X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fsearch.cpp;h=59025fba1215d78525890a6e56b44251281bbf0a;hp=6715d6808f3f26dc28261108247203b62eb1823f;hb=94b9c65e09b5d396bebb29b62d9979139b5fbdfa;hpb=5f3c660d5d768ea5132439c5a8916673b909c0c9 diff --git a/src/search.cpp b/src/search.cpp index 6715d680..59025fba 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -38,6 +38,7 @@ #include "lock.h" #include "san.h" #include "search.h" +#include "timeman.h" #include "thread.h" #include "tt.h" #include "ucioption.h" @@ -89,8 +90,8 @@ namespace { void idle_loop(int threadID, SplitPoint* sp); template - void split(const Position& pos, SearchStack* ss, Value* alpha, const Value beta, Value* bestValue, - Depth depth, bool mateThreat, int* moveCount, MovePicker* mp, bool pvNode); + void split(const Position& pos, SearchStack* ss, int ply, Value* alpha, const Value beta, Value* bestValue, + Depth depth, Move threatMove, bool mateThreat, int* moveCount, MovePicker* mp, bool pvNode); private: friend void poll(); @@ -98,7 +99,6 @@ namespace { int ActiveThreads; volatile bool AllThreadsShouldExit, AllThreadsShouldSleep; Thread threads[MAX_THREADS]; - SplitPoint SplitPointStack[MAX_THREADS][ACTIVE_SPLIT_POINTS_MAX]; Lock MPLock, WaitLock; @@ -168,7 +168,7 @@ namespace { // Step 6. Razoring // Maximum depth for razoring - const Depth RazorDepth = 4 * OnePly; + const Depth RazorDepth = 4 * ONE_PLY; // Dynamic razoring margin based on depth inline Value razor_margin(Depth d) { return Value(0x200 + 0x10 * int(d)); } @@ -180,12 +180,12 @@ namespace { const Value NullMoveMargin = Value(0x200); // Maximum depth for use of dynamic threat detection when null move fails low - const Depth ThreatDepth = 5 * OnePly; + const Depth ThreatDepth = 5 * ONE_PLY; // Step 9. Internal iterative deepening // Minimum depth for use of internal iterative deepening - const Depth IIDDepth[2] = { 8 * OnePly /* non-PV */, 5 * OnePly /* PV */}; + const Depth IIDDepth[2] = { 8 * ONE_PLY /* non-PV */, 5 * ONE_PLY /* PV */}; // At Non-PV nodes we do an internal iterative deepening search // when the static evaluation is bigger then beta - IIDMargin. @@ -199,7 +199,7 @@ namespace { Depth PassedPawnExtension[2], PawnEndgameExtension[2], MateThreatExtension[2]; // Minimum depth for use of singular extension - const Depth SingularExtensionDepth[2] = { 8 * OnePly /* non-PV */, 6 * OnePly /* PV */}; + const Depth SingularExtensionDepth[2] = { 8 * ONE_PLY /* non-PV */, 6 * ONE_PLY /* PV */}; // If the TT move is at least SingularExtensionMargin better then the // remaining ones we will extend it. @@ -214,8 +214,8 @@ namespace { int32_t FutilityMarginsMatrix[16][64]; // [depth][moveNumber] int FutilityMoveCountArray[32]; // [depth] - inline Value futility_margin(Depth d, int mn) { return Value(d < 7 * OnePly ? FutilityMarginsMatrix[Max(d, 0)][Min(mn, 63)] : 2 * VALUE_INFINITE); } - inline int futility_move_count(Depth d) { return d < 16 * OnePly ? FutilityMoveCountArray[d] : 512; } + inline Value futility_margin(Depth d, int mn) { return Value(d < 7 * ONE_PLY ? FutilityMarginsMatrix[Max(d, 1)][Min(mn, 63)] : 2 * VALUE_INFINITE); } + inline int futility_move_count(Depth d) { return d < 16 * ONE_PLY ? FutilityMoveCountArray[d] : 512; } // Step 14. Reduced search @@ -228,18 +228,12 @@ namespace { // Common adjustments // Search depth at iteration 1 - const Depth InitialDepth = OnePly; + const Depth InitialDepth = ONE_PLY; // Easy move margin. An easy move candidate must be at least this much // better than the second best move. const Value EasyMoveMargin = Value(0x200); - // Last seconds noise filtering (LSN) - const bool UseLSNFiltering = true; - const int LSNTime = 4000; // In milliseconds - const Value LSNValue = value_from_centipawns(200); - bool loseOnTime = false; - /// Global variables @@ -257,10 +251,10 @@ namespace { int MultiPV; // Time managment variables - int SearchStartTime, MaxNodes, MaxDepth, MaxSearchTime; - int AbsoluteMaxSearchTime, ExtraSearchTime, ExactMaxTime; + int SearchStartTime, MaxNodes, MaxDepth, ExactMaxTime; bool UseTimeManagement, InfiniteSearch, PonderSearch, StopOnPonderhit; bool FirstRootMove, AbortSearch, Quit, AspirationFailLow; + TimeManager TimeMgr; // Log file bool UseLogFile; @@ -269,7 +263,7 @@ namespace { // Multi-threads related variables Depth MinimumSplitDepth; int MaxThreadsPerSplitPoint; - ThreadsManager TM; + ThreadsManager ThreadsMgr; // Node counters, used only by thread[0] but try to keep in different cache // lines (64 bytes each) from the heavy multi-thread read accessed variables. @@ -282,13 +276,13 @@ namespace { /// Local functions Value id_loop(const Position& pos, Move searchMoves[]); - Value root_search(Position& pos, SearchStack* ss, RootMoveList& rml, Value* alphaPtr, Value* betaPtr); + Value root_search(Position& pos, SearchStack* ss, Move* pv, RootMoveList& rml, Value* alphaPtr, Value* betaPtr); template - Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth); + Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply); template - Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth); + Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply); template void sp_search(SplitPoint* sp, int threadID); @@ -296,10 +290,10 @@ namespace { template Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck, bool singleEvasion, bool mateThreat, bool* dangerous); - void update_pv(SearchStack* ss, int ply); - void sp_update_pv(SearchStack* pss, SearchStack* ss, int ply); bool connected_moves(const Position& pos, Move m1, Move m2); bool value_is_mate(Value value); + Value value_to_tt(Value v, int ply); + Value value_from_tt(Value v, int ply); bool move_is_killer(Move m, SearchStack* ss); bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply); bool connected_threat(const Position& pos, Move m, Move threat); @@ -309,12 +303,15 @@ namespace { void update_gains(const Position& pos, Move move, Value before, Value after); int current_search_time(); + std::string value_to_uci(Value v); int nps(); void poll(); void ponderhit(); void wait_for_stop_or_ponderhit(); void init_ss_array(SearchStack* ss, int size); - void print_pv_info(const Position& pos, SearchStack* ss, Value alpha, Value beta, Value value); + void print_pv_info(const Position& pos, Move pv[], Value alpha, Value beta, Value value); + void insert_pv_in_tt(const Position& pos, Move pv[]); + void extract_pv_from_tt(const Position& pos, Move bestMove, Move pv[]); #if !defined(_MSC_VER) void *init_thread(void *threadID); @@ -332,31 +329,31 @@ namespace { /// init_threads(), exit_threads() and nodes_searched() are helpers to /// give accessibility to some TM methods from outside of current file. -void init_threads() { TM.init_threads(); } -void exit_threads() { TM.exit_threads(); } -int64_t nodes_searched() { return TM.nodes_searched(); } +void init_threads() { ThreadsMgr.init_threads(); } +void exit_threads() { ThreadsMgr.exit_threads(); } +int64_t nodes_searched() { return ThreadsMgr.nodes_searched(); } /// init_search() is called during startup. It initializes various lookup tables void init_search() { - int d; // depth (OnePly == 2) - int hd; // half depth (OnePly == 1) + int d; // depth (ONE_PLY == 2) + int hd; // half depth (ONE_PLY == 1) int mc; // moveCount // Init reductions array for (hd = 1; hd < 64; hd++) for (mc = 1; mc < 64; mc++) { - double pvRed = log(double(hd)) * log(double(mc)) / 3.0; - double nonPVRed = log(double(hd)) * log(double(mc)) / 1.5; - ReductionMatrix[PV][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(OnePly)) : 0); - ReductionMatrix[NonPV][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(OnePly)) : 0); + double pvRed = 0.33 + log(double(hd)) * log(double(mc)) / 4.5; + double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25; + ReductionMatrix[PV][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0); + ReductionMatrix[NonPV][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0); } // Init futility margins array - for (d = 0; d < 16; d++) for (mc = 0; mc < 64; mc++) - FutilityMarginsMatrix[d][mc] = 112 * int(log(double(d * d) / 2) / log(2.0) + 1) - 8 * mc + 45; + for (d = 1; d < 16; d++) for (mc = 0; mc < 64; mc++) + FutilityMarginsMatrix[d][mc] = 112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45; // Init futility move count array for (d = 0; d < 32; d++) @@ -364,49 +361,32 @@ void init_search() { } -// SearchStack::init() initializes a search stack. Used at the beginning of a -// new search from the root. -void SearchStack::init(int ply) { - - pv[ply] = pv[ply + 1] = MOVE_NONE; - currentMove = threatMove = MOVE_NONE; - reduction = Depth(0); - eval = VALUE_NONE; -} - -void SearchStack::initKillers() { - - mateKiller = MOVE_NONE; - for (int i = 0; i < KILLER_MAX; i++) - killers[i] = MOVE_NONE; -} - - /// perft() is our utility to verify move generation is bug free. All the legal /// moves up to given depth are generated and counted and the sum returned. int perft(Position& pos, Depth depth) { + MoveStack mlist[256]; StateInfo st; - Move move; + Move m; int sum = 0; - MovePicker mp(pos, MOVE_NONE, depth, H); + + // Generate all legal moves + MoveStack* last = generate_moves(pos, mlist); // If we are at the last ply we don't need to do and undo // the moves, just to count them. - if (depth <= OnePly) // Replace with '<' to test also qsearch - { - while (mp.get_next_move()) sum++; - return sum; - } + if (depth <= ONE_PLY) + return int(last - mlist); // Loop through all legal moves CheckInfo ci(pos); - while ((move = mp.get_next_move()) != MOVE_NONE) + for (MoveStack* cur = mlist; cur != last; cur++) { - pos.do_move(move, st, ci, pos.move_is_check(move, ci)); - sum += perft(pos, depth - OnePly); - pos.undo_move(move); + m = cur->move; + pos.do_move(m, st, ci, pos.move_is_check(m, ci)); + sum += perft(pos, depth - ONE_PLY); + pos.undo_move(m); } return sum; } @@ -417,15 +397,13 @@ int perft(Position& pos, Depth depth) /// search-related global variables, and calls root_search(). It returns false /// when a quit command is received during the search. -bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, - int time[], int increment[], int movesToGo, int maxDepth, - int maxNodes, int maxTime, Move searchMoves[]) { +bool think(const Position& pos, bool infinite, bool ponder, int time[], int increment[], + int movesToGo, int maxDepth, int maxNodes, int maxTime, Move searchMoves[]) { // Initialize global search variables StopOnPonderhit = AbortSearch = Quit = AspirationFailLow = false; - MaxSearchTime = AbsoluteMaxSearchTime = ExtraSearchTime = 0; NodesSincePoll = 0; - TM.resetNodeCounters(); + ThreadsMgr.resetNodeCounters(); SearchStartTime = get_system_time(); ExactMaxTime = maxTime; MaxDepth = maxDepth; @@ -451,10 +429,6 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, } } - // Reset loseOnTime flag at the beginning of a new game - if (button_was_pressed("New Game")) - loseOnTime = false; - // Read UCI option values TT.set_size(get_option_value_int("Hash")); if (button_was_pressed("Clear Hash")) @@ -473,7 +447,7 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, MateThreatExtension[1] = Depth(get_option_value_int("Mate Threat Extension (PV nodes)")); MateThreatExtension[0] = Depth(get_option_value_int("Mate Threat Extension (non-PV nodes)")); - MinimumSplitDepth = get_option_value_int("Minimum Split Depth") * OnePly; + MinimumSplitDepth = get_option_value_int("Minimum Split Depth") * ONE_PLY; MaxThreadsPerSplitPoint = get_option_value_int("Maximum Number of Threads per Split Point"); MultiPV = get_option_value_int("MultiPV"); Chess960 = get_option_value_bool("UCI_Chess960"); @@ -486,53 +460,20 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, // Set the number of active threads int newActiveThreads = get_option_value_int("Threads"); - if (newActiveThreads != TM.active_threads()) + if (newActiveThreads != ThreadsMgr.active_threads()) { - TM.set_active_threads(newActiveThreads); - init_eval(TM.active_threads()); + ThreadsMgr.set_active_threads(newActiveThreads); + init_eval(ThreadsMgr.active_threads()); } // Wake up sleeping threads - TM.wake_sleeping_threads(); + ThreadsMgr.wake_sleeping_threads(); // Set thinking time - int myTime = time[side_to_move]; - int myIncrement = increment[side_to_move]; + int myTime = time[pos.side_to_move()]; + int myIncrement = increment[pos.side_to_move()]; if (UseTimeManagement) - { - if (!movesToGo) // Sudden death time control - { - if (myIncrement) - { - MaxSearchTime = myTime / 30 + myIncrement; - AbsoluteMaxSearchTime = Max(myTime / 4, myIncrement - 100); - } - else // Blitz game without increment - { - MaxSearchTime = myTime / 30; - AbsoluteMaxSearchTime = myTime / 8; - } - } - else // (x moves) / (y minutes) - { - if (movesToGo == 1) - { - MaxSearchTime = myTime / 2; - AbsoluteMaxSearchTime = (myTime > 3000)? (myTime - 500) : ((myTime * 3) / 4); - } - else - { - MaxSearchTime = myTime / Min(movesToGo, 20); - AbsoluteMaxSearchTime = Min((4 * myTime) / movesToGo, myTime / 3); - } - } - - if (get_option_value_bool("Ponder")) - { - MaxSearchTime += MaxSearchTime / 4; - MaxSearchTime = Min(MaxSearchTime, AbsoluteMaxSearchTime); - } - } + TimeMgr.init(myTime, myIncrement, movesToGo, pos.startpos_ply_counter()); // Set best NodesBetweenPolls interval to avoid lagging under // heavy time pressure. @@ -554,41 +495,13 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, << " increment: " << myIncrement << " moves to go: " << movesToGo << endl; - // LSN filtering. Used only for developing purposes, disabled by default - if ( UseLSNFiltering - && loseOnTime) - { - // Step 2. If after last move we decided to lose on time, do it now! - while (SearchStartTime + myTime + 1000 > get_system_time()) - /* wait here */; - } - // We're ready to start thinking. Call the iterative deepening loop function - Value v = id_loop(pos, searchMoves); - - if (UseLSNFiltering) - { - // Step 1. If this is sudden death game and our position is hopeless, - // decide to lose on time. - if ( !loseOnTime // If we already lost on time, go to step 3. - && myTime < LSNTime - && myIncrement == 0 - && movesToGo == 0 - && v < -LSNValue) - { - loseOnTime = true; - } - else if (loseOnTime) - { - // Step 3. Now after stepping over the time limit, reset flag for next match. - loseOnTime = false; - } - } + id_loop(pos, searchMoves); if (UseLogFile) LogFile.close(); - TM.put_threads_to_sleep(); + ThreadsMgr.put_threads_to_sleep(); return !Quit; } @@ -605,6 +518,7 @@ namespace { Position p(pos, pos.thread()); SearchStack ss[PLY_MAX_PLUS_2]; + Move pv[PLY_MAX_PLUS_2]; Move EasyMove = MOVE_NONE; Value value, alpha = -VALUE_INFINITE, beta = VALUE_INFINITE; @@ -624,9 +538,9 @@ namespace { // so to output information also for iteration 1. cout << "info depth " << 1 << "\ninfo depth " << 1 - << " score " << value_to_string(rml.get_move_score(0)) + << " score " << value_to_uci(rml.get_move_score(0)) << " time " << current_search_time() - << " nodes " << TM.nodes_searched() + << " nodes " << ThreadsMgr.nodes_searched() << " nps " << nps() << " pv " << rml.get_move(0) << "\n"; @@ -634,8 +548,8 @@ namespace { TT.new_search(); H.clear(); init_ss_array(ss, PLY_MAX_PLUS_2); + pv[0] = pv[1] = MOVE_NONE; ValueByIteration[1] = rml.get_move_score(0); - p.reset_ply(); Iteration = 1; // Is one move significantly better than others after initial scoring ? @@ -666,11 +580,11 @@ namespace { } // Search to the current depth, rml is updated and sorted, alpha and beta could change - value = root_search(p, ss, rml, &alpha, &beta); + value = root_search(p, ss, pv, rml, &alpha, &beta); // Write PV to transposition table, in case the relevant entries have // been overwritten during the search. - TT.insert_pv(p, ss->pv); + insert_pv_in_tt(p, pv); if (AbortSearch) break; // Value cannot be trusted. Break out immediately! @@ -679,7 +593,7 @@ namespace { ValueByIteration[Iteration] = value; // Drop the easy move if differs from the new best move - if (ss->pv[0] != EasyMove) + if (pv[0] != EasyMove) EasyMove = MOVE_NONE; if (UseTimeManagement) @@ -699,24 +613,24 @@ namespace { stopSearch = true; // Stop search early if one move seems to be much better than the others - int64_t nodes = TM.nodes_searched(); + int64_t nodes = ThreadsMgr.nodes_searched(); if ( Iteration >= 8 - && EasyMove == ss->pv[0] + && EasyMove == pv[0] && ( ( rml.get_move_cumulative_nodes(0) > (nodes * 85) / 100 - && current_search_time() > MaxSearchTime / 16) + && current_search_time() > TimeMgr.available_time() / 16) ||( rml.get_move_cumulative_nodes(0) > (nodes * 98) / 100 - && current_search_time() > MaxSearchTime / 32))) + && current_search_time() > TimeMgr.available_time() / 32))) stopSearch = true; // Add some extra time if the best move has changed during the last two iterations if (Iteration > 5 && Iteration <= 50) - ExtraSearchTime = BestMoveChangesByIteration[Iteration] * (MaxSearchTime / 2) - + BestMoveChangesByIteration[Iteration-1] * (MaxSearchTime / 3); + TimeMgr.pv_unstability(BestMoveChangesByIteration[Iteration], + BestMoveChangesByIteration[Iteration-1]); // Stop search if most of MaxSearchTime is consumed at the end of the // iteration. We probably don't have enough time to search the first // move