X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fsearch.cpp;h=751049cd4557a82f789aa367cbe601c771f01353;hp=20dbd23f796763c199f4e6d0fb027dd03254f00d;hb=339e1b49f619ceffa75019e196adf4de74b32cce;hpb=2e6839c9a0bd5d071f8f03f224ed59c1c665ead8 diff --git a/src/search.cpp b/src/search.cpp index 20dbd23f..751049cd 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -32,7 +32,6 @@ #include "move.h" #include "movegen.h" #include "movepick.h" -#include "lock.h" #include "search.h" #include "timeman.h" #include "thread.h" @@ -54,46 +53,6 @@ namespace { const bool Slidings[18] = { 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1 }; inline bool piece_is_slider(Piece p) { return Slidings[p]; } - // ThreadsManager class is used to handle all the threads related stuff like init, - // starting, parking and, the most important, launching a slave thread at a split - // point. All the access to shared thread data is done through this class. - - class ThreadsManager { - /* As long as the single ThreadsManager object is defined as a global we don't - need to explicitly initialize to zero its data members because variables with - static storage duration are automatically set to zero before enter main() - */ - public: - void init_threads(); - void exit_threads(); - - int min_split_depth() const { return minimumSplitDepth; } - int active_threads() const { return activeThreads; } - void set_active_threads(int cnt) { activeThreads = cnt; } - - void read_uci_options(); - bool available_thread_exists(int master) const; - bool thread_is_available(int slave, int master) const; - bool cutoff_at_splitpoint(int threadID) const; - void wake_sleeping_thread(int threadID); - void idle_loop(int threadID, SplitPoint* sp); - - template - void split(Position& pos, SearchStack* ss, Value* alpha, const Value beta, Value* bestValue, - Depth depth, Move threatMove, int moveCount, MovePicker* mp, bool pvNode); - - private: - Depth minimumSplitDepth; - int maxThreadsPerSplitPoint; - bool useSleepingThreads; - int activeThreads; - volatile bool allThreadsShouldExit; - Thread threads[MAX_THREADS]; - Lock mpLock, sleepLock[MAX_THREADS]; - WaitCondition sleepCond[MAX_THREADS]; - }; - - // RootMove struct is used for moves at the root of the tree. For each root // move, we store two scores, a node count, and a PV (really a refutation // in the case of moves which fail low). Value pv_score is normally set at @@ -118,8 +77,8 @@ namespace { void extract_pv_from_tt(Position& pos); void insert_pv_in_tt(Position& pos); - std::string pv_info_to_uci(Position& pos, int depth, Value alpha, Value beta, int pvIdx); - + std::string pv_info_to_uci(Position& pos, int depth, int selDepth, + Value alpha, Value beta, int pvIdx); int64_t nodes; Value pv_score; Value non_pv_score; @@ -127,7 +86,7 @@ namespace { }; - // RootMoveList struct is just a std::vector<> of RootMove objects, + // RootMoveList struct is just a vector of RootMove objects, // with an handful of methods above the standard ones. struct RootMoveList : public std::vector { @@ -182,7 +141,7 @@ namespace { // Step 9. Internal iterative deepening // Minimum depth for use of internal iterative deepening - const Depth IIDDepth[2] = { 8 * ONE_PLY /* non-PV */, 5 * ONE_PLY /* PV */}; + const Depth IIDDepth[] = { 8 * ONE_PLY, 5 * ONE_PLY }; // At Non-PV nodes we do an internal iterative deepening search // when the static evaluation is bigger then beta - IIDMargin. @@ -190,13 +149,14 @@ namespace { // Step 11. Decide the new search depth - // Extensions. Configurable UCI options - // Array index 0 is used at non-PV nodes, index 1 at PV nodes. - Depth CheckExtension[2], PawnPushTo7thExtension[2]; - Depth PassedPawnExtension[2], PawnEndgameExtension[2]; + // Extensions. Array index 0 is used for non-PV nodes, index 1 for PV nodes + const Depth CheckExtension[] = { ONE_PLY / 2, ONE_PLY / 1 }; + const Depth PawnEndgameExtension[] = { ONE_PLY / 1, ONE_PLY / 1 }; + const Depth PawnPushTo7thExtension[] = { ONE_PLY / 2, ONE_PLY / 2 }; + const Depth PassedPawnExtension[] = { DEPTH_ZERO, ONE_PLY / 2 }; // Minimum depth for use of singular extension - const Depth SingularExtensionDepth[2] = { 8 * ONE_PLY /* non-PV */, 6 * ONE_PLY /* PV */}; + const Depth SingularExtensionDepth[] = { 8 * ONE_PLY, 6 * ONE_PLY }; // Step 12. Futility pruning @@ -204,19 +164,29 @@ namespace { const Value FutilityMarginQS = Value(0x80); // Futility lookup tables (initialized at startup) and their access functions - Value FutilityMarginsMatrix[16][64]; // [depth][moveNumber] - int FutilityMoveCountArray[32]; // [depth] + Value FutilityMargins[16][64]; // [depth][moveNumber] + int FutilityMoveCounts[32]; // [depth] + + inline Value futility_margin(Depth d, int mn) { - inline Value futility_margin(Depth d, int mn) { return d < 7 * ONE_PLY ? FutilityMarginsMatrix[Max(d, 1)][Min(mn, 63)] : 2 * VALUE_INFINITE; } - inline int futility_move_count(Depth d) { return d < 16 * ONE_PLY ? FutilityMoveCountArray[d] : 512; } + return d < 7 * ONE_PLY ? FutilityMargins[Max(d, 1)][Min(mn, 63)] + : 2 * VALUE_INFINITE; + } + + inline int futility_move_count(Depth d) { + + return d < 16 * ONE_PLY ? FutilityMoveCounts[d] : MAX_MOVES; + } // Step 14. Reduced search - // Reduction lookup tables (initialized at startup) and their getter functions - int8_t ReductionMatrix[2][64][64]; // [pv][depth][moveNumber] + // Reduction lookup tables (initialized at startup) and their access function + int8_t Reductions[2][64][64]; // [pv][depth][moveNumber] + + template inline Depth reduction(Depth d, int mn) { - template - inline Depth reduction(Depth d, int mn) { return (Depth) ReductionMatrix[PV][Min(d / ONE_PLY, 63)][Min(mn, 