also don't - // need to store anything to the hash table here: This is taken care of + // need to store anything to the hash table here: This is taken care of // after we return from the split point. - void sp_search_pv(SplitPoint *sp, int threadID) { + void sp_search_pv(SplitPoint* sp, int threadID) { assert(threadID >= 0 && threadID < ActiveThreads); assert(ActiveThreads > 1); Position pos = Position(sp->pos); - SearchStack *ss = sp->sstack[threadID]; + SearchStack* ss = sp->sstack[threadID]; Value value; Move move; @@ -1781,7 +1810,7 @@ namespace { if ( !dangerous && moveCount >= LMRPVMoves && !moveIsCapture - && !move_promotion(move) + && !move_is_promotion(move) && !move_is_castle(move) && !move_is_killer(move, ss[sp->ply])) { @@ -1800,7 +1829,7 @@ namespace { { // When the search fails high at ply 1 while searching the first // move at the root, set the flag failHighPly1. This is used for - // time managment: We don't want to stop the search early in + // time managment: We don't want to stop the search early in // such cases, because resolving the fail high at ply 1 could // result in a big drop in score at the root. if (sp->ply == 1 && RootMoveNumber == 1) @@ -1829,10 +1858,10 @@ namespace { if (value == value_mate_in(sp->ply + 1)) ss[sp->ply].mateKiller = move; - if(value >= sp->beta) + if (value >= sp->beta) { - for(int i = 0; i < ActiveThreads; i++) - if(i != threadID && (i == sp->master || sp->slaves[i])) + for (int i = 0; i < ActiveThreads; i++) + if (i != threadID && (i == sp->master || sp->slaves[i])) Threads[i].stop = true; sp->finished = true; @@ -1922,15 +1951,15 @@ namespace { bool includeAllMoves = (searchMoves[0] == MOVE_NONE); // Generate all legal moves - int lm_count = generate_legal_moves(pos, mlist); + MoveStack* last = generate_moves(pos, mlist); // Add each move to the moves[] array - for (int i = 0; i < lm_count; i++) + for (MoveStack* cur = mlist; cur != last; cur++) { bool includeMove = includeAllMoves; for (int k = 0; !includeMove && searchMoves[k] != MOVE_NONE; k++) - includeMove = (searchMoves[k] == mlist[i].move); + includeMove = (searchMoves[k] == cur->move); if (!includeMove) continue; @@ -1938,8 +1967,9 @@ namespace { // Find a quick score for the move StateInfo st; SearchStack ss[PLY_MAX_PLUS_2]; + init_ss_array(ss); - moves[count].move = mlist[i].move; + moves[count].move = cur->move; pos.do_move(moves[count].move, st); moves[count].score = -qsearch(pos, ss, -VALUE_INFINITE, VALUE_INFINITE, Depth(0), 1, 0); pos.undo_move(moves[count].move); @@ -2050,24 +2080,26 @@ namespace { // for user input and checks whether it is time to stop the search. void init_node(SearchStack ss[], int ply, int threadID) { + assert(ply >= 0 && ply < PLY_MAX); assert(threadID >= 0 && threadID < ActiveThreads); Threads[threadID].nodes++; - if(threadID == 0) { - NodesSincePoll++; - if(NodesSincePoll >= NodesBetweenPolls) { - poll(); - NodesSincePoll = 0; - } + if (threadID == 0) + { + NodesSincePoll++; + if (NodesSincePoll >= NodesBetweenPolls) + { + poll(); + NodesSincePoll = 0; + } } - ss[ply].init(ply); ss[ply+2].initKillers(); - if(Threads[threadID].printCurrentLine) - print_current_line(ss, ply, threadID); + if (Threads[threadID].printCurrentLine) + print_current_line(ss, ply, threadID); } @@ -2090,7 +2122,7 @@ namespace { // difference between the two functions is that sp_update_pv also updates // the PV at the parent node. - void sp_update_pv(SearchStack *pss, SearchStack ss[], int ply) { + void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply) { assert(ply >= 0 && ply < PLY_MAX); ss[ply].pv[ply] = pss[ply].pv[ply] = ss[ply].currentMove; @@ -2107,62 +2139,65 @@ namespace { // assumed to be the move that was made to reach the current position, while // the second move is assumed to be a move from the current position. - bool connected_moves(const Position &pos, Move m1, Move m2) { + bool connected_moves(const Position& pos, Move m1, Move m2) { + Square f1, t1, f2, t2; + Piece p; assert(move_is_ok(m1)); assert(move_is_ok(m2)); - if(m2 == MOVE_NONE) - return false; + if (m2 == MOVE_NONE) + return