at the next iteration anyway. - if (current_search_time() > ((MaxSearchTime + ExtraSearchTime) * 80) / 128) + if (current_search_time() > (TimeMgr.available_time() * 80) / 128) stopSearch = true; if (stopSearch) @@ -738,24 +652,23 @@ namespace { wait_for_stop_or_ponderhit(); else // Print final search statistics - cout << "info nodes " << TM.nodes_searched() + cout << "info nodes " << ThreadsMgr.nodes_searched() << " nps " << nps() - << " time " << current_search_time() - << " hashfull " << TT.full() << endl; + << " time " << current_search_time() << endl; // Print the best move and the ponder move to the standard output - if (ss->pv[0] == MOVE_NONE) + if (pv[0] == MOVE_NONE) { - ss->pv[0] = rml.get_move(0); - ss->pv[1] = MOVE_NONE; + pv[0] = rml.get_move(0); + pv[1] = MOVE_NONE; } - assert(ss->pv[0] != MOVE_NONE); + assert(pv[0] != MOVE_NONE); - cout << "bestmove " << ss->pv[0]; + cout << "bestmove " << pv[0]; - if (ss->pv[1] != MOVE_NONE) - cout << " ponder " << ss->pv[1]; + if (pv[1] != MOVE_NONE) + cout << " ponder " << pv[1]; cout << endl; @@ -767,14 +680,14 @@ namespace { if (dbg_show_hit_rate) dbg_print_hit_rate(LogFile); - LogFile << "\nNodes: " << TM.nodes_searched() + LogFile << "\nNodes: " << ThreadsMgr.nodes_searched() << "\nNodes/second: " << nps() - << "\nBest move: " << move_to_san(p, ss->pv[0]); + << "\nBest move: " << move_to_san(p, pv[0]); StateInfo st; - p.do_move(ss->pv[0], st); + p.do_move(pv[0], st); LogFile << "\nPonder move: " - << move_to_san(p, ss->pv[1]) // Works also with MOVE_NONE + << move_to_san(p, pv[1]) // Works also with MOVE_NONE << endl; } return rml.get_move_score(0); @@ -786,7 +699,7 @@ namespace { // scheme, prints some information to the standard output and handles // the fail low/high loops. - Value root_search(Position& pos, SearchStack* ss, RootMoveList& rml, Value* alphaPtr, Value* betaPtr) { + Value root_search(Position& pos, SearchStack* ss, Move* pv, RootMoveList& rml, Value* alphaPtr, Value* betaPtr) { EvalInfo ei; StateInfo st; @@ -802,16 +715,18 @@ namespace { alpha = *alphaPtr; beta = *betaPtr; isCheck = pos.is_check(); + depth = (Iteration - 2) * ONE_PLY + InitialDepth; + + // Step 1. Initialize node (polling is omitted at root) + ss->currentMove = ss->bestMove = MOVE_NONE; - // Step 1. Initialize node and poll (omitted at root, init_ss_array() has already initialized root node) // Step 2. Check for aborted search (omitted at root) // Step 3. Mate distance pruning (omitted at root) // Step 4. Transposition table lookup (omitted at root) // Step 5. Evaluate the position statically // At root we do this only to get reference value for child nodes - if (!isCheck) - ss->eval = evaluate(pos, ei); + ss->eval = isCheck ? VALUE_NONE : evaluate(pos, ei); // Step 6. Razoring (omitted at root) // Step 7. Static null move pruning (omitted at root) @@ -833,10 +748,10 @@ namespace { FirstRootMove = (i == 0); // Save the current node count before the move is searched - nodes = TM.nodes_searched(); + nodes = ThreadsMgr.nodes_searched(); // Reset beta cut-off counters - TM.resetBetaCounters(); + ThreadsMgr.resetBetaCounters(); // Pick the next root move, and print the move and the move number to // the standard output. @@ -850,7 +765,6 @@ namespace { captureOrPromotion = pos.move_is_capture_or_promotion(move); // Step 11. Decide the new search depth - depth = (Iteration - 2) * OnePly + InitialDepth; ext = extension(pos, move, captureOrPromotion, moveIsCheck, false, false, &dangerous); newDepth = depth + ext; @@ -876,7 +790,7 @@ namespace { alpha = -VALUE_INFINITE; // Full depth PV search, done on first move or after a fail high - value = -search(pos, ss+1, -beta, -alpha, newDepth); + value = -search(pos, ss+1, -beta, -alpha, newDepth, 1); } else { @@ -884,7 +798,7 @@ namespace { // if the move fails high will be re-searched at full depth bool doFullDepthSearch = true; - if ( depth >= 3 * OnePly + if ( depth >= 3 * ONE_PLY && !dangerous && !captureOrPromotion && !move_is_castle(move)) @@ -892,23 +806,37 @@ namespace { ss->reduction = reduction(depth, i - MultiPV + 2); if (ss->reduction) { + assert(newDepth-ss->reduction >= ONE_PLY); + // Reduced depth non-pv search using alpha as upperbound - value = -search(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction); + value = -search(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction, 1); + doFullDepthSearch = (value > alpha); + } + + // The move failed high, but if reduction is very big we could + // face a false positive, retry with a less aggressive reduction, + // if the move fails high again then go with full depth search. + if (doFullDepthSearch && ss->reduction > 2 * ONE_PLY) + { + assert(newDepth - ONE_PLY >= ONE_PLY); + + ss->reduction = ONE_PLY; + value = -search(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction, 1); doFullDepthSearch = (value > alpha); } + ss->reduction = DEPTH_ZERO; // Restore original reduction } // Step 15. Full depth search if (doFullDepthSearch) { // Full depth non-pv search using alpha as upperbound - ss->reduction = Depth(0); - value = -search(pos, ss+1, -(alpha+1), -alpha, newDepth); + value = -search(pos, ss+1, -(alpha+1), -alpha, newDepth, 1); // If we are above alpha then research at same depth but as PV // to get a correct score or eventually a fail high above beta. if (value > alpha) - value = -search(pos, ss+1, -beta, -alpha, newDepth); + value = -search(pos, ss+1, -beta, -alpha, newDepth, 1); } } @@ -922,12 +850,12 @@ namespace { // We are failing high and going to do a research. It's important to update // the score before research in case we run out of time while researching. rml.set_move_score(i, value); - update_pv(ss, 0); - TT.extract_pv(pos, ss->pv, PLY_MAX); - rml.set_move_pv(i, ss->pv); + ss->bestMove = move; + extract_pv_from_tt(pos, move, pv); + rml.set_move_pv(i, pv); // Print information to the standard output - print_pv_info(pos, ss, alpha, beta, value); + print_pv_info(pos, pv, alpha, beta, value); // Prepare for a research after a fail high, each time with a wider window *betaPtr = beta = Min(beta + AspirationDelta * (1 << researchCountFH), VALUE_INFINITE); @@ -946,9 +874,9 @@ namespace { // Remember beta-cutoff and searched nodes counts for this move. The // info is used to sort the root moves for the next iteration. int64_t our, their; - TM.get_beta_counters(pos.side_to_move(), our, their); + ThreadsMgr.get_beta_counters(pos.side_to_move(), our, their); rml.set_beta_counters(i, our, their); - rml.set_move_nodes(i, TM.nodes_searched() - nodes); + rml.set_move_nodes(i, ThreadsMgr.nodes_searched() - nodes); assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE); assert(value < beta); @@ -962,9 +890,9 @@ namespace { // Update PV rml.set_move_score(i, value); - update_pv(ss, 0); - TT.extract_pv(pos, ss->pv, PLY_MAX); - rml.set_move_pv(i, ss->pv); + ss->bestMove = move; + extract_pv_from_tt(pos, move, pv); + rml.set_move_pv(i, pv); if (MultiPV == 1) { @@ -975,7 +903,7 @@ namespace { BestMoveChangesByIteration[Iteration]++; // Print information to the standard output - print_pv_info(pos, ss, alpha, beta, value); + print_pv_info(pos, pv, alpha, beta, value); // Raise alpha to setup proper non-pv search upper bound if (value > alpha) @@ -987,10 +915,10 @@ namespace { for (int j = 0; j < Min(MultiPV, rml.move_count()); j++) { cout << "info multipv " << j + 1 - << " score " << value_to_string(rml.get_move_score(j)) + << " score " << value_to_uci(rml.get_move_score(j)) << " depth " << (j <= i ? Iteration : Iteration - 1) << " time " << current_search_time() - << " nodes " << TM.nodes_searched() + << " nodes " << ThreadsMgr.nodes_searched() << " nps " << nps() << " pv "; @@ -1031,35 +959,34 @@ namespace { // search<>() is the main search function for both PV and non-PV nodes template - Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth) { + Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply) { assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); assert(beta > alpha && beta <= VALUE_INFINITE); assert(PvNode || alpha == beta - 1); - assert(pos.ply() > 0 && pos.ply() < PLY_MAX); - assert(pos.thread() >= 0 && pos.thread() < TM.active_threads()); + assert(ply > 0 && ply < PLY_MAX); + assert(pos.thread() >= 0 && pos.thread() < ThreadsMgr.active_threads()); Move movesSearched[256]; EvalInfo ei; StateInfo st; - const TTEntry* tte; + const TTEntry *tte; Key posKey; - Move ttMove, move, excludedMove; + Move ttMove, move, excludedMove, threatMove; Depth ext, newDepth; Value bestValue, value, oldAlpha; Value refinedValue, nullValue, futilityValueScaled; // Non-PV