63)]; } + return (Depth) Reductions[PV][Min(d / ONE_PLY, 63)][Min(mn, 63)]; + } // Easy move margin. An easy move candidate must be at least this much // better than the second best move. @@ -235,13 +205,11 @@ namespace { int MultiPV, UCIMultiPV; // Time management variables - int SearchStartTime, MaxNodes, MaxDepth, ExactMaxTime; - bool UseTimeManagement, InfiniteSearch, Pondering, StopOnPonderhit; - bool FirstRootMove, StopRequest, QuitRequest, AspirationFailLow; + bool StopOnPonderhit, FirstRootMove, StopRequest, QuitRequest, AspirationFailLow; TimeManager TimeMgr; + SearchLimits Limits; // Log file - bool UseLogFile; std::ofstream LogFile; // Skill level adjustment @@ -249,9 +217,6 @@ namespace { bool SkillLevelEnabled; RKISS RK; - // Multi-threads manager - ThreadsManager ThreadsMgr; - // Node counters, used only by thread[0] but try to keep in different cache // lines (64 bytes each) from the heavy multi-thread read accessed variables. bool SendSearchedNodes; @@ -293,20 +258,14 @@ namespace { void update_gains(const Position& pos, Move move, Value before, Value after); void do_skill_level(Move* best, Move* ponder); - int current_search_time(); + int current_search_time(int set = 0); std::string value_to_uci(Value v); std::string speed_to_uci(int64_t nodes); void poll(const Position& pos); void wait_for_stop_or_ponderhit(); -#if !defined(_MSC_VER) - void* init_thread(void* threadID); -#else - DWORD WINAPI init_thread(LPVOID threadID); -#endif - - // MovePickerExt is an extended MovePicker used to choose at compile time + // MovePickerExt is an extended MovePicker class used to choose at compile time // the proper move source according to the type of node. template struct MovePickerExt; @@ -373,10 +332,9 @@ namespace { } // namespace -/// init_threads() is called during startup. It initializes various lookup tables -/// and creates and launches search threads. +/// init_search() is called during startup to initialize various lookup tables -void init_threads() { +void init_search() { int d; // depth (ONE_PLY == 2) int hd; // half depth (ONE_PLY == 1) @@ -387,33 +345,26 @@ void init_threads() { { double pvRed = log(double(hd)) * log(double(mc)) / 3.0; double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25; - ReductionMatrix[PV][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0); - ReductionMatrix[NonPV][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0); + Reductions[PV][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0); + Reductions[NonPV][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0); } // Init futility margins array for (d = 1; d < 16; d++) for (mc = 0; mc < 64; mc++) - FutilityMarginsMatrix[d][mc] = Value(112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45); + FutilityMargins[d][mc] = Value(112 * int(log(double(d * d) / 2) / log(2.0) + 1.001) - 8 * mc + 45); // Init futility move count array for (d = 0; d < 32; d++) - FutilityMoveCountArray[d] = int(3.001 + 0.25 * pow(d, 2.0)); - - // Create and startup threads - ThreadsMgr.init_threads(); + FutilityMoveCounts[d] = int(3.001 + 0.25 * pow(d, 2.0)); } -/// exit_threads() is a trampoline to access ThreadsMgr from outside of current file -void exit_threads() { ThreadsMgr.exit_threads(); } - - /// perft() is our utility to verify move generation. All the legal moves up to /// given depth are generated and counted and the sum returned. int64_t perft(Position& pos, Depth depth) { - MoveStack mlist[MOVES_MAX]; + MoveStack mlist[MAX_MOVES]; StateInfo st; Move m; int64_t sum = 0; @@ -441,25 +392,30 @@ int64_t perft(Position& pos, Depth depth) { /// think() is the external interface to Stockfish's search, and is called when /// the program receives the UCI 'go' command. It initializes various global -/// variables, and calls id_loop(). It returns false when a quit command is +/// variables, and calls id_loop(). It returns false when a "quit" command is /// received during the search. -bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[], - int movesToGo, int maxDepth, int maxNodes, int maxTime, Move searchMoves[]) { +bool think(Position& pos, const SearchLimits& limits, Move searchMoves[]) { // Initialize global search-related variables StopOnPonderhit = StopRequest = QuitRequest = AspirationFailLow = SendSearchedNodes = false; NodesSincePoll = 0; - SearchStartTime = get_system_time(); - ExactMaxTime = maxTime; - MaxDepth = maxDepth; - MaxNodes = maxNodes; - InfiniteSearch = infinite; - Pondering = ponder; - UseTimeManagement = !ExactMaxTime && !MaxDepth && !MaxNodes && !InfiniteSearch; + current_search_time(get_system_time()); + Limits = limits; + TimeMgr.init(Limits, pos.startpos_ply_counter()); + + // Set best NodesBetweenPolls interval to avoid lagging under time pressure + if (Limits.maxNodes) + NodesBetweenPolls = Min(Limits.maxNodes, 30000); + else if (Limits.time && Limits.time < 1000) + NodesBetweenPolls = 1000; + else if (Limits.time && Limits.time < 5000) + NodesBetweenPolls = 5000; + else + NodesBetweenPolls = 30000; // Look for a book move, only during games, not tests - if (UseTimeManagement && Options["OwnBook"].value()) + if (Limits.useTimeManagement() && Options["OwnBook"].value()) { if (Options["Book File"].value() != OpeningBook.name()) OpeningBook.open(Options["Book File"].value()); @@ -467,7 +423,7 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[ Move bookMove = OpeningBook.get_move(pos, Options["Best Book Move"].value()); if (bookMove != MOVE_NONE) { - if (Pondering) + if (Limits.ponder) wait_for_stop_or_ponderhit(); cout << "bestmove " << bookMove << endl; @@ -476,84 +432,63 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[ } // Read UCI options - CheckExtension[1] = Options["Check Extension (PV nodes)"].value(); - CheckExtension[0] = Options["Check Extension (non-PV nodes)"].value(); - PawnPushTo7thExtension[1] = Options["Pawn Push to 7th Extension (PV nodes)"].value(); - PawnPushTo7thExtension[0] = Options["Pawn Push to 7th Extension (non-PV nodes)"].value(); - PassedPawnExtension[1] = Options["Passed Pawn Extension (PV nodes)"].value(); - PassedPawnExtension[0] = Options["Passed Pawn Extension (non-PV nodes)"].value(); - PawnEndgameExtension[1] = Options["Pawn Endgame Extension (PV nodes)"].value(); - PawnEndgameExtension[0] = Options["Pawn Endgame Extension (non-PV nodes)"].value(); - UCIMultiPV = Options["MultiPV"].value(); - SkillLevel = Options["Skill level"].value(); - UseLogFile = Options["Use Search Log"].value(); + UCIMultiPV = Options["MultiPV"].value(); + SkillLevel = Options["Skill level"].value(); read_evaluation_uci_options(pos.side_to_move()); + ThreadsMgr.read_uci_options(); + + // If needed allocate pawn and material hash tables and adjust TT size + ThreadsMgr.init_hash_tables(); + TT.set_size(Options["Hash"].value()); if (Options["Clear Hash"].value()) { Options["Clear Hash"].set_value("false"); TT.clear(); } - TT.set_size(Options["Hash"].value()); // Do we have to play with skill handicap? In this case enable MultiPV that // we will use behind the scenes to retrieve a set of possible moves. SkillLevelEnabled = (SkillLevel < 20); MultiPV = (SkillLevelEnabled ? Max(UCIMultiPV, 4) : UCIMultiPV); - // Set the number of active threads - ThreadsMgr.read_uci_options(); - init_eval(ThreadsMgr.active_threads()); - - // Wake up needed threads. Main thread, with threadID == 0, is always active - for (int i = 1; i < ThreadsMgr.active_threads(); i++) - ThreadsMgr.wake_sleeping_thread(i); - - // Set thinking time - int myTime = time[pos.side_to_move()]; - int myIncrement = increment[pos.side_to_move()]; - if (UseTimeManagement) - TimeMgr.init(myTime, myIncrement, movesToGo, pos.startpos_ply_counter()); - - // Set best NodesBetweenPolls interval to avoid lagging under time pressure - if (MaxNodes) - NodesBetweenPolls = Min(MaxNodes, 30000); - else if (myTime && myTime < 1000) - NodesBetweenPolls = 1000; - else if (myTime && myTime < 5000) - NodesBetweenPolls = 5000; - else - NodesBetweenPolls = 30000; + // Wake up needed threads and reset maxPly counter + for (int i = 0; i < ThreadsMgr.active_threads(); i++) + { + ThreadsMgr[i].wake_up(); + ThreadsMgr[i].maxPly = 0; + } - // Write search information to log file - if (UseLogFile) + // Write to log file and keep it open to be accessed during the search + if (Options["Use Search Log"].value()) { std::string name = Options["Search Log Filename"].value(); LogFile.open(name.c_str(), std::ios::out | std::ios::app); - LogFile << "\nSearching: " << pos.to_fen() - << "\ninfinite: " << infinite - << " ponder: " << ponder - << " time: " << myTime - << " increment: " << myIncrement - << " moves to go: " << movesToGo - << endl; + if (LogFile.is_open()) + LogFile << "\nSearching: " << pos.to_fen() + << "\ninfinite: " << Limits.infinite + << " ponder: " << Limits.ponder + << " time: " << Limits.time + << " increment: " << Limits.increment + << " moves to go: " << Limits.movesToGo + << endl; } // We're ready to start thinking. Call the iterative deepening loop function Move ponderMove = MOVE_NONE; Move bestMove = id_loop(pos, searchMoves, &ponderMove); - // Print final search statistics cout << "info" << speed_to_uci(pos.nodes_searched()) << endl; - if (UseLogFile) + // Write final search statistics and close log file + if (LogFile.is_open()) { int t = current_search_time(); LogFile << "Nodes: " << pos.nodes_searched() - << "\nNodes/second: " << (t > 0 ? int(pos.nodes_searched() * 1000 / t) : 0) + << "\nNodes/second: " << (t > 0 ? pos.nodes_searched() * 1000 / t : 0) << "\nBest move: " << move_to_san(pos, bestMove); StateInfo st; @@ -568,7 +503,7 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[ // If we are pondering or in infinite search, we shouldn't print the // best move before we are told to do so. - if (!StopRequest && (Pondering || InfiniteSearch)) + if (!StopRequest && (Limits.ponder || Limits.infinite)) wait_for_stop_or_ponderhit(); // Could be MOVE_NONE when searching on a stalemate position @@ -596,7 +531,7 @@ namespace { SearchStack ss[PLY_MAX_PLUS_2]; Value bestValues[PLY_MAX_PLUS_2]; int bestMoveChanges[PLY_MAX_PLUS_2]; - int depth, aspirationDelta; + int depth, selDepth, aspirationDelta; Value value, alpha, beta; Move bestMove, easyMove, skillBest, skillPonder; @@ -622,8 +557,8 @@ namespace { return MOVE_NONE; } - // Iterative deepening loop - while (++depth <= PLY_MAX && (!MaxDepth || depth <= MaxDepth) && !StopRequest) + // Iterative deepening loop until requested to stop or target depth reached + while (!StopRequest && ++depth <= PLY_MAX && (!Limits.maxDepth || depth <= Limits.maxDepth)) { Rml.bestMoveChanges = 0; cout << set960(pos.is_chess960()) << "info depth " << depth << endl; @@ -688,11 +623,17 @@ namespace { if (SkillLevelEnabled && depth == 1 + SkillLevel) do_skill_level(&skillBest, &skillPonder); + // Retrieve max searched depth among threads + selDepth = 0; + for (int i = 0; i < ThreadsMgr.active_threads(); i++) + if (ThreadsMgr[i].maxPly > selDepth) + selDepth = ThreadsMgr[i].maxPly; + // Send PV line to GUI and to log file for (int i = 0; i < Min(UCIMultiPV, (int)Rml.size()); i++) - cout << Rml[i].pv_info_to_uci(pos, depth, alpha, beta, i) << endl; + cout << Rml[i].pv_info_to_uci(pos, depth, selDepth, alpha, beta, i) << endl; - if (UseLogFile) + if (LogFile.is_open()) LogFile << pretty_pv(pos, depth, value, current_search_time(), Rml[0].pv) << endl; // Init easyMove after first iteration or drop if differs from the best move @@ -701,20 +642,18 @@ namespace { else if (bestMove != easyMove) easyMove = MOVE_NONE; - if (UseTimeManagement && !StopRequest) + // Check for some early stop condition + if (!StopRequest && Limits.useTimeManagement()) { - // Time to stop? - bool noMoreTime = false; - // Stop search early when the last two iterations returned a mate score if ( depth >= 5 - && abs(bestValues[depth]) >= abs(VALUE_MATE) - 100 - && abs(bestValues[depth - 1]) >= abs(VALUE_MATE) - 100) - noMoreTime = true; + && abs(bestValues[depth]) >= VALUE_MATE_IN_PLY_MAX + && abs(bestValues[depth - 1]) >= VALUE_MATE_IN_PLY_MAX) + StopRequest = true; // Stop search early if one move seems to be much better than the - // others or if there is only a single legal move. In this latter - // case we search up to Iteration 8 anyway to get a proper score. + // others or if there is only a single legal move. Also in the latter + // case we search up to some depth anyway to get a proper score. if ( depth >= 7 && easyMove == bestMove && ( Rml.size() == 1 @@ -722,29 +661,27 @@ namespace { && current_search_time() > TimeMgr.available_time() / 16) ||( Rml[0].nodes > (pos.nodes_searched() * 98) / 100 && current_search_time() > TimeMgr.available_time() / 32))) - noMoreTime = true; + StopRequest = true; - // Add some extra time if the best move has changed during the last two iterations + // Take in account some extra time if the best move has changed if (depth > 4 && depth < 50) - TimeMgr.pv_instability(bestMoveChanges[depth], bestMoveChanges[depth-1]); + TimeMgr.pv_instability(bestMoveChanges[depth], bestMoveChanges[depth - 1]); - // Stop search if most of MaxSearchTime is consumed at the end of the - // iteration. We probably don't have enough time to search the first - // move at the next iteration anyway. - if (current_search_time() > (TimeMgr.available_time() * 80) / 128) - noMoreTime = true; + // Stop search if most of available time is already consumed. We probably don't + // have enough time to search the first move at the next iteration anyway. + if (current_search_time() > (TimeMgr.available_time() * 62) / 100) + StopRequest = true; - if (noMoreTime) + // If we are allowed to ponder do not stop the search now but keep pondering + if (StopRequest && Limits.ponder) { - if (Pondering) - StopOnPonderhit = true; - else - break; + StopRequest = false; + StopOnPonderhit = true; } } } - // When using skills fake best and ponder moves with the sub-optimal ones + // When using skills overwrite best and ponder moves with the sub-optimal ones if (SkillLevelEnabled) { if (skillBest == MOVE_NONE) // Still unassigned ? @@ -773,7 +710,7 @@ namespace { assert(PvNode || alpha == beta - 1); assert(pos.thread() >= 0 && pos.thread() < ThreadsMgr.active_threads()); - Move movesSearched[MOVES_MAX]; + Move movesSearched[MAX_MOVES]; int64_t nodes; StateInfo st; const TTEntry *tte; @@ -793,6 +730,10 @@ namespace { isCheck = pos.is_check(); ss->ply = (ss-1)->ply + 1; + // Used to send selDepth info to GUI + if (PvNode && ThreadsMgr[threadID].maxPly < ss->ply) + ThreadsMgr[threadID].maxPly = ss->ply; + if (SpNode) { sp = ss->sp; @@ -1709,8 +1650,7 @@ split_point_start: // At split points actual search starts from here && pos.type_of_piece_on(move_to(m)) != PAWN && ( pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK) - pos.midgame_value_of_piece_on(move_to(m)) == VALUE_ZERO) - && !move_is_promotion(m) - && !move_is_ep(m)) + && !move_is_special(m)) { result += PawnEndgameExtension[PvNode]; *dangerous = true; @@ -1832,9 +1772,14 @@ split_point_start: // At split points actual search starts from here // current_search_time() returns the number of milliseconds which have passed // since the beginning of the current search. - int current_search_time() { + int current_search_time(int set) { + + static int searchStartTime; - return get_system_time() - SearchStartTime; + if (set) + searchStartTime = set; + + return get_system_time() - searchStartTime; } @@ -1850,9 +1795,9 @@ split_point_start: // At split points actual search starts from here std::stringstream s; if (abs(v) < VALUE_MATE - PLY_MAX * ONE_PLY) - s << "cp " << int(v) * 100 / int(PawnValueMidgame); // Scale to centipawns + s << "cp " << int(v) * 100 / int(PawnValueMidgame); // Scale to centipawns else - s << "mate " << (v > 0 ? VALUE_MATE - v + 1 : -VALUE_MATE - v) / 2; + s << "mate " << (v > 0 ? VALUE_MATE - v + 1 : -VALUE_MATE - v) / 2; return s.str(); } @@ -1892,7 +1837,7 @@ split_point_start: // At split points actual search starts from here if (!std::getline(std::cin, command) || command == "quit") { // Quit the program as soon as possible - Pondering = false; + Limits.ponder = false; QuitRequest = StopRequest = true; return; } @@ -1900,7 +1845,7 @@ split_point_start: // At split points actual search starts from here { // Stop calculating as soon as possible, but still send the "bestmove" // and possibly the "ponder" token when finishing the search. - Pondering = false; + Limits.ponder = false; StopRequest = true; } else if (command == "ponderhit") @@ -1908,7 +1853,7 @@ split_point_start: // At split points actual search starts from here // The opponent has played the expected move. GUI sends "ponderhit" if // we were told to ponder on the same move the opponent has played. We // should continue searching but switching from pondering to normal search. - Pondering = false; + Limits.ponder = false; if (StopOnPonderhit) StopRequest = true; @@ -1936,7 +1881,7 @@ split_point_start: // At split points actual search starts from here } // Should