false; - // Case 1: The moving piece is the same in both moves. + // Case 1: The moving piece is the same in both moves f2 = move_from(m2); t1 = move_to(m1); - if(f2 == t1) - return true; + if (f2 == t1) + return true; - // Case 2: The destination square for m2 was vacated by m1. + // Case 2: The destination square for m2 was vacated by m1 t2 = move_to(m2); f1 = move_from(m1); - if(t2 == f1) - return true; + if (t2 == f1) + return true; - // Case 3: Moving through the vacated square: - if(piece_is_slider(pos.piece_on(f2)) && - bit_is_set(squares_between(f2, t2), f1)) + // Case 3: Moving through the vacated square + if ( piece_is_slider(pos.piece_on(f2)) + && bit_is_set(squares_between(f2, t2), f1)) return true; - // Case 4: The destination square for m2 is attacked by the moving piece - // in m1: - if(pos.piece_attacks_square(pos.piece_on(t1), t1, t2)) - return true; + // Case 4: The destination square for m2 is attacked by the moving piece in m1 + p = pos.piece_on(t1); + if (bit_is_set(pos.attacks_from(p, t1), t2)) + return true; - // Case 5: Discovered check, checking piece is the piece moved in m1: - if(piece_is_slider(pos.piece_on(t1)) && - bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), - f2) && - !bit_is_set(squares_between(t2, pos.king_square(pos.side_to_move())), - t2)) { - Bitboard occ = pos.occupied_squares(); - Color us = pos.side_to_move(); - Square ksq = pos.king_square(us); - clear_bit(&occ, f2); - if(pos.type_of_piece_on(t1) == BISHOP) { - if(bit_is_set(bishop_attacks_bb(ksq, occ), t1)) - return true; - } - else if(pos.type_of_piece_on(t1) == ROOK) { - if(bit_is_set(rook_attacks_bb(ksq, occ), t1)) - return true; - } - else { - assert(pos.type_of_piece_on(t1) == QUEEN); - if(bit_is_set(queen_attacks_bb(ksq, occ), t1)) - return true; - } + // Case 5: Discovered check, checking piece is the piece moved in m1 + if ( piece_is_slider(p) + && bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), f2) + && !bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), t2)) + { + Bitboard occ = pos.occupied_squares(); + Color us = pos.side_to_move(); + Square ksq = pos.king_square(us); + clear_bit(&occ, f2); + if (type_of_piece(p) == BISHOP) + { + if (bit_is_set(bishop_attacks_bb(ksq, occ), t1)) + return true; + } + else if (type_of_piece(p) == ROOK) + { + if (bit_is_set(rook_attacks_bb(ksq, occ), t1)) + return true; + } + else + { + assert(type_of_piece(p) == QUEEN); + if (bit_is_set(queen_attacks_bb(ksq, occ), t1)) + return true; + } } - return false; } @@ -2206,25 +2241,29 @@ namespace { assert(m != MOVE_NONE); Depth result = Depth(0); - *dangerous = check || singleReply || mateThreat; + *dangerous = check | singleReply | mateThreat; - if (check) - result += CheckExtension[pvNode]; + if (*dangerous) + { + if (check) + result += CheckExtension[pvNode]; - if (singleReply) - result += SingleReplyExtension[pvNode]; + if (singleReply) + result += SingleReplyExtension[pvNode]; - if (mateThreat) - result += MateThreatExtension[pvNode]; + if (mateThreat) + result += MateThreatExtension[pvNode]; + } if (pos.type_of_piece_on(move_from(m)) == PAWN) { - if (pos.move_is_pawn_push_to_7th(m)) + Color c = pos.side_to_move(); + if (relative_rank(c, move_to(m)) == RANK_7) { result += PawnPushTo7thExtension[pvNode]; *dangerous = true; } - if (pos.move_is_passed_pawn_push(m)) + if (pos.pawn_is_passed(c, move_to(m))) { result += PassedPawnExtension[pvNode]; *dangerous = true; @@ -2235,7 +2274,7 @@ namespace { && pos.type_of_piece_on(move_to(m)) != PAWN && ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) - pos.midgame_value_of_piece_on(move_to(m)) == Value(0)) - && !move_promotion(m) + && !move_is_promotion(m) && !move_is_ep(m)) { result += PawnEndgameExtension[pvNode]; @@ -2245,7 +2284,7 @@ namespace { if ( pvNode && capture && pos.type_of_piece_on(move_to(m)) != PAWN - && pos.see(m) >= 0) + && pos.see_sign(m) >= 0) { result += OnePly/2; *dangerous = true; @@ -2263,10 +2302,9 @@ namespace { // probably a good idea to avoid null moves in at least some more // complicated endgames, e.g. KQ vs KR. FIXME - bool ok_to_do_nullmove(const