specific - bool isCheck, singleEvasion, moveIsCheck, captureOrPromotion, dangerous; + bool isCheck, singleEvasion, singularExtensionNode, moveIsCheck, captureOrPromotion, dangerous; bool mateThreat = false; int moveCount = 0; int threadID = pos.thread(); - int ply = pos.ply(); refinedValue = bestValue = value = -VALUE_INFINITE; oldAlpha = alpha; // Step 1. Initialize node and poll. Polling can abort search - TM.incrementNodeCounter(threadID); - ss->init(ply); - (ss + 2)->initKillers(); + ThreadsMgr.incrementNodeCounter(threadID); + ss->currentMove = ss->bestMove = threatMove = MOVE_NONE; + (ss+2)->killers[0] = (ss+2)->killers[1] = (ss+2)->mateKiller = MOVE_NONE; if (threadID == 0 && ++NodesSincePoll > NodesBetweenPolls) { @@ -1068,8 +995,8 @@ namespace { } // Step 2. Check for aborted search and immediate draw - if (AbortSearch || TM.thread_should_stop(threadID)) - return Value(0); + if (AbortSearch || ThreadsMgr.thread_should_stop(threadID)) + return VALUE_ZERO; if (pos.is_draw() || ply >= PLY_MAX - 1) return VALUE_DRAW; @@ -1103,27 +1030,32 @@ namespace { // Refresh tte entry to avoid aging TT.store(posKey, tte->value(), tte->type(), tte->depth(), ttMove, tte->static_value(), tte->king_danger()); - ss->currentMove = ttMove; // Can be MOVE_NONE + ss->bestMove = ttMove; // Can be MOVE_NONE return value_from_tt(tte->value(), ply); } - // Step 5. Evaluate the position statically - // At PV nodes we do this only to update gain statistics + // Step 5. Evaluate the position statically and + // update gain statistics of parent move. isCheck = pos.is_check(); - if (!isCheck) + if (isCheck) + ss->eval = VALUE_NONE; + else if (tte) { - if (tte && tte->static_value() != VALUE_NONE) - { - ss->eval = tte->static_value(); - ei.kingDanger[pos.side_to_move()] = tte->king_danger(); - } - else - ss->eval = evaluate(pos, ei); + assert(tte->static_value() != VALUE_NONE); - refinedValue = refine_eval(tte, ss->eval, ply); // Enhance accuracy with TT value if possible - update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval); + ss->eval = tte->static_value(); + ei.kingDanger[pos.side_to_move()] = tte->king_danger(); + refinedValue = refine_eval(tte, ss->eval, ply); + } + else + { + refinedValue = ss->eval = evaluate(pos, ei); + TT.store(posKey, VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, MOVE_NONE, ss->eval, ei.kingDanger[pos.side_to_move()]); } + // Save gain for the parent non-capture move + update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval); + // Step 6. Razoring (is omitted in PV nodes) if ( !PvNode && depth < RazorDepth @@ -1135,7 +1067,7 @@ namespace { && !pos.has_pawn_on_7th(pos.side_to_move())) { Value rbeta = beta - razor_margin(depth); - Value v = qsearch(pos, ss, rbeta-1, rbeta, Depth(0)); + Value v = qsearch(pos, ss, rbeta-1, rbeta, DEPTH_ZERO, ply); if (v < rbeta) // Logically we should return (v + razor_margin(depth)), but // surprisingly this did slightly weaker in tests. @@ -1148,8 +1080,8 @@ namespace { if ( !PvNode && !ss->skipNullMove && depth < RazorDepth - && refinedValue >= beta + futility_margin(depth, 0) && !isCheck + && refinedValue >= beta + futility_margin(depth, 0) && !value_is_mate(beta) && pos.non_pawn_material(pos.side_to_move())) return refinedValue - futility_margin(depth, 0); @@ -1160,16 +1092,16 @@ namespace { // NullMoveMargin under beta. if ( !PvNode && !ss->skipNullMove - && depth > OnePly - && refinedValue >= beta - (depth >= 4 * OnePly ? NullMoveMargin : 0) + && depth > ONE_PLY && !isCheck + && refinedValue >= beta - (depth >= 4 * ONE_PLY ? NullMoveMargin : 0) && !value_is_mate(beta) && pos.non_pawn_material(pos.side_to_move())) { ss->currentMove = MOVE_NULL; // Null move dynamic reduction based on depth - int R = 3 + (depth >= 5 * OnePly ? depth / 8 : 0); + int R = 3 + (depth >= 5 * ONE_PLY ? depth / 8 : 0); // Null move dynamic reduction based on value if (refinedValue - beta > PawnValueMidgame) @@ -1178,8 +1110,8 @@ namespace { pos.do_null_move(st); (ss+1)->skipNullMove = true; - nullValue = depth-R*OnePly < OnePly ? -qsearch(pos, ss+1, -beta, -alpha, Depth(0)) - : - search(pos, ss+1, -beta, -alpha, depth-R*OnePly); + nullValue = depth-R*ONE_PLY < ONE_PLY ? -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO, ply+1) + : - search(pos, ss+1, -beta, -alpha, depth-R*ONE_PLY, ply+1); (ss+1)->skipNullMove = false; pos.undo_null_move(); @@ -1189,12 +1121,12 @@ namespace { if (nullValue >= value_mate_in(PLY_MAX)) nullValue = beta; - // Do zugzwang verification search at high depths - if (depth < 6 * OnePly) + if (depth < 6 * ONE_PLY) return nullValue; + // Do verification search at high depths ss->skipNullMove = true; - Value v = search(pos, ss, alpha, beta, depth-5*OnePly); + Value v = search(pos, ss, alpha, beta, depth-R*ONE_PLY, ply); ss->skipNullMove = false; if (v >= beta) @@ -1211,66 +1143,69 @@ namespace { if (nullValue == value_mated_in(ply + 2)) mateThreat = true; - ss->threatMove = (ss+1)->currentMove; + threatMove = (ss+1)->bestMove; if ( depth < ThreatDepth && (ss-1)->reduction - && connected_moves(pos, (ss-1)->currentMove, ss->threatMove)) + && connected_moves(pos, (ss-1)->currentMove, threatMove)) return beta - 1; } } // Step 9. Internal iterative deepening if ( depth >= IIDDepth[PvNode] - && (ttMove == MOVE_NONE || (PvNode && tte->depth() <= depth - 4 * OnePly)) + && ttMove == MOVE_NONE && (PvNode || (!isCheck && ss->eval >= beta - IIDMargin))) { - Depth d = (PvNode ? depth - 2 * OnePly : depth / 2); + Depth d = (PvNode ? depth - 2 * ONE_PLY : depth / 2); ss->skipNullMove = true; - search(pos, ss, alpha, beta, d); + search(pos, ss, alpha, beta, d, ply); ss->skipNullMove = false; - ttMove = ss->pv[ply]; + ttMove = ss->bestMove; tte = TT.retrieve(posKey); } // Expensive mate threat detection (only for PV nodes) if (PvNode) - mateThreat = pos.has_mate_threat(opposite_color(pos.side_to_move())); + mateThreat = pos.has_mate_threat(); // Initialize a MovePicker object for the current position MovePicker mp = MovePicker(pos, ttMove, depth, H, ss, (PvNode ? -VALUE_INFINITE : beta)); CheckInfo ci(pos); - bool singularExtensionNode = depth >= SingularExtensionDepth[PvNode] - && tte && tte->move() - && !excludedMove // Do not allow recursive singular extension search - && is_lower_bound(tte->type()) - && tte->depth() >= depth - 3 * OnePly; + ss->bestMove = MOVE_NONE; + singleEvasion = isCheck && mp.number_of_evasions() == 1; + singularExtensionNode = depth >= SingularExtensionDepth[PvNode] + && tte + && tte->move() + && !excludedMove // Do not allow recursive singular extension search + && is_lower_bound(tte->type()) + && tte->depth() >= depth - 3 * ONE_PLY; // Step 10. Loop through moves // Loop through all legal moves until no moves remain or a beta cutoff occurs while ( bestValue < beta && (move = mp.get_next_move()) != MOVE_NONE - && !TM.thread_should_stop(threadID)) + && !ThreadsMgr.thread_should_stop(threadID)) { assert(move_is_ok(move)); if (move == excludedMove) continue; - singleEvasion = (isCheck && mp.number_of_evasions() == 1); moveIsCheck = pos.move_is_check(move, ci); captureOrPromotion = pos.move_is_capture_or_promotion(move); // Step 11. Decide the new search depth ext = extension(pos, move, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous); - // Singular extension search. We extend the TT move if its value is much better than - // its siblings. To verify this we do a reduced search on all the other moves but the - // ttMove, if result is lower then ttValue minus a margin then we extend ttMove. + // Singular extension search. If all moves but one fail low on a search of (alpha-s, beta-s), + // and just one fails high on (alpha, beta), then that move is singular and should be extended. + // To verify this we do a reduced search on all the other moves but the ttMove, if result is + // lower then ttValue minus a margin then we extend ttMove. if ( singularExtensionNode && move == tte->move() - && ext < OnePly) + && ext < ONE_PLY) { Value ttValue = value_from_tt(tte->value(), ply); @@ -1279,16 +1214,16 @@ namespace { Value b = ttValue - SingularExtensionMargin; ss->excludedMove = move; ss->skipNullMove = true; - Value v = search(pos, ss, b - 1, b, depth / 2); + Value v = search(pos, ss, b - 1, b, depth / 2, ply); ss->skipNullMove = false; ss->excludedMove = MOVE_NONE; - - if (v < ttValue - SingularExtensionMargin) - ext = OnePly; + ss->bestMove = MOVE_NONE; + if (v < b) + ext = ONE_PLY; } } - newDepth = depth - OnePly + ext; + newDepth = depth - ONE_PLY + ext; // Update current move (this must be done after singular extension search) movesSearched[moveCount++] = ss->currentMove = move; @@ -1303,12 +1238,12 @@ namespace { { // Move count based pruning if ( moveCount >= futility_move_count(depth) - && !