we stop the search? - if (Pondering) + if (Limits.ponder) return; bool stillAtFirstMove = FirstRootMove @@ -1946,9 +1891,9 @@ split_point_start: // At split points actual search starts from here bool noMoreTime = t > TimeMgr.maximum_time() || stillAtFirstMove; - if ( (UseTimeManagement && noMoreTime) - || (ExactMaxTime && t >= ExactMaxTime) - || (MaxNodes && pos.nodes_searched() >= MaxNodes)) // FIXME + if ( (Limits.useTimeManagement() && noMoreTime) + || (Limits.maxTime && t >= Limits.maxTime) + || (Limits.maxNodes && pos.nodes_searched() >= Limits.maxNodes)) // FIXME StopRequest = true; } @@ -1973,428 +1918,45 @@ split_point_start: // At split points actual search starts from here } - // init_thread() is the function which is called when a new thread is - // launched. It simply calls the idle_loop() function with the supplied - // threadID. There are two versions of this function; one for POSIX - // threads and one for Windows threads. - -#if !defined(_MSC_VER) - - void* init_thread(void* threadID) { - - ThreadsMgr.idle_loop(*(int*)threadID, NULL); - return NULL; - } - -#else - - DWORD WINAPI init_thread(LPVOID threadID) { - - ThreadsMgr.idle_loop(*(int*)threadID, NULL); - return 0; - } - -#endif - - - /// The ThreadsManager class - - - // read_uci_options() updates number of active threads and other internal - // parameters according to the UCI options values. It is called before - // to start a new search. - - void ThreadsManager::read_uci_options() { - - maxThreadsPerSplitPoint = Options["Maximum Number of Threads per Split Point"].value(); - minimumSplitDepth = Options["Minimum Split Depth"].value() * ONE_PLY; - useSleepingThreads = Options["Use Sleeping Threads"].value(); - activeThreads = Options["Threads"].value(); - } - - - // idle_loop() is where the threads are parked when they have no work to do. - // The parameter 'sp', if non-NULL, is a pointer to an active SplitPoint - // object for which the current thread is the master. - - void ThreadsManager::idle_loop(int threadID, SplitPoint* sp) { - - assert(threadID >= 0 && threadID < MAX_THREADS); - - int i; - bool allFinished = false; - - while (true) - { - // Slave threads can exit as soon as AllThreadsShouldExit raises, - // master should exit as last one. - if (allThreadsShouldExit) - { - assert(!sp); - threads[threadID].state = THREAD_TERMINATED; - return; - } - - // If we are not thinking, wait for a condition to be signaled - // instead of wasting CPU time polling for work. - while ( threadID >= activeThreads || threads[threadID].state == THREAD_INITIALIZING - || (useSleepingThreads && threads[threadID].state == THREAD_AVAILABLE)) - { - assert(!sp || useSleepingThreads); - assert(threadID != 0 || useSleepingThreads); - - if (threads[threadID].state == THREAD_INITIALIZING) - threads[threadID].state = THREAD_AVAILABLE; - - // Grab the lock to avoid races with wake_sleeping_thread() - lock_grab(&sleepLock[threadID]); - - // If we are master and all slaves have finished do not go to sleep - for (i = 0; sp && i < activeThreads && !sp->slaves[i]; i++) {} - allFinished = (i == activeThreads); - - if (allFinished || allThreadsShouldExit) - { - lock_release(&sleepLock[threadID]); - break; - } - - // Do sleep here after retesting sleep conditions - if (threadID >= activeThreads || threads[threadID].state == THREAD_AVAILABLE) - cond_wait(&sleepCond[threadID], &sleepLock[threadID]); - - lock_release(&sleepLock[threadID]); - } - - // If this thread has been assigned work, launch a search - if (threads[threadID].state == THREAD_WORKISWAITING) - { - assert(!allThreadsShouldExit); - - threads[threadID].state = THREAD_SEARCHING; - - // Copy SplitPoint position and search stack and call search() - // with SplitPoint template parameter set to true. - SearchStack ss[PLY_MAX_PLUS_2]; - SplitPoint* tsp = threads[threadID].splitPoint; - Position pos(*tsp->pos, threadID); - - memcpy(ss, tsp->ss - 1, 4 * sizeof(SearchStack)); - (ss+1)->sp = tsp; - - if (tsp->pvNode) - search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth); - else - search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth); - - assert(threads[threadID].state == THREAD_SEARCHING); - - threads[threadID].state = THREAD_AVAILABLE; - - // Wake up master thread so to allow it to return from the idle loop in - // case we are the last slave of the split point. - if (useSleepingThreads && threadID != tsp->master && threads[tsp->master].state == THREAD_AVAILABLE) - wake_sleeping_thread(tsp->master); - } - - // If this thread is the master of a split point and all slaves have - // finished their work at this split point, return from the idle loop. - for (i = 0; sp && i < activeThreads && !sp->slaves[i]; i++) {} - allFinished = (i == activeThreads); - - if (allFinished) - { - // Because sp->slaves[] is reset under lock protection, - // be sure sp->lock has been released before to return. - lock_grab(&(sp->lock)); - lock_release(&(sp->lock)); - - // In helpful master concept a master can help only a sub-tree, and - // because here is all finished is not possible master is booked. - assert(threads[threadID].state == THREAD_AVAILABLE); - - threads[threadID].state = THREAD_SEARCHING; - return; - } - } - } - - - // init_threads() is called during startup. It launches all helper threads, - // and initializes the split point stack and the global locks and condition - // objects. + // When playing with strength handicap choose best move among the MultiPV set + // using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen. + void do_skill_level(Move* best, Move* ponder) { - void ThreadsManager::init_threads() { + assert(MultiPV > 1); - int