Position &pos) { - if(pos.non_pawn_material(pos.side_to_move()) == Value(0)) - return false; - return true; + bool ok_to_do_nullmove(const Position& pos) { + + return pos.non_pawn_material(pos.side_to_move()) != Value(0); } @@ -2274,23 +2312,24 @@ namespace { // non-tactical moves late in the move list close to the leaves are // candidates for pruning. - bool ok_to_prune(const Position &pos, Move m, Move threat, Depth d, const History& H) { - Square mfrom, mto, tfrom, tto; + bool ok_to_prune(const Position& pos, Move m, Move threat, Depth d) { assert(move_is_ok(m)); assert(threat == MOVE_NONE || move_is_ok(threat)); - assert(!move_promotion(m)); + assert(!move_is_promotion(m)); assert(!pos.move_is_check(m)); assert(!pos.move_is_capture(m)); assert(!pos.move_is_passed_pawn_push(m)); assert(d >= OnePly); + Square mfrom, mto, tfrom, tto; + mfrom = move_from(m); mto = move_to(m); tfrom = move_from(threat); tto = move_to(threat); - // Case 1: Castling moves are never pruned. + // Case 1: Castling moves are never pruned if (move_is_castle(m)) return false; @@ -2306,9 +2345,9 @@ namespace { && ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto) || pos.type_of_piece_on(tfrom) == KING) && pos.move_attacks_square(m, tto)) - return false; + return false; - // Case 4: Don't prune moves with good history. + // Case 4: Don't prune moves with good history if (!H.ok_to_prune(pos.piece_on(mfrom), mto, d)) return false; @@ -2318,8 +2357,8 @@ namespace { && threat != MOVE_NONE && piece_is_slider(pos.piece_on(tfrom)) && bit_is_set(squares_between(tfrom, tto), mto) - && pos.see(m) >= 0) - return false; + && pos.see_sign(m) >= 0) + return false; return true; } @@ -2346,14 +2385,14 @@ namespace { bool ok_to_history(const Position& pos, Move m) { - return !pos.move_is_capture(m) && !move_promotion(m); + return !pos.move_is_capture(m) && !move_is_promotion(m); } // update_history() registers a good move that produced a beta-cutoff // in history and marks as failures all the other moves of that ply. - void update_history(const Position& pos, Move m, Depth depth, History& H, + void update_history(const Position& pos, Move m, Depth depth, Move movesSearched[], int moveCount) { H.success(pos.piece_on(move_from(m)), move_to(m), depth); @@ -2381,14 +2420,17 @@ namespace { ss.killers[0] = m; } + // fail_high_ply_1() checks if some thread is currently resolving a fail // high at ply 1 at the node below the first root node. This information // is used for time managment. bool fail_high_ply_1() { + for(int i = 0; i < ActiveThreads; i++) - if(Threads[i].failHighPly1) - return true; + if (Threads[i].failHighPly1) + return true; + return false; } @@ -2433,12 +2475,12 @@ namespace { Quit = true; return; } - else if(command == "stop") + else if (command == "stop") { AbortSearch = true; PonderSearch = false; } - else if(command == "ponderhit") + else if (command == "ponderhit") ponderhit(); } // Print search information @@ -2487,9 +2529,10 @@ namespace { // it correctly predicted the opponent's move. void ponderhit() { + int t = current_search_time(); PonderSearch = false; - if(Iteration >= 3 && + if (Iteration >= 3 && (!InfiniteSearch && (StopOnPonderhit || t > AbsoluteMaxSearchTime || (RootMoveNumber == 1 && @@ -2504,20 +2547,35 @@ namespace { // thread. Called when the UCI option UCI_ShowCurrLine is 'true'. void print_current_line(SearchStack ss[], int ply, int threadID) { + assert(ply >= 0 && ply < PLY_MAX); assert(threadID >= 0 && threadID < ActiveThreads); - if(!Threads[threadID].idle) { - lock_grab(&IOLock); - std::cout << "info currline " << (threadID + 1); - for(int p = 0; p < ply; p++) - std::cout << " " << ss[p].currentMove; - std::cout << std::endl; - lock_release(&IOLock); + if (!Threads[threadID].idle) + { + lock_grab(&IOLock); + std::cout << "info currline " << (threadID + 1); + for (int p = 0; p < ply; p++) + std::cout << " " << ss[p].currentMove; + + std::cout << std::endl; + lock_release(&IOLock); } Threads[threadID].printCurrentLine = false; - if(threadID + 1 < ActiveThreads) - Threads[threadID + 1].printCurrentLine = true; + if (threadID + 1 < ActiveThreads) + Threads[threadID + 1].printCurrentLine = true; + } + + + // init_ss_array() does a fast reset of the first entries of a SearchStack array + + void init_ss_array(SearchStack ss[]) { + + for (int i = 0; i < 3; i++) + { + ss[i].init(i); + ss[i].initKillers(); + } } @@ -2542,7 +2600,7 @@ namespace { Quit = true; break; } - else if(command == "ponderhit" || command == "stop") + else if (command == "ponderhit" || command == "stop") break; } } @@ -2552,7 +2610,7 @@ namespace { // The parameter "waitSp", if non-NULL, is a pointer to an active SplitPoint // object for which the current thread is the master. - void idle_loop(int threadID, SplitPoint *waitSp) { + void idle_loop(int threadID, SplitPoint* waitSp) { assert(threadID >= 0 && threadID < THREAD_MAX); Threads[threadID].running = true; @@ -2574,7 +2632,7 @@ namespace { #endif } - // If this thread has been assigned work, launch a search: + // If this thread has been assigned work, launch a search if(Threads[threadID].workIsWaiting) { Threads[threadID].workIsWaiting = false; if(Threads[threadID].splitPoint->pvNode) @@ -2585,7 +2643,7 @@ namespace { } // If this thread is the master of a split point and all threads have - // finished their work at this split point, return from the idle loop: + // finished their work at this split point, return from the idle loop. if(waitSp != NULL && waitSp->cpus == 0) return; } @@ -2624,7 +2682,7 @@ namespace { bool thread_should_stop(int threadID) { assert(threadID >= 0 && threadID < ActiveThreads); - SplitPoint *sp; + SplitPoint* sp; if(Threads[threadID].stop) return true; @@ -2697,9 +2755,9 @@ namespace { // threads have returned from sp_search_pv (or, equivalently, when // splitPoint->cpus becomes 0), split() returns true. - bool split(const Position &p, SearchStack *sstck, int ply, - Value *alpha, Value *beta, Value *bestValue, Depth depth, int *moves, - MovePicker *mp, Bitboard dcCandidates, int master, bool pvNode) { + bool split(const Position& p, SearchStack* sstck, int ply, + Value* alpha, Value* beta, Value* bestValue, Depth depth, int* moves, + MovePicker* mp, Bitboard dcCandidates, int master, bool pvNode) { assert(p.is_ok()); assert(sstck != NULL); @@ -2711,24 +2769,24 @@ namespace { assert(master >= 0 && master < ActiveThreads); assert(ActiveThreads > 1); - SplitPoint *splitPoint; + SplitPoint* splitPoint; int i; lock_grab(&MPLock); // If no other thread is available to help us, or if we have too many - // active split points, don't split: + // active split points, don't split. if(!idle_thread_exists(master) || Threads[master].activeSplitPoints >= MaxActiveSplitPoints) { lock_release(&MPLock); return false; } - // Pick the next available split point object from the split point stack: + // Pick the next available split point object from the split point stack splitPoint = SplitPointStack[master] + Threads[master].activeSplitPoints; Threads[master].activeSplitPoints++; - // Initialize the split point object: + // Initialize the split point object splitPoint->parent = Threads[master].splitPoint; splitPoint->finished = false; splitPoint->ply = ply; @@ -2747,11 +2805,11 @@ namespace { for(i = 0; i < ActiveThreads; i++) splitPoint->slaves[i] = 0; - // Copy the current position and the search stack to the master thread: + // Copy the current position and the search stack to the master thread memcpy(splitPoint->sstack[master], sstck, (ply+1)*sizeof(SearchStack)); Threads[master].splitPoint = splitPoint; - // Make copies of the current position and search stack for each thread: + // Make copies of the current position and search stack for each thread for(i = 0; i < ActiveThreads && splitPoint->cpus < MaxThreadsPerSplitPoint; i++) if(thread_is_available(i, master)) { @@ -2781,7 +2839,7 @@ namespace { idle_loop(master, splitPoint); // We have returned from the idle loop, which means that all threads are - // finished. Update alpha, beta and bestvalue, and return: + // finished. Update alpha, beta and bestvalue, and return. lock_grab(&MPLock); if(pvNode) *alpha = splitPoint->alpha; *beta = splitPoint->beta;