(ss->threatMove && connected_threat(pos, move, ss->threatMove)) + && !(threatMove && connected_threat(pos, move, threatMove)) && bestValue > value_mated_in(PLY_MAX)) continue; // Value based pruning - // We illogically ignore reduction condition depth >= 3*OnePly for predicted depth, + // We illogically ignore reduction condition depth >= 3*ONE_PLY for predicted depth, // but fixing this made program slightly weaker. Depth predictedDepth = newDepth - reduction(depth, moveCount); futilityValueScaled = ss->eval + futility_margin(predictedDepth, moveCount) @@ -1328,15 +1263,15 @@ namespace { // Step extra. pv search (only in PV nodes) // The first move in list is the expected PV if (PvNode && moveCount == 1) - value = newDepth < OnePly ? -qsearch(pos, ss+1, -beta, -alpha, Depth(0)) - : - search(pos, ss+1, -beta, -alpha, newDepth); + value = newDepth < ONE_PLY ? -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO, ply+1) + : - search(pos, ss+1, -beta, -alpha, newDepth, ply+1); else { // Step 14. Reduced depth search // If the move fails high will be re-searched at full depth. bool doFullDepthSearch = true; - if ( depth >= 3 * OnePly + if ( depth >= 3 * ONE_PLY && !captureOrPromotion && !dangerous && !move_is_castle(move) @@ -1346,8 +1281,8 @@ namespace { if (ss->reduction) { Depth d = newDepth - ss->reduction; - value = d < OnePly ? -qsearch(pos, ss+1, -(alpha+1), -alpha, Depth(0)) - : - search(pos, ss+1, -(alpha+1), -alpha, d); + value = d < ONE_PLY ? -qsearch(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO, ply+1) + : - search(pos, ss+1, -(alpha+1), -alpha, d, ply+1); doFullDepthSearch = (value > alpha); } @@ -1355,29 +1290,29 @@ namespace { // The move failed high, but if reduction is very big we could // face a false positive, retry with a less aggressive reduction, // if the move fails high again then go with full depth search. - if (doFullDepthSearch && ss->reduction > 2 * OnePly) + if (doFullDepthSearch && ss->reduction > 2 * ONE_PLY) { - assert(newDepth - OnePly >= OnePly); + assert(newDepth - ONE_PLY >= ONE_PLY); - ss->reduction = OnePly; - value = -search(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction); + ss->reduction = ONE_PLY; + value = -search(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction, ply+1); doFullDepthSearch = (value > alpha); } - ss->reduction = Depth(0); // Restore original reduction + ss->reduction = DEPTH_ZERO; // Restore original reduction } // Step 15. Full depth search if (doFullDepthSearch) { - value = newDepth < OnePly ? -qsearch(pos, ss+1, -(alpha+1), -alpha, Depth(0)) - : - search(pos, ss+1, -(alpha+1), -alpha, newDepth); + value = newDepth < ONE_PLY ? -qsearch(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO, ply+1) + : - search(pos, ss+1, -(alpha+1), -alpha, newDepth, ply+1); // Step extra. pv search (only in PV nodes) // Search only for possible new PV nodes, if instead value >= beta then // parent node fails low with value <= alpha and tries another move. if (PvNode && value > alpha && value < beta) - value = newDepth < OnePly ? -qsearch(pos, ss+1, -beta, -alpha, Depth(0)) - : - search(pos, ss+1, -beta, -alpha, newDepth); + value = newDepth < ONE_PLY ? -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO, ply+1) + : - search(pos, ss+1, -beta, -alpha, newDepth, ply+1); } } @@ -1392,26 +1327,26 @@ namespace { bestValue = value; if (value > alpha) { - if (PvNode && value < beta) // This guarantees that always: alpha < beta + if (PvNode && value < beta) // We want always alpha < beta alpha = value; - update_pv(ss, ply); - if (value == value_mate_in(ply + 1)) ss->mateKiller = move; + + ss->bestMove = move; } } // Step 18. Check for split if ( depth >= MinimumSplitDepth - && TM.active_threads() > 1 + && ThreadsMgr.active_threads() > 1 && bestValue < beta - && TM.available_thread_exists(threadID) + && ThreadsMgr.available_thread_exists(threadID) && !AbortSearch - && !TM.thread_should_stop(threadID) + && !ThreadsMgr.thread_should_stop(threadID) && Iteration <= 99) - TM.split(pos, ss, &alpha, beta, &bestValue, depth, - mateThreat, &moveCount, &mp, PvNode); + ThreadsMgr.split(pos, ss, ply, &alpha, beta, &bestValue, depth, + threatMove, mateThreat, &moveCount, &mp, PvNode); } // Step 19. Check for mate and stalemate @@ -1419,30 +1354,28 @@ namespace { // no legal moves, it must be mate or stalemate. // If one move was excluded return fail low score. if (!moveCount) - return excludedMove ? oldAlpha : (isCheck ? value_mated_in(ply) : VALUE_DRAW); + return excludedMove ? oldAlpha : isCheck ? value_mated_in(ply) : VALUE_DRAW; // Step 20. Update tables // If the search is not aborted, update the transposition table, // history counters, and killer moves. - if (AbortSearch || TM.thread_should_stop(threadID)) + if (AbortSearch || ThreadsMgr.thread_should_stop(threadID)) return bestValue; - if (bestValue <= oldAlpha) - TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE, ss->eval, ei.kingDanger[pos.side_to_move()]); + ValueType vt = (bestValue <= oldAlpha ? VALUE_TYPE_UPPER : bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT); + move = (bestValue <= oldAlpha ? MOVE_NONE : ss->bestMove); + TT.store(posKey, value_to_tt(bestValue, ply), vt, depth, move, ss->eval, ei.kingDanger[pos.side_to_move()]); - else if (bestValue >= beta) + // Update killers and history only for non capture moves that fails high + if (bestValue >= beta) { - TM.incrementBetaCounter(pos.side_to_move(), depth, threadID); - move = ss->pv[ply]; - TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move, ss->eval, ei.kingDanger[pos.side_to_move()]); + ThreadsMgr.incrementBetaCounter(pos.side_to_move(), depth, threadID); if (!pos.move_is_capture_or_promotion(move)) { update_history(pos, move, depth, movesSearched, moveCount); update_killers(move, ss); } } - else - TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, depth, ss->pv[ply], ss->eval, ei.kingDanger[pos.side_to_move()]); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); @@ -1452,31 +1385,28 @@ namespace { // qsearch() is the quiescence search function, which is called by the main // search function when the remaining depth is zero (or, to be more precise, - // less than OnePly). + // less than ONE_PLY). template - Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth) { + Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply) { assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE); assert(PvNode || alpha == beta - 1); assert(depth <= 0); - assert(pos.ply() > 0 && pos.ply() < PLY_MAX); - assert(pos.thread() >= 0 && pos.thread() < TM.active_threads()); + assert(ply > 0 && ply < PLY_MAX); + assert(pos.thread() >= 0 && pos.thread() < ThreadsMgr.active_threads()); EvalInfo ei; StateInfo st; Move ttMove, move; - Value staticValue, bestValue, value, futilityBase; - bool isCheck, enoughMaterial, moveIsCheck, evasionPrunable; - const TTEntry* tte = NULL; - int moveCount = 0; - int ply = pos.ply(); + Value bestValue, value, futilityValue, futilityBase; + bool isCheck, deepChecks, enoughMaterial, moveIsCheck, evasionPrunable; + const TTEntry* tte; Value oldAlpha = alpha; - Value futilityValue = VALUE_INFINITE; - TM.incrementNodeCounter(pos.thread()); - ss->init(ply); + ThreadsMgr.incrementNodeCounter(pos.thread()); + ss->bestMove = ss->currentMove = MOVE_NONE; // Check for an instant draw or maximum ply reached if (pos.is_draw() || ply >= PLY_MAX - 1) @@ -1489,7 +1419,7 @@ namespace { if (!PvNode && tte && ok_to_use_TT(tte, depth, beta, ply)) { - ss->currentMove = ttMove; // Can be MOVE_NONE + ss->bestMove = ttMove; // Can be MOVE_NONE return value_from_tt(tte->value(), ply); } @@ -1497,48 +1427,52 @@ namespace { // Evaluate the position statically if (isCheck) - staticValue = -VALUE_INFINITE; - else if (tte && tte->static_value() != VALUE_NONE) { - staticValue = tte->static_value(); - ei.kingDanger[pos.side_to_move()] = tte->king_danger(); + bestValue = futilityBase = -VALUE_INFINITE; + ss->eval = VALUE_NONE; + deepChecks = enoughMaterial = false; } else - staticValue = evaluate(pos, ei); - - if (!isCheck) { - ss->eval = staticValue; + if (tte) + { + assert(tte->static_value() != VALUE_NONE); + + ei.kingDanger[pos.side_to_move()] = tte->king_danger(); + bestValue = tte->static_value(); + } + else + bestValue = evaluate(pos, ei); + + ss->eval = bestValue; update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval); - } - // Initialize "stand pat score", and return it immediately