i, arg[MAX_THREADS]; - bool ok; + // Rml list is already sorted by pv_score in descending order + int s; + int max_s = -VALUE_INFINITE; + int size = Min(MultiPV, (int)Rml.size()); + int max = Rml[0].pv_score; + int var = Min(max - Rml[size - 1].pv_score, PawnValueMidgame); + int wk = 120 - 2 * SkillLevel; - // Initialize global locks - lock_init(&mpLock); + // PRNG sequence should be non deterministic + for (int i = abs(get_system_time() % 50); i > 0; i--) + RK.rand(); - for (i = 0; i < MAX_THREADS; i++) + // Choose best move. For each move's score we add two terms both dependent + // on wk, one deterministic and bigger for weaker moves, and one random, + // then we choose the move with the resulting highest score. + for (int i = 0; i < size; i++) { - lock_init(&sleepLock[i]); - cond_init(&sleepCond[i]); - } - - // Initialize splitPoints[] locks - for (i = 0; i < MAX_THREADS; i++) - for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++) - lock_init(&(threads[i].splitPoints[j].lock)); - - // Will be set just before program exits to properly end the threads - allThreadsShouldExit = false; + s = Rml[i].pv_score; - // Threads will be put all threads to sleep as soon as created - activeThreads = 1; + // Don't allow crazy blunders even at very low skills + if (i > 0 && Rml[i-1].pv_score > s + EasyMoveMargin) + break; - // All threads except the main thread should be initialized to THREAD_INITIALIZING - threads[0].state = THREAD_SEARCHING; - for (i = 1; i < MAX_THREADS; i++) - threads[i].state = THREAD_INITIALIZING; + // This is our magical formula + s += ((max - s) * wk + var * (RK.rand() % wk)) / 128; - // Launch the helper threads - for (i = 1; i < MAX_THREADS; i++) - { - arg[i] = i; - -#if !defined(_MSC_VER) - pthread_t pthread[1]; - ok = (pthread_create(pthread, NULL, init_thread, (void*)(&arg[i])) == 0); - pthread_detach(pthread[0]); -#else - ok = (CreateThread(NULL, 0, init_thread, (LPVOID)(&arg[i]), 0, NULL) != NULL); -#endif - if (!ok) + if (s > max_s) { - cout << "Failed to create thread number " << i << endl; - exit(EXIT_FAILURE); + max_s = s; + *best = Rml[i].pv[0]; + *ponder = Rml[i].pv[1]; } - - // Wait until the thread has finished launching and is gone to sleep - while (threads[i].state == THREAD_INITIALIZING) {} - } - } - - - // exit_threads() is called when the program exits. It makes all the - // helper threads exit cleanly. - - void ThreadsManager::exit_threads() { - - allThreadsShouldExit = true; // Let the woken up threads to exit idle_loop() - - // Wake up all the threads and waits for termination - for (int i = 1; i < MAX_THREADS; i++) - { - wake_sleeping_thread(i); - while (threads[i].state != THREAD_TERMINATED) {} - } - - // Now we can safely destroy the locks - for (int i = 0; i < MAX_THREADS; i++) - for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++) - lock_destroy(&(threads[i].splitPoints[j].lock)); - - lock_destroy(&mpLock); - - // Now we can safely destroy the wait conditions - for (int i = 0; i < MAX_THREADS; i++) - { - lock_destroy(&sleepLock[i]); - cond_destroy(&sleepCond[i]); - } - } - - - // cutoff_at_splitpoint() checks whether a beta cutoff has occurred in - // the thread's currently active split point, or in some ancestor of - // the current split point. - - bool ThreadsManager::cutoff_at_splitpoint(int threadID) const { - - assert(threadID >= 0 && threadID < activeThreads); - - SplitPoint* sp = threads[threadID].splitPoint; - - for ( ; sp && !sp->betaCutoff; sp = sp->parent) {} - return sp != NULL; - } - - - // thread_is_available() checks whether the thread with threadID "slave" is - // available to help the thread with threadID "master" at a split point. An - // obvious requirement is that "slave" must be idle. With more than two - // threads, this is not by itself sufficient: If "slave" is the master of - // some active split point, it is only available as a slave to the other - // threads which are busy searching the split point at the top of "slave"'s - // split point stack (the "helpful master concept" in YBWC terminology). - - bool ThreadsManager::thread_is_available(int slave, int master) const { - - assert(slave >= 0 && slave < activeThreads); - assert(master >= 0 && master < activeThreads); - assert(activeThreads > 1); - - if (threads[slave].state != THREAD_AVAILABLE || slave == master) - return false; - - // Make a local copy to be sure doesn't change under our feet - int localActiveSplitPoints = threads[slave].activeSplitPoints; - - // No active split points means that the thread is available as - // a slave for any other thread. - if (localActiveSplitPoints == 0 || activeThreads == 2) - return true; - - // Apply the "helpful master" concept if possible. Use localActiveSplitPoints - // that is known to be > 0, instead of threads[slave].activeSplitPoints that - // could have been set to 0 by another thread leading to an out of bound access. - if (threads[slave].splitPoints[localActiveSplitPoints - 1].slaves[master]) - return true; - - return false; - } - - - // available_thread_exists() tries to find an idle thread which is available as - // a slave for the thread with threadID "master". - - bool ThreadsManager::available_thread_exists(int master) const { - - assert(master >= 0 && master < activeThreads); - assert(activeThreads > 1); - - for (int i = 0; i < activeThreads; i++) - if (thread_is_available(i, master)) - return true; - - return false; - } - - - // split() does the actual work of distributing the work at a node between - // several available threads. If it does not succeed in splitting the - // node (because no idle threads are available, or because we have no unused - // split point objects), the