X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fsearch.cpp;h=5d803949112423dfe4b3ebe1570437d945b6b1c2;hp=b420fb905203770005d92c9725b27ae99c4b938f;hb=5ea816792175ec53523035673dad703e7be1f662;hpb=0eedf47661784f86c9b9c927d2d7b9ba51e551d6 diff --git a/src/search.cpp b/src/search.cpp index b420fb90..5d803949 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -119,7 +119,6 @@ namespace { inline Move get_move_pv(int moveNum, int i) const; inline int64_t get_move_cumulative_nodes(int moveNum) const; inline int move_count() const; - Move scan_for_easy_move() const; inline void sort(); void sort_multipv(int n); @@ -172,12 +171,16 @@ namespace { const bool PruneDefendingMoves = false; const bool PruneBlockingMoves = false; + // If the TT move is at least SingleReplyMargin better then the + // remaining ones we will extend it. + const Value SingleReplyMargin = Value(0x64); + // Margins for futility pruning in the quiescence search, and at frontier // and near frontier nodes. const Value FutilityMarginQS = Value(0x80); // Each move futility margin is decreased - const Value IncrementalFutilityMargin = Value(0xA); + const Value IncrementalFutilityMargin = Value(0x8); // Remaining depth: 1 ply 1.5 ply 2 ply 2.5 ply 3 ply 3.5 ply const Value FutilityMargins[12] = { Value(0x100), Value(0x120), Value(0x200), Value(0x220), Value(0x250), Value(0x270), @@ -277,7 +280,7 @@ namespace { Value id_loop(const Position& pos, Move searchMoves[]); Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value alpha, Value beta); Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID); - Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID); + Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID, Move excludedMove = MOVE_NONE); Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID); void sp_search(SplitPoint* sp, int threadID); void sp_search_pv(SplitPoint* sp, int threadID); @@ -523,23 +526,36 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, << " moves to go: " << movesToGo << std::endl; - // We're ready to start thinking. Call the iterative deepening loop function - // - // FIXME we really need to cleanup all this LSN ugliness - if (!loseOnTime) + // LSN filtering. Used only for developing purpose. Disabled by default. + if ( UseLSNFiltering + && loseOnTime) { - Value v = id_loop(pos, searchMoves); - loseOnTime = ( UseLSNFiltering - && myTime < LSNTime - && myIncrement == 0 - && v < -LSNValue); + // Step 2. If after last move we decided to lose on time, do it now! + while (SearchStartTime + myTime + 1000 > get_system_time()) + ; // wait here } - else + + // We're ready to start thinking. Call the iterative deepening loop function + Value v = id_loop(pos, searchMoves); + + // LSN filtering. Used only for developing purpose. Disabled by default. + if (UseLSNFiltering) { - loseOnTime = false; // reset for next match - while (SearchStartTime + myTime + 1000 > get_system_time()) - ; // wait here - id_loop(pos, searchMoves); // to fail gracefully + // Step 1. If this is sudden death game and our position is hopeless, + // decide to lose on time. + if ( !loseOnTime // If we already lost on time, go to step 3. + && myTime < LSNTime + && myIncrement == 0 + && movesToGo == 0 + && v < -LSNValue) + { + loseOnTime = true; + } + else if (loseOnTime) + { + // Step 3. Now after stepping over the time limit, reset flag for next match. + loseOnTime = false; + } } if (UseLogFile) @@ -681,7 +697,11 @@ namespace { IterationInfo[1] = IterationInfoType(rml.get_move_score(0), rml.get_move_score(0)); Iteration = 1; - Move EasyMove = rml.scan_for_easy_move(); + // Is one move significantly better than others after initial scoring ? + Move EasyMove = MOVE_NONE; + if ( rml.move_count() == 1 + || rml.get_move_score(0) > rml.get_move_score(1) + EasyMoveMargin) + EasyMove = rml.get_move(0); // Iterative deepening loop while (Iteration < PLY_MAX) @@ -798,7 +818,6 @@ namespace { if (stopSearch) { - //FIXME: Implement fail-low emergency measures if (!PonderSearch) break; else @@ -1132,12 +1151,37 @@ namespace { moveIsCheck = pos.move_is_check(move, ci); captureOrPromotion = pos.move_is_capture_or_promotion(move); - movesSearched[moveCount++] = ss[ply].currentMove = move; - // Decide the new search depth ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, singleReply, mateThreat, &dangerous); + + // We want to extend the TT move if it is much better then remaining ones. + // To verify this we do a reduced search on all the other moves but the ttMove, + // if result is lower then TT value minus a margin then we assume ttMove is the + // only one playable. It is a kind of relaxed single reply extension. + if ( depth >= 8 * OnePly + && move == ttMove + && ext < OnePly + && is_lower_bound(tte->type()) + && tte->depth() >= depth - 3 * OnePly) + { + Value ttValue = value_from_tt(tte->value(), ply); + + if (abs(ttValue) < VALUE_KNOWN_WIN) + { + Value excValue = search(pos, ss, ttValue - SingleReplyMargin, depth / 2, ply, false, threadID, ttMove); + + // If search result is well below the foreseen score of the ttMove then we + // assume ttMove is the only one realistically playable and we extend it. + if (excValue < ttValue - SingleReplyMargin) + ext = OnePly; + } + } + newDepth = depth - OnePly + ext; + // Update current move + movesSearched[moveCount++] = ss[ply].currentMove = move; + // Make and search the move pos.do_move(move, st, ci, moveIsCheck); @@ -1251,7 +1295,7 @@ namespace { // search() is the search function for zero-width nodes. Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, - int ply, bool allowNullmove, int threadID) { + int ply, bool allowNullmove, int threadID, Move excludedMove) { assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE); assert(ply >= 0 && ply < PLY_MAX); @@ -1293,8 +1337,12 @@ namespace { if (value_mate_in(ply + 1) < beta) return beta - 1; + // We don't want the score of a partial search to overwrite a previous full search + // TT value, so we use a different position key in case of an excluded move exsists. + Key posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key(); + // Transposition table lookup - tte = TT.retrieve(pos.get_key()); + tte = TT.retrieve(posKey); ttMove = (tte ? tte->move() : MOVE_NONE); if (tte && ok_to_use_TT(tte, depth, beta, ply)) @@ -1388,24 +1436,55 @@ namespace { if (tte && (tte->type() & VALUE_TYPE_EVAL)) futilityValue = value_from_tt(tte->value(), ply) + FutilityMargins[int(depth) - 2]; - // Loop through all legal moves until no moves remain or a beta cutoff - // occurs. + // Move count pruning limit + const int MCLimit = 3 + (1 << (3*int(depth)/8)); + + // Loop through all legal moves until no moves remain or a beta cutoff occurs while ( bestValue < beta && (move = mp.get_next_move()) != MOVE_NONE && !thread_should_stop(threadID)) { assert(move_is_ok(move)); + if (move == excludedMove) + continue; + singleReply = (isCheck && mp.number_of_evasions() == 1); moveIsCheck = pos.move_is_check(move, ci); captureOrPromotion = pos.move_is_capture_or_promotion(move); - movesSearched[moveCount++] = ss[ply].currentMove = move; - // Decide the new search depth ext = extension(pos, move, false, captureOrPromotion, moveIsCheck, singleReply, mateThreat, &dangerous); + + // We want to extend the TT move if it is much better then remaining ones. + // To verify this we do a reduced search on all the other moves but the ttMove, + // if result is lower then TT value minus a margin then we assume ttMove is the + // only one playable. It is a kind of relaxed single reply extension. + if ( depth >= 8 * OnePly + && !excludedMove // do not allow recursive single-reply search + && move == ttMove + && ext < OnePly + && is_lower_bound(tte->type()) + && tte->depth() >= depth - 3 * OnePly) + { + Value ttValue = value_from_tt(tte->value(), ply); + + if (abs(ttValue) < VALUE_KNOWN_WIN) + { + Value excValue = search(pos, ss, ttValue - SingleReplyMargin, depth / 2, ply, false, threadID, ttMove); + + // If search result is well below the foreseen score of the ttMove then we + // assume ttMove is the only one realistically playable and we extend it. + if (excValue < ttValue - SingleReplyMargin) + ext = OnePly; + } + } + newDepth = depth - OnePly + ext; + // Update current move + movesSearched[moveCount++] = ss[ply].currentMove = move; + // Futility pruning if ( useFutilityPruning && !dangerous @@ -1413,7 +1492,7 @@ namespace { && move != ttMove) { // History pruning. See ok_to_prune() definition - if ( moveCount >= 2 + int(depth) + if ( moveCount >= MCLimit && ok_to_prune(pos, move, ss[ply].threatMove, depth) && bestValue > value_mated_in(PLY_MAX)) continue; @@ -1423,8 +1502,7 @@ namespace { { if (futilityValue == VALUE_NONE) futilityValue = evaluate(pos, ei, threadID) - + FutilityMargins[int(depth) - 2] - + 4*IncrementalFutilityMargin; + + 64*(2+bitScanReverse32(int(depth) * int(depth))); futilityValueScaled = futilityValue - moveCount * IncrementalFutilityMargin; @@ -1491,7 +1569,7 @@ namespace { // All legal moves have been searched. A special case: If there were // no legal moves, it must be mate or stalemate. if (moveCount == 0) - return (pos.is_check() ? value_mated_in(ply) : VALUE_DRAW); + return excludedMove ? beta - 1 : (pos.is_check() ? value_mated_in(ply) : VALUE_DRAW); // If the search is not aborted, update the transposition table, // history counters, and killer moves. @@ -1499,7 +1577,7 @@ namespace { return bestValue; if (bestValue < beta) - TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE); + TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE); else { BetaCounter.add(pos.side_to_move(), depth, threadID); @@ -1509,7 +1587,7 @@ namespace { update_history(pos, move, depth, movesSearched, moveCount); update_killers(move, ss[ply]); } - TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move); + TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move); } assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); @@ -2054,7 +2132,7 @@ namespace { moves[count].score = -qsearch(pos, ss, -VALUE_INFINITE, VALUE_INFINITE, Depth(0), 1, 0); pos.undo_move(moves[count].move); moves[count].pv[0] = moves[count].move; - moves[count].pv[1] = MOVE_NONE; // FIXME + moves[count].pv[1] = MOVE_NONE; count++; } sort(); @@ -2105,28 +2183,6 @@ namespace { } - // RootMoveList::scan_for_easy_move() is called at the end of the first - // iteration, and is used to detect an "easy move", i.e. a move which appears - // to be much bester than all the rest. If an easy move is found, the move - // is returned, otherwise the function returns MOVE_NONE. It is very - // important that this function is called at the right moment: The code - // assumes that the first iteration has been completed and the moves have - // been sorted. This is done in RootMoveList c'tor. - - Move RootMoveList::scan_for_easy_move() const { - - assert(count); - - if (count == 1) - return get_move(0); - - // moves are sorted so just consider the best and the second one - if (get_move_score(0) > get_move_score(1) + EasyMoveMargin) - return get_move(0); - - return MOVE_NONE; - } - // RootMoveList::sort() sorts the root move list at the beginning of a new // iteration.