if it is - // at least beta. - bestValue = staticValue; + // Stand pat. Return immediately if static value is at least beta + if (bestValue >= beta) + { + if (!tte) + TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, DEPTH_NONE, MOVE_NONE, ss->eval, ei.kingDanger[pos.side_to_move()]); - if (bestValue >= beta) - { - // Store the score to avoid a future costly evaluation() call - if (!isCheck && !tte) - TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, Depth(-127*OnePly), MOVE_NONE, ss->eval, ei.kingDanger[pos.side_to_move()]); + return bestValue; + } - return bestValue; - } + if (PvNode && bestValue > alpha) + alpha = bestValue; - if (PvNode && bestValue > alpha) - alpha = bestValue; + // If we are near beta then try to get a cutoff pushing checks a bit further + deepChecks = (depth == -ONE_PLY && bestValue >= beta - PawnValueMidgame / 8); - // If we are near beta then try to get a cutoff pushing checks a bit further - bool deepChecks = (depth == -OnePly && staticValue >= beta - PawnValueMidgame / 8); + // Futility pruning parameters, not needed when in check + futilityBase = bestValue + FutilityMarginQS + ei.kingDanger[pos.side_to_move()]; + enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame; + } // Initialize a MovePicker object for the current position, and prepare // to search the moves. Because the depth is <= 0 here, only captures, - // queen promotions and checks (only if depth == 0 or depth == -OnePly + // queen promotions and checks (only if depth == 0 or depth == -ONE_PLY // and we are near beta) will be generated. - MovePicker mp = MovePicker(pos, ttMove, deepChecks ? Depth(0) : depth, H); + MovePicker mp = MovePicker(pos, ttMove, deepChecks ? DEPTH_ZERO : depth, H); CheckInfo ci(pos); - enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame; - futilityBase = staticValue + FutilityMarginQS + ei.kingDanger[pos.side_to_move()]; // Loop through the moves until no moves remain or a beta cutoff occurs while ( alpha < beta @@ -1548,27 +1482,18 @@ namespace { moveIsCheck = pos.move_is_check(move, ci); - // Update current move - moveCount++; - ss->currentMove = move; - // Futility pruning if ( !PvNode - && enoughMaterial && !isCheck && !moveIsCheck && move != ttMove + && enoughMaterial && !move_is_promotion(move) && !pos.move_is_passed_pawn_push(move)) { - // Can only decrease from previous move because of - // MVV ordering so we don't need to recheck. - if (futilityValue < alpha) - continue; - futilityValue = futilityBase + pos.endgame_value_of_piece_on(move_to(move)) - + (move_is_ep(move) ? PawnValueEndgame : Value(0)); + + (move_is_ep(move) ? PawnValueEndgame : VALUE_ZERO); if (futilityValue < alpha) { @@ -1593,9 +1518,12 @@ namespace { && pos.see_sign(move) < 0) continue; + // Update current move + ss->currentMove = move; + // Make and search the move pos.do_move(move, st, ci, moveIsCheck); - value = -qsearch(pos, ss+1, -beta, -alpha, depth-OnePly); + value = -qsearch(pos, ss+1, -beta, -alpha, depth-ONE_PLY, ply+1); pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); @@ -1607,35 +1535,25 @@ namespace { if (value > alpha) { alpha = value; - update_pv(ss, ply); + ss->bestMove = move; } } } // All legal moves have been searched. A special case: If we're in check // and no legal moves were found, it is checkmate. - if (!moveCount && isCheck) // Mate! + if (isCheck && bestValue == -VALUE_INFINITE) return value_mated_in(ply); // Update transposition table - Depth d = (depth == Depth(0) ? Depth(0) : Depth(-1)); - if (bestValue <= oldAlpha) - { - // If bestValue isn't changed it means it is still the static evaluation - // of the node, so keep this info to avoid a future evaluation() call. - TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, d, MOVE_NONE, ss->eval, ei.kingDanger[pos.side_to_move()]); - } - else if (bestValue >= beta) - { - move = ss->pv[ply]; - TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, d, move, ss->eval, ei.kingDanger[pos.side_to_move()]); + Depth d = (depth == DEPTH_ZERO ? DEPTH_ZERO : DEPTH_ZERO - ONE_PLY); + ValueType vt = (bestValue <= oldAlpha ? VALUE_TYPE_UPPER : bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT); + TT.store(pos.get_key(), value_to_tt(bestValue, ply), vt, d, ss->bestMove, ss->eval, ei.kingDanger[pos.side_to_move()]); - // Update killers only for good checking moves - if (!pos.move_is_capture_or_promotion(move)) - update_killers(move, ss); - } - else - TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, d, ss->pv[ply], ss->eval, ei.kingDanger[pos.side_to_move()]); + // Update killers only for checking moves that fails high + if ( bestValue >= beta + && !pos.move_is_capture_or_promotion(ss->bestMove)) + update_killers(ss->bestMove, ss); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); @@ -1654,8 +1572,8 @@ namespace { template void sp_search(SplitPoint* sp, int threadID) { - assert(threadID >= 0 && threadID < TM.active_threads()); - assert(TM.active_threads() > 1); + assert(threadID >= 0 && threadID < ThreadsMgr.active_threads()); + assert(ThreadsMgr.active_threads() > 1); StateInfo st; Move move; @@ -1668,7 +1586,6 @@ namespace { Position pos(*sp->pos, threadID); CheckInfo ci(pos); - int ply = pos.ply(); SearchStack* ss = sp->sstack[threadID] + 1; isCheck = pos.is_check(); @@ -1678,7 +1595,7 @@ namespace { while ( sp->bestValue < sp->beta && (move = sp->mp->get_next_move()) != MOVE_NONE - && !TM.thread_should_stop(threadID)) + && !ThreadsMgr.thread_should_stop(threadID)) { moveCount = ++sp->moveCount; lock_release(&(sp->lock)); @@ -1690,7 +1607,7 @@ namespace { // Step 11. Decide the new search depth ext = extension(pos, move, captureOrPromotion, moveIsCheck, false, sp->mateThreat, &dangerous); - newDepth = sp->depth - OnePly + ext; + newDepth = sp->depth - ONE_PLY + ext; // Update current move ss->currentMove = move; @@ -1704,7 +1621,7 @@ namespace { { // Move count based pruning if ( moveCount >= futility_move_count(sp->depth) - && !(ss->threatMove && connected_threat(pos, move, ss->threatMove)) + && !(sp->threatMove && connected_threat(pos, move, sp->threatMove)) && sp->bestValue > value_mated_in(PLY_MAX)) { lock_grab(&(sp->lock)); @@ -1743,39 +1660,40 @@ namespace { { Value localAlpha = sp->alpha; Depth d = newDepth - ss->reduction; - value = d < OnePly ? -qsearch(pos, ss+1, -(localAlpha+1), -localAlpha, Depth(0)) - : - search(pos, ss+1, -(localAlpha+1), -localAlpha, d); + value = d < ONE_PLY ? -qsearch(pos, ss+1, -(localAlpha+1), -localAlpha, DEPTH_ZERO, sp->ply+1) + : - search(pos, ss+1, -(localAlpha+1), -localAlpha, d, sp->ply+1); + doFullDepthSearch = (value > localAlpha); } // The move failed high, but if reduction is very big we could // face a false positive, retry with a less aggressive reduction, // if the move fails high again then go with full depth search. - if (doFullDepthSearch && ss->reduction > 2 * OnePly) + if (doFullDepthSearch && ss->reduction > 2 * ONE_PLY) { - assert(newDepth - OnePly >= OnePly); + assert(newDepth - ONE_PLY >= ONE_PLY); - ss->reduction = OnePly; + ss->reduction = ONE_PLY; Value localAlpha = sp->alpha; - value = -search(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth-ss->reduction); + value = -search(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth-ss->reduction, sp->ply+1); doFullDepthSearch = (value > localAlpha); } - ss->reduction = Depth(0); // Restore original reduction + ss->reduction = DEPTH_ZERO; // Restore original reduction } // Step 15. Full depth search if (doFullDepthSearch) { Value localAlpha = sp->alpha; - value = newDepth < OnePly ? -qsearch(pos, ss+1, -(localAlpha+1), -localAlpha, Depth(0)) - : - search(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth); + value = newDepth < ONE_PLY ? -qsearch(pos, ss+1, -(localAlpha+1), -localAlpha, DEPTH_ZERO, sp->ply+1) + : - search(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth, sp->ply+1); // Step extra. pv search (only in PV nodes) // Search only for possible new PV nodes, if instead value >= beta then // parent node fails low with value <= alpha and tries another move. if (PvNode && value > localAlpha && value < sp->beta) - value = newDepth < OnePly ? -qsearch(pos, ss+1, -sp->beta, -sp->alpha, Depth(0)) - : - search(pos, ss+1, -sp->beta, -sp->alpha, newDepth); + value = newDepth < ONE_PLY ? -qsearch(pos, ss+1, -sp->beta, -sp->alpha, DEPTH_ZERO, sp->ply+1) + : - search(pos, ss+1, -sp->beta, -sp->alpha, newDepth, sp->ply+1); } // Step 16. Undo move @@ -1786,7 +1704,7 @@ namespace { // Step 17. Check for new best move lock_grab(&(sp->lock)); - if (value > sp->bestValue && !TM.thread_should_stop(threadID)) + if (value > sp->bestValue && !ThreadsMgr.thread_should_stop(threadID)) { sp->bestValue = value; @@ -1798,7 +1716,7 @@ namespace { if (PvNode && value < sp->beta) // This guarantees that always: sp->alpha < sp->beta sp->alpha = value; - sp_update_pv(sp->parentSstack, ss, ply); + sp->parentSstack->bestMove = ss->bestMove = move; } } } @@ -1810,43 +1728,6 @@ namespace { lock_release(&(sp->lock)); } - // update_pv() is called whenever a search returns a value > alpha. - // It updates the PV in the SearchStack object corresponding to the - // current node. - - void update_pv(SearchStack* ss, int ply) { - - assert(ply >= 0 && ply < PLY_MAX); - - int p; - - ss->pv[ply] = ss->currentMove; - - for (p = ply + 1; (ss+1)->pv[p] != MOVE_NONE; p++) - ss->pv[p] = (ss+1)->pv[p]; - - ss->pv[p] = MOVE_NONE; - } - - - // sp_update_pv() is a variant of update_pv for use at split points. The - // difference between the two functions is that sp_update_pv also updates - // the PV at the parent node. - - void sp_update_pv(SearchStack* pss, SearchStack* ss, int ply) { - - assert(ply >= 0 && ply < PLY_MAX); - - int p; - - ss->pv[ply] = pss->pv[ply] = ss->currentMove; - - for (p = ply + 1; (ss+1)->pv[p] != MOVE_NONE; p++) - ss->pv[p] = pss->pv[p] = (ss+1)->pv[p]; - - ss->pv[p] = pss->pv[p] = MOVE_NONE; - } - // connected_moves() tests whether two moves are 'connected' in the sense // that the first move somehow made the second move possible (for instance @@ -1904,8 +1785,8 @@ namespace { } - // value_is_mate() checks if the given value is a mate one - // eventually compensated for the ply. + // value_is_mate() checks if the given value is a mate one eventually + // compensated for the ply. bool value_is_mate(Value value) { @@ -1916,15 +1797,43 @@ namespace { } - // move_is_killer() checks if the given move is among the - // killer moves of that ply. + // value_to_tt() adjusts a mate score from "plies to mate from the root" to + // "plies to mate from the current ply". Non-mate scores are unchanged. + // The function is called before storing a value to the transposition table. + + Value value_to_tt(Value v, int ply) { + + if (v >= value_mate_in(PLY_MAX)) + return v + ply; + + if (v <= value_mated_in(PLY_MAX)) + return v - ply; + + return v; + } + + + // value_from_tt() is the inverse of value_to_tt(): It adjusts a mate score from + // the transposition table to a mate score corrected for the current ply. + + Value value_from_tt(Value v, int ply) { + + if (v >= value_mate_in(PLY_MAX)) + return v - ply; + + if (v <= value_mated_in(PLY_MAX)) + return v + ply; + + return v; + } + + + // move_is_killer() checks if the given move is among the killer moves bool move_is_killer(Move m, SearchStack* ss) { - const Move* k = ss->killers; - for (int i = 0; i < KILLER_MAX; i++, k++) - if (*k == m) - return true; + if (ss->killers[0] == m || ss->killers[1] == m) + return true; return false; } @@ -1942,12 +1851,12 @@ namespace { assert(m != MOVE_NONE); - Depth result = Depth(0); + Depth result = DEPTH_ZERO; *dangerous = moveIsCheck | singleEvasion | mateThreat; if (*dangerous) { - if (moveIsCheck) + if (moveIsCheck && pos.see_sign(m) >= 0) result += CheckExtension[PvNode]; if (singleEvasion) @@ -1975,7 +1884,7 @@ namespace { if ( captureOrPromotion && pos.type_of_piece_on(move_to(m)) != PAWN && ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) - - pos.midgame_value_of_piece_on(move_to(m)) == Value(0)) + - pos.midgame_value_of_piece_on(move_to(m)) == VALUE_ZERO) && !move_is_promotion(m) && !move_is_ep(m)) { @@ -1988,11 +1897,11 @@ namespace { && pos.type_of_piece_on(move_to(m)) != PAWN && pos.see_sign(m) >= 0) { - result += OnePly/2; + result += ONE_PLY / 2; *dangerous = true; } - return Min(result, OnePly); + return Min(result, ONE_PLY); } @@ -2058,8 +1967,7 @@ namespace { Value refine_eval(const TTEntry* tte, Value defaultEval, int ply) { - if (!tte) - return defaultEval; + assert(tte); Value v = value_from_tt(tte->value(), ply); @@ -2101,9 +2009,7 @@ namespace { if (m == ss->killers[0]) return; - for (int i = KILLER_MAX - 1; i > 0; i--) - ss->killers[i] = ss->killers[i - 1]; - + ss->killers[1] = ss->killers[0]; ss->killers[0] = m; } @@ -2116,9 +2022,8 @@ namespace { if ( m != MOVE_NULL && before != VALUE_NONE && after != VALUE_NONE - && pos.captured_piece() == NO_PIECE_TYPE - && !move_is_castle(m) - && !move_is_promotion(m)) + && pos.captured_piece_type() == PIECE_TYPE_NONE + && !move_is_special(m)) H.set_gain(pos.piece_on(move_to(m)), move_to(m), -(before + after)); } @@ -2132,12 +2037,26 @@ namespace { } + // value_to_uci() converts a value to a string suitable for use with the UCI protocol + + std::string value_to_uci(Value v) { + + std::stringstream s; + + if (abs(v) < VALUE_MATE - PLY_MAX * ONE_PLY) + s << "cp " << int(v) * 100 / int(PawnValueMidgame); // Scale to pawn = 100 + else + s << "mate " << (v > 0 ? (VALUE_MATE - v + 1) / 2 : -(VALUE_MATE + v) / 2 ); + + return s.str(); + } + // nps() computes the current nodes/second count. int nps() { int t = current_search_time(); - return (t > 0 ? int((TM.nodes_searched() * 1000) / t) : 0); + return (t > 0 ? int((ThreadsMgr.nodes_searched() * 1000) / t) : 0); } @@ -2194,8 +2113,8 @@ namespace { if (dbg_show_hit_rate) dbg_print_hit_rate(); - cout << "info nodes " << TM.nodes_searched() << " nps " << nps() - << " time " << t << " hashfull " << TT.full() << endl; + cout << "info nodes " << ThreadsMgr.nodes_searched() << " nps " << nps() + << " time " << t << endl; } // Should we stop the search? @@ -2204,14 +2123,14 @@ namespace { bool stillAtFirstMove = FirstRootMove && !AspirationFailLow - && t > MaxSearchTime + ExtraSearchTime; + && t > TimeMgr.available_time(); - bool noMoreTime = t > AbsoluteMaxSearchTime + bool noMoreTime = t > TimeMgr.maximum_time() || stillAtFirstMove; if ( (Iteration >= 3 && UseTimeManagement && noMoreTime) || (ExactMaxTime && t >= ExactMaxTime) - || (Iteration >= 3 && MaxNodes && TM.nodes_searched() >= MaxNodes)) + || (Iteration >= 3 && MaxNodes && ThreadsMgr.nodes_searched() >= MaxNodes)) AbortSearch = true; } @@ -2227,9 +2146,9 @@ namespace { bool stillAtFirstMove = FirstRootMove && !AspirationFailLow - && t > MaxSearchTime + ExtraSearchTime; + && t > TimeMgr.available_time(); - bool noMoreTime = t > AbsoluteMaxSearchTime + bool noMoreTime = t > TimeMgr.maximum_time() || stillAtFirstMove; if (Iteration >= 3 && UseTimeManagement && (noMoreTime || StopOnPonderhit)) @@ -2246,12 +2165,10 @@ namespace { { ss->excludedMove = MOVE_NONE; ss->skipNullMove = false; + ss->reduction = DEPTH_ZERO; if (i < 3) - { - ss->init(i); - ss->initKillers(); - } + ss->killers[0] = ss->killers[1] = ss->mateKiller = MOVE_NONE; } } @@ -2286,33 +2203,87 @@ namespace { // print_pv_info() prints to standard output and eventually to log file information on // the current PV line. It is called at each iteration or after a new pv is found. - void print_pv_info(const Position& pos, SearchStack* ss, Value alpha, Value beta, Value value) { + void print_pv_info(const Position& pos, Move pv[], Value alpha, Value beta, Value value) { cout << "info depth " << Iteration - << " score " << value_to_string(value) - << ((value >= beta) ? " lowerbound" : - ((value <= alpha)? " upperbound" : "")) + << " score " << value_to_uci(value) + << (value >= beta ? " lowerbound" : value <= alpha ? " upperbound" : "") << " time " << current_search_time() - << " nodes " << TM.nodes_searched() + << " nodes " << ThreadsMgr.nodes_searched() << " nps " << nps() << " pv "; - for (int j = 0; ss->pv[j] != MOVE_NONE && j < PLY_MAX; j++) - cout << ss->pv[j] << " "; + for (Move* m = pv; *m != MOVE_NONE; m++) + cout << *m << " "; cout << endl; if (UseLogFile) { - ValueType type = (value >= beta ? VALUE_TYPE_LOWER - : (value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT)); + ValueType t = value >= beta ? VALUE_TYPE_LOWER : + value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT; LogFile << pretty_pv(pos, current_search_time(), Iteration, - TM.nodes_searched(), value, type, ss->pv) << endl; + ThreadsMgr.nodes_searched(), value, t, pv) << endl; } } + // insert_pv_in_tt() is called at the end of a search iteration, and inserts + // the PV back into the TT. This makes sure the old PV moves are searched + // first, even if the old TT entries have been overwritten. + + void insert_pv_in_tt(const Position& pos, Move pv[]) { + + StateInfo st; + TTEntry* tte; + Position p(pos, pos.thread()); + EvalInfo ei; + Value v; + + for (int i = 0; pv[i] != MOVE_NONE; i++) + { + tte = TT.retrieve(p.get_key()); + if (!tte || tte->move() != pv[i]) + { + v = (p.is_check() ? VALUE_NONE : evaluate(p, ei)); + TT.store(p.get_key(), VALUE_NONE, VALUE_TYPE_NONE, DEPTH_NONE, pv[i], v, ei.kingDanger[pos.side_to_move()]); + } + p.do_move(pv[i], st); + } + } + + + // extract_pv_from_tt() builds a PV by adding moves from the transposition table. + // We consider also failing high nodes and not only VALUE_TYPE_EXACT nodes. This + // allow to always have a ponder move even when we fail high at root and also a + // long PV to print that is important for position analysis. + + void extract_pv_from_tt(const Position& pos, Move bestMove, Move pv[]) { + + StateInfo st; + TTEntry* tte; + Position p(pos, pos.thread()); + int ply = 0; + + assert(bestMove != MOVE_NONE); + + pv[ply] = bestMove; + p.do_move(pv[ply++], st); + + while ( (tte = TT.retrieve(p.get_key())) != NULL + && tte->move() != MOVE_NONE + && move_is_legal(p, tte->move()) + && ply < PLY_MAX + && (!p.is_draw() || ply < 2)) + { + pv[ply] = tte->move(); + p.do_move(pv[ply++], st); + } + pv[ply] = MOVE_NONE; + } + + // init_thread() is the function which is called when a new thread is // launched. It simply calls the idle_loop() function with the supplied // threadID. There are two versions of this function; one for POSIX @@ -2322,7 +2293,7 @@ namespace { void* init_thread(void *threadID) { - TM.idle_loop(*(int*)threadID, NULL); + ThreadsMgr.idle_loop(*(int*)threadID, NULL); return NULL; } @@ -2330,7 +2301,7 @@ namespace { DWORD WINAPI init_thread(LPVOID threadID) { - TM.idle_loop(*(int*)threadID, NULL); + ThreadsMgr.idle_loop(*(int*)threadID, NULL); return 0; } @@ -2468,8 +2439,8 @@ namespace { #endif // Initialize global locks - lock_init(&MPLock, NULL); - lock_init(&WaitLock, NULL); + lock_init(&MPLock); + lock_init(&WaitLock); #if !defined(_MSC_VER) pthread_cond_init(&WaitCond, NULL); @@ -2478,10 +2449,10 @@ namespace { SitIdleEvent[i] = CreateEvent(0, FALSE, FALSE, 0); #endif - // Initialize SplitPointStack locks + // Initialize splitPoints[] locks for (i = 0; i < MAX_THREADS; i++) - for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++) - lock_init(&(SplitPointStack[i][j].lock), NULL); + for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++) + lock_init(&(threads[i].splitPoints[j].lock)); // Will be set just before program exits to properly end the threads AllThreadsShouldExit = false; @@ -2535,8 +2506,8 @@ namespace { // Now we can safely destroy the locks for (int i = 0; i < MAX_THREADS; i++) - for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++) - lock_destroy(&(SplitPointStack[i][j].lock)); + for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++) + lock_destroy(&(threads[i].splitPoints[j].lock)); lock_destroy(&WaitLock); lock_destroy(&MPLock); @@ -2589,7 +2560,7 @@ namespace { // Apply the "helpful master" concept if possible. Use localActiveSplitPoints // that is known to be > 0, instead of threads[slave].activeSplitPoints that // could have been set to 0 by another thread leading to an out of bound access. - if (SplitPointStack[slave][localActiveSplitPoints - 1].slaves[master]) + if (threads[slave].splitPoints[localActiveSplitPoints - 1].slaves[master]) return true; return false; @@ -2623,65 +2594,68 @@ namespace { // split() returns. template - void ThreadsManager::split(const Position& p, SearchStack* ss, Value* alpha, const Value beta, - Value* bestValue, Depth depth, bool mateThreat, int* moveCount, - MovePicker* mp, bool pvNode) { + void ThreadsManager::split(const Position& p, SearchStack* ss, int ply, Value* alpha, + const Value beta, Value* bestValue, Depth depth, Move threatMove, + bool mateThreat, int* moveCount, MovePicker* mp, bool pvNode) { assert(p.is_ok()); + assert(ply > 0 && ply < PLY_MAX); assert(*bestValue >= -VALUE_INFINITE); assert(*bestValue <= *alpha); assert(*alpha < beta); assert(beta <= VALUE_INFINITE); - assert(depth > Depth(0)); + assert(depth > DEPTH_ZERO); assert(p.thread() >= 0 && p.thread() < ActiveThreads); assert(ActiveThreads > 1); - int master = p.thread(); + int i, master = p.thread(); + Thread& masterThread = threads[master]; lock_grab(&MPLock); // If no other thread is available to help us, or if we have too many // active split points, don't split. if ( !available_thread_exists(master) - || threads[master].activeSplitPoints >= ACTIVE_SPLIT_POINTS_MAX) + || masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS) { lock_release(&MPLock); return; } // Pick the next available split point object from the split point stack - SplitPoint* splitPoint = &SplitPointStack[master][threads[master].activeSplitPoints]; + SplitPoint& splitPoint = masterThread.splitPoints[masterThread.activeSplitPoints++]; // Initialize the split point object - splitPoint->parent = threads[master].splitPoint; - splitPoint->stopRequest = false; - splitPoint->depth = depth; - splitPoint->mateThreat = mateThreat; - splitPoint->alpha = *alpha; - splitPoint->beta = beta; - splitPoint->pvNode = pvNode; - splitPoint->bestValue = *bestValue; - splitPoint->mp = mp; - splitPoint->moveCount = *moveCount; - splitPoint->pos = &p; - splitPoint->parentSstack = ss; - for (int i = 0; i < ActiveThreads; i++) - splitPoint->slaves[i] = 0; - - threads[master].splitPoint = splitPoint; - threads[master].activeSplitPoints++; + splitPoint.parent = masterThread.splitPoint; + splitPoint.stopRequest = false; + splitPoint.ply = ply; + splitPoint.depth = depth; + splitPoint.threatMove = threatMove; + splitPoint.mateThreat = mateThreat; + splitPoint.alpha = *alpha; + splitPoint.beta = beta; + splitPoint.pvNode = pvNode; + splitPoint.bestValue = *bestValue; + splitPoint.mp = mp; + splitPoint.moveCount = *moveCount; + splitPoint.pos = &p; + splitPoint.parentSstack = ss; + for (i = 0; i < ActiveThreads; i++) + splitPoint.slaves[i] = 0; + + masterThread.splitPoint = &splitPoint; // If we are here it means we are not available - assert(threads[master].state != THREAD_AVAILABLE); + assert(masterThread.state != THREAD_AVAILABLE); int workersCnt = 1; // At least the master is included // Allocate available threads setting state to THREAD_BOOKED - for (int i = 0; !Fake && i < ActiveThreads && workersCnt < MaxThreadsPerSplitPoint; i++) + for (i = 0; !Fake && i < ActiveThreads && workersCnt < MaxThreadsPerSplitPoint; i++) if (thread_is_available(i, master)) { threads[i].state = THREAD_BOOKED; - threads[i].splitPoint = splitPoint; - splitPoint->slaves[i] = 1; + threads[i].splitPoint = &splitPoint; + splitPoint.slaves[i] = 1; workersCnt++; } @@ -2692,10 +2666,10 @@ namespace { // Tell the threads that they have work to do. This will make them leave // their idle loop. But before copy search stack tail for each thread. - for (int i = 0; i < ActiveThreads; i++) - if (i == master || splitPoint->slaves[i]) + for (i = 0; i < ActiveThreads; i++) + if (i == master || splitPoint.slaves[i]) { - memcpy(splitPoint->sstack[i], ss - 1, 4 * sizeof(SearchStack)); + memcpy(splitPoint.sstack[i], ss - 1, 4 * sizeof(SearchStack)); assert(i == master || threads[i].state == THREAD_BOOKED); @@ -2707,16 +2681,16 @@ namespace { // THREAD_WORKISWAITING. We send the split point as a second parameter to the // idle loop, which means that the main thread will return from the idle // loop when all threads have finished their work at this split point. - idle_loop(master, splitPoint); + idle_loop(master, &splitPoint); // We have returned from the idle loop, which means that all threads are // finished. Update alpha and bestValue, and return. lock_grab(&MPLock); - *alpha = splitPoint->alpha; - *bestValue = splitPoint->bestValue; - threads[master].activeSplitPoints--; - threads[master].splitPoint = splitPoint->parent; + *alpha = splitPoint.alpha; + *bestValue = splitPoint.bestValue; + masterThread.activeSplitPoints--; + masterThread.splitPoint = splitPoint.parent; lock_release(&MPLock); } @@ -2770,6 +2744,11 @@ namespace { StateInfo st; bool includeAllMoves = (searchMoves[0] == MOVE_NONE); + // Initialize search stack + init_ss_array(ss, PLY_MAX_PLUS_2); + ss[0].currentMove = ss[0].bestMove = MOVE_NONE; + ss[0].eval = VALUE_NONE; + // Generate all legal moves MoveStack* last = generate_moves(pos, mlist); @@ -2785,10 +2764,10 @@ namespace { continue; // Find a quick score for the move - init_ss_array(ss, PLY_MAX_PLUS_2); pos.do_move(cur->move, st); + ss[0].currentMove = cur->move; moves[count].move = cur->move; - moves[count].score = -qsearch(pos, ss+1, -VALUE_INFINITE, VALUE_INFINITE, Depth(0)); + moves[count].score = -qsearch(pos, ss+1, -VALUE_INFINITE, VALUE_INFINITE, DEPTH_ZERO, 1); moves[count].pv[0] = cur->move; moves[count].pv[1] = MOVE_NONE; pos.undo_move(cur->move);