function immediately returns. If splitting is - // possible, a SplitPoint object is initialized with all the data that must be - // copied to the helper threads and we tell our helper threads that they have - // been assigned work. This will cause them to instantly leave their idle loops and - // call search().When all threads have returned from search() then split() returns. - - template - void ThreadsManager::split(Position& pos, SearchStack* ss, Value* alpha, const Value beta, - Value* bestValue, Depth depth, Move threatMove, - int moveCount, MovePicker* mp, bool pvNode) { - assert(pos.is_ok()); - assert(*bestValue >= -VALUE_INFINITE); - assert(*bestValue <= *alpha); - assert(*alpha < beta); - assert(beta <= VALUE_INFINITE); - assert(depth > DEPTH_ZERO); - assert(pos.thread() >= 0 && pos.thread() < activeThreads); - assert(activeThreads > 1); - - int i, master = pos.thread(); - Thread& masterThread = threads[master]; - - lock_grab(&mpLock); - - // If no other thread is available to help us, or if we have too many - // active split points, don't split. - if ( !available_thread_exists(master) - || masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS) - { - lock_release(&mpLock); - return; } - - // Pick the next available split point object from the split point stack - SplitPoint& splitPoint = masterThread.splitPoints[masterThread.activeSplitPoints++]; - - // Initialize the split point object - splitPoint.parent = masterThread.splitPoint; - splitPoint.master = master; - splitPoint.betaCutoff = false; - splitPoint.depth = depth; - splitPoint.threatMove = threatMove; - splitPoint.alpha = *alpha; - splitPoint.beta = beta; - splitPoint.pvNode = pvNode; - splitPoint.bestValue = *bestValue; - splitPoint.mp = mp; - splitPoint.moveCount = moveCount; - splitPoint.pos = &pos; - splitPoint.nodes = 0; - splitPoint.ss = ss; - for (i = 0; i < activeThreads; i++) - splitPoint.slaves[i] = 0; - - masterThread.splitPoint = &splitPoint; - - // If we are here it means we are not available - assert(masterThread.state != THREAD_AVAILABLE); - - int workersCnt = 1; // At least the master is included - - // Allocate available threads setting state to THREAD_BOOKED - for (i = 0; !Fake && i < activeThreads && workersCnt < maxThreadsPerSplitPoint; i++) - if (thread_is_available(i, master)) - { - threads[i].state = THREAD_BOOKED; - threads[i].splitPoint = &splitPoint; - splitPoint.slaves[i] = 1; - workersCnt++; - } - - assert(Fake || workersCnt > 1); - - // We can release the lock because slave threads are already booked and master is not available - lock_release(&mpLock); - - // Tell the threads that they have work to do. This will make them leave - // their idle loop. - for (i = 0; i < activeThreads; i++) - if (i == master || splitPoint.slaves[i]) - { - assert(i == master || threads[i].state == THREAD_BOOKED); - - threads[i].state = THREAD_WORKISWAITING; // This makes the slave to exit from idle_loop() - - if (useSleepingThreads && i != master) - wake_sleeping_thread(i); - } - - // Everything is set up. The master thread enters the idle loop, from - // which it will instantly launch a search, because its state is - // THREAD_WORKISWAITING. We send the split point as a second parameter to the - // idle loop, which means that the main thread will return from the idle - // loop when all threads have finished their work at this split point. - idle_loop(master, &splitPoint); - - // We have returned from the idle loop, which means that all threads are - // finished. Update alpha and bestValue, and return. - lock_grab(&mpLock); - - *alpha = splitPoint.alpha; - *bestValue = splitPoint.bestValue; - masterThread.activeSplitPoints--; - masterThread.splitPoint = splitPoint.parent; - pos.set_nodes_searched(pos.nodes_searched() + splitPoint.nodes); - - lock_release(&mpLock); - } - - - // wake_sleeping_thread() wakes up the thread with the given threadID - // when it is time to start a new search. - - void ThreadsManager::wake_sleeping_thread(int threadID) { - - lock_grab(&sleepLock[threadID]); - cond_signal(&sleepCond[threadID]); - lock_release(&sleepLock[threadID]); } @@ -2421,6 +1983,33 @@ split_point_start: // At split points actual search starts from here return *this; } + void RootMoveList::init(Position& pos, Move searchMoves[]) { + + MoveStack mlist[MAX_MOVES]; + Move* sm; + + clear(); + bestMoveChanges = 0; + + // Generate all legal moves and add them to RootMoveList + MoveStack* last = generate(pos, mlist); + for (MoveStack* cur = mlist; cur != last; cur++) + { + // If we have a searchMoves[] list then verify cur->move + // is in the list before to add it. + for (sm = searchMoves; *sm && *sm != cur->move; sm++) {} + + if (searchMoves[0] && *sm != cur->move) + continue; + + RootMove rm; + rm.pv[0] = cur->move; + rm.pv[1] = MOVE_NONE; + rm.pv_score = -VALUE_INFINITE; + push_back(rm); + } + } + // extract_pv_from_tt() builds a PV by adding moves from the transposition table. // We consider also failing high nodes and not only VALUE_TYPE_EXACT nodes. This // allow to always have a ponder move even when we fail high at root and also a @@ -2484,93 +2073,132 @@ split_point_start: // At split points actual search starts from here // pv_info_to_uci() returns a string with information on the current PV line // formatted according to UCI specification. - std::string RootMove::pv_info_to_uci(Position& pos, int depth, Value alpha, + std::string RootMove::pv_info_to_uci(Position& pos, int depth, int selDepth, Value alpha, Value beta, int pvIdx) { - std::stringstream s, l; - Move* m = pv; - - while (*m != MOVE_NONE) - l << *m++ << " "; + std::stringstream s; s << "info depth " << depth - << " seldepth " << int(m - pv) + << " seldepth " << selDepth << " multipv " << pvIdx + 1 << " score " << value_to_uci(pv_score) << (pv_score >= beta ? " lowerbound" : pv_score <= alpha ? " upperbound" : "") << speed_to_uci(pos.nodes_searched()) - << " pv " << l.str(); + << " pv "; + + for (Move* m = pv; *m != MOVE_NONE; m++) + s << *m << " "; return s.str(); } +} // namespace - void RootMoveList::init(Position& pos, Move searchMoves[]) { - MoveStack mlist[MOVES_MAX]; - Move* sm; +// ThreadsManager::idle_loop() is where the threads are parked when they have no work +// to do. The parameter 'sp', if non-NULL, is a pointer to an active SplitPoint +// object for which the current thread is the master. - clear(); - bestMoveChanges = 0; +void ThreadsManager::idle_loop(int threadID, SplitPoint* sp) { - // Generate all legal moves and add them to RootMoveList - MoveStack* last = generate(pos, mlist); - for (MoveStack* cur = mlist; cur != last; cur++) - { - // If we have a searchMoves[] list then verify cur->move - // is in the list before to add it. - for (sm = searchMoves; *sm && *sm != cur->move; sm++) {} + assert(threadID >= 0 && threadID < MAX_THREADS); - if (searchMoves[0] && *sm != cur->move) - continue; + int i; + bool allFinished; - RootMove rm; - rm.pv[0] = cur->move; - rm.pv[1] = MOVE_NONE; - rm.pv_score = -VALUE_INFINITE; - push_back(rm); - } - } + while (true) + { + // Slave threads can exit as soon as AllThreadsShouldExit raises, + // master should exit as last one. + if (allThreadsShouldExit) + { + assert(!sp); + threads[threadID].state = THREAD_TERMINATED; + return; + } + // If we are not thinking, wait for a condition to be signaled + // instead of wasting CPU time polling for work. + while ( threadID >= activeThreads + || threads[threadID].state == THREAD_INITIALIZING + || (useSleepingThreads && threads[threadID].state == THREAD_AVAILABLE)) + { + assert(!sp || useSleepingThreads); + assert(threadID != 0 || useSleepingThreads); - // When playing with strength handicap choose best move among the MultiPV set - // using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen. - void do_skill_level(Move* best, Move* ponder) { + if (threads[threadID].state == THREAD_INITIALIZING) + threads[threadID].state = THREAD_AVAILABLE; - assert(MultiPV > 1); + // Grab the lock to avoid races with Thread::wake_up() + lock_grab(&threads[threadID].sleepLock); - // Rml list is already sorted by pv_score in descending order - int s; - int max_s = -VALUE_INFINITE; - int size = Min(MultiPV, (int)Rml.size()); - int max = Rml[0].pv_score; - int var = Min(max - Rml[size - 1].pv_score, PawnValueMidgame); - int wk = 120 - 2 * SkillLevel; + // If we are master and all slaves have finished do not go to sleep + for (i = 0; sp && i < activeThreads && !sp->slaves[i]; i++) {} + allFinished = (i == activeThreads); - // PRNG sequence should be non deterministic - for (int i = abs(get_system_time() % 50); i > 0; i--) - RK.rand(); + if (allFinished || allThreadsShouldExit) + { + lock_release(&threads[threadID].sleepLock); + break; + } - // Choose best move. For each move's score we add two terms both dependent - // on wk, one deterministic and bigger for weaker moves, and one random, - // then we choose the move with the resulting highest score. - for (int i = 0; i < size; i++) - { - s = Rml[i].pv_score; + // Do sleep here after retesting sleep conditions + if (threadID >= activeThreads || threads[threadID].state == THREAD_AVAILABLE) + cond_wait(&threads[threadID].sleepCond, &threads[threadID].sleepLock); - // Don't allow crazy blunders even at very low skills - if (i > 0 && Rml[i-1].pv_score > s + EasyMoveMargin) - break; + lock_release(&threads[threadID].sleepLock); + } - // This is our magical formula - s += ((max - s) * wk + var * (RK.rand() % wk)) / 128; + // If this thread has been assigned work, launch a search + if (threads[threadID].state == THREAD_WORKISWAITING) + { + assert(!allThreadsShouldExit); - if (s > max_s) - { - max_s = s; - *best = Rml[i].pv[0]; - *ponder = Rml[i].pv[1]; - } - } - } + threads[threadID].state = THREAD_SEARCHING; -} // namespace + // Copy split point position and search stack and call search() + // with SplitPoint template parameter set to true. + SearchStack ss[PLY_MAX_PLUS_2]; + SplitPoint* tsp = threads[threadID].splitPoint; + Position pos(*tsp->pos, threadID); + + memcpy(ss, tsp->ss - 1, 4 * sizeof(SearchStack)); + (ss+1)->sp = tsp; + + if (tsp->pvNode) + search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth); + else + search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth); + + assert(threads[threadID].state == THREAD_SEARCHING); + + threads[threadID].state = THREAD_AVAILABLE; + + // Wake up master thread so to allow it to return from the idle loop in + // case we are the last slave of the split point. + if ( useSleepingThreads + && threadID != tsp->master + && threads[tsp->master].state == THREAD_AVAILABLE) + threads[tsp->master].wake_up(); + } + + // If this thread is the master of a split point and all slaves have + // finished their work at this split point, return from the idle loop. + for (i = 0; sp && i < activeThreads && !sp->slaves[i]; i++) {} + allFinished = (i == activeThreads); + + if (allFinished) + { + // Because sp->slaves[] is reset under lock protection, + // be sure sp->lock has been released before to return. + lock_grab(&(sp->lock)); + lock_release(&(sp->lock)); + + // In helpful master concept a master can help only a sub-tree, and + // because here is all finished is not possible master is booked. + assert(threads[threadID].state == THREAD_AVAILABLE); + + threads[threadID].state = THREAD_SEARCHING; + return; + } + } +}