X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fsearch.cpp;h=7ab74998295aa864750a2643a9bd56a5cb6e3bd5;hp=4fd1c03d0a8830ba5411e991a13481e3336a61e5;hb=f148a8f6ccbb57c440910ecfd4845c7f497b5404;hpb=111aa446625b79a61c6b55a151377592e72c3caf diff --git a/src/search.cpp b/src/search.cpp index 4fd1c03d..7ab74998 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -1,7 +1,7 @@ /* Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) - Copyright (C) 2008-2009 Marco Costalba + Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -52,7 +52,11 @@ using std::endl; namespace { /// Types + enum NodeType { NonPV, PV }; + // Set to true to force running with one thread. + // Used for debugging SMP code. + const bool FakeSplit = false; // ThreadsManager class is used to handle all the threads related stuff in search, // init, starting, parking and, the most important, launching a slave thread at a @@ -82,23 +86,24 @@ namespace { bool thread_should_stop(int threadID) const; void wake_sleeping_threads(); void put_threads_to_sleep(); - void idle_loop(int threadID, SplitPoint* waitSp); - bool split(const Position& pos, SearchStack* ss, int ply, Value* alpha, const Value beta, Value* bestValue, - Depth depth, int* moves, MovePicker* mp, int master, bool pvNode); + void idle_loop(int threadID, SplitPoint* sp); + + template + void split(const Position& pos, SearchStack* ss, Value* alpha, const Value beta, Value* bestValue, + Depth depth, bool mateThreat, int* moveCount, MovePicker* mp, int master, bool pvNode); private: - friend void poll(SearchStack ss[], int ply); + friend void poll(); int ActiveThreads; volatile bool AllThreadsShouldExit, AllThreadsShouldSleep; Thread threads[MAX_THREADS]; SplitPoint SplitPointStack[MAX_THREADS][ACTIVE_SPLIT_POINTS_MAX]; - Lock MPLock; + Lock MPLock, WaitLock; #if !defined(_MSC_VER) pthread_cond_t WaitCond; - pthread_mutex_t WaitLock; #else HANDLE SitIdleEvent[MAX_THREADS]; #endif @@ -117,7 +122,7 @@ namespace { // RootMove::operator<() is the comparison function used when // sorting the moves. A move m1 is considered to be better // than a move m2 if it has a higher score, or if the moves - // have equal score but m1 has the higher node count. + // have equal score but m1 has the higher beta cut-off count. bool operator<(const RootMove& m) const { return score != m.score ? score < m.score : theirBeta <= m.theirBeta; @@ -166,7 +171,7 @@ namespace { const Depth RazorDepth = 4 * OnePly; // Dynamic razoring margin based on depth - inline Value razor_margin(Depth d) { return Value(0x200 + 0x10 * d); } + inline Value razor_margin(Depth d) { return Value(0x200 + 0x10 * int(d)); } // Step 8. Null move search with verification search @@ -180,24 +185,21 @@ namespace { // Step 9. Internal iterative deepening // Minimum depth for use of internal iterative deepening - const Depth IIDDepthAtPVNodes = 5 * OnePly; - const Depth IIDDepthAtNonPVNodes = 8 * OnePly; + const Depth IIDDepth[2] = { 8 * OnePly /* non-PV */, 5 * OnePly /* PV */}; - // Internal iterative deepening margin. At Non-PV nodes - // we do an internal iterative deepening - // search when the static evaluation is at most IIDMargin below beta. + // At Non-PV nodes we do an internal iterative deepening search + // when the static evaluation is bigger then beta - IIDMargin. const Value IIDMargin = Value(0x100); // Step 11. Decide the new search depth - // Extensions. Configurable UCI options. + // Extensions. Configurable UCI options // Array index 0 is used at non-PV nodes, index 1 at PV nodes. Depth CheckExtension[2], SingleEvasionExtension[2], PawnPushTo7thExtension[2]; Depth PassedPawnExtension[2], PawnEndgameExtension[2], MateThreatExtension[2]; // Minimum depth for use of singular extension - const Depth SingularExtensionDepthAtPVNodes = 6 * OnePly; - const Depth SingularExtensionDepthAtNonPVNodes = 8 * OnePly; + const Depth SingularExtensionDepth[2] = { 8 * OnePly /* non-PV */, 6 * OnePly /* PV */}; // If the TT move is at least SingularExtensionMargin better then the // remaining ones we will extend it. @@ -209,22 +211,21 @@ namespace { const Value FutilityMarginQS = Value(0x80); // Futility lookup tables (initialized at startup) and their getter functions - int32_t FutilityMarginsMatrix[14][64]; // [depth][moveNumber] + int32_t FutilityMarginsMatrix[16][64]; // [depth][moveNumber] int FutilityMoveCountArray[32]; // [depth] - inline Value futility_margin(Depth d, int mn) { return Value(d < 7*OnePly ? FutilityMarginsMatrix[Max(d, 0)][Min(mn, 63)] : 2 * VALUE_INFINITE); } - inline int futility_move_count(Depth d) { return d < 16*OnePly ? FutilityMoveCountArray[d] : 512; } + inline Value futility_margin(Depth d, int mn) { return Value(d < 7 * OnePly ? FutilityMarginsMatrix[Max(d, 0)][Min(mn, 63)] : 2 * VALUE_INFINITE); } + inline int futility_move_count(Depth d) { return d < 16 * OnePly ? FutilityMoveCountArray[d] : 512; } // Step 14. Reduced search // Reduction lookup tables (initialized at startup) and their getter functions - int8_t PVReductionMatrix[64][64]; // [depth][moveNumber] - int8_t NonPVReductionMatrix[64][64]; // [depth][moveNumber] + int8_t ReductionMatrix[2][64][64]; // [pv][depth][moveNumber] - inline Depth pv_reduction(Depth d, int mn) { return (Depth) PVReductionMatrix[Min(d / 2, 63)][Min(mn, 63)]; } - inline Depth nonpv_reduction(Depth d, int mn) { return (Depth) NonPVReductionMatrix[Min(d / 2, 63)][Min(mn, 63)]; } + template + inline Depth reduction(Depth d, int mn) { return (Depth) ReductionMatrix[PV][Min(d / 2, 63)][Min(mn, 63)]; } - // Step. Common adjustments + // Common adjustments // Search depth at iteration 1 const Depth InitialDepth = OnePly; @@ -242,7 +243,7 @@ namespace { /// Global variables - // Iteration counters + // Iteration counter int Iteration; // Scores and number of times the best move changed for each iteration @@ -256,64 +257,64 @@ namespace { int MultiPV; // Time managment variables - int RootMoveNumber; - int SearchStartTime; - int MaxNodes, MaxDepth; - int MaxSearchTime, AbsoluteMaxSearchTime, ExtraSearchTime, ExactMaxTime; + int SearchStartTime, MaxNodes, MaxDepth, MaxSearchTime; + int AbsoluteMaxSearchTime, ExtraSearchTime, ExactMaxTime; bool UseTimeManagement, InfiniteSearch, PonderSearch, StopOnPonderhit; - bool AbortSearch, Quit; - bool AspirationFailLow; - - // Show current line? - bool ShowCurrentLine; + bool FirstRootMove, AbortSearch, Quit, AspirationFailLow; // Log file bool UseLogFile; std::ofstream LogFile; - // MP related variables + // Multi-threads related variables Depth MinimumSplitDepth; int MaxThreadsPerSplitPoint; ThreadsManager TM; - // Node counters, used only by thread[0] but try to keep in different - // cache lines (64 bytes each) from the heavy SMP read accessed variables. + // Node counters, used only by thread[0] but try to keep in different cache + // lines (64 bytes each) from the heavy multi-thread read accessed variables. int NodesSincePoll; int NodesBetweenPolls = 30000; // History table History H; - /// Functions + /// Local functions Value id_loop(const Position& pos, Move searchMoves[]); - Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value& oldAlpha, Value& beta); - Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID); - Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, int ply, bool allowNullmove, int threadID, Move excludedMove = MOVE_NONE); - Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta, Depth depth, int ply, int threadID); + Value root_search(Position& pos, SearchStack* ss, RootMoveList& rml, Value* alphaPtr, Value* betaPtr); + + template + Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int threadID); + + template + Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int threadID); + + template void sp_search(SplitPoint* sp, int threadID); - void sp_search_pv(SplitPoint* sp, int threadID); - void init_node(SearchStack ss[], int ply, int threadID); - void update_pv(SearchStack ss[], int ply); - void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply); + + template + Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck, bool singleEvasion, bool mateThreat, bool* dangerous); + + void update_pv(SearchStack* ss, int ply); + void sp_update_pv(SearchStack* pss, SearchStack* ss, int ply); bool connected_moves(const Position& pos, Move m1, Move m2); bool value_is_mate(Value value); - bool move_is_killer(Move m, const SearchStack& ss); - Depth extension(const Position&, Move, bool, bool, bool, bool, bool, bool*); - bool ok_to_do_nullmove(const Position& pos); - bool ok_to_prune(const Position& pos, Move m, Move threat); + bool move_is_killer(Move m, SearchStack* ss); bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply); + bool connected_threat(const Position& pos, Move m, Move threat); Value refine_eval(const TTEntry* tte, Value defaultEval, int ply); void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount); - void update_killers(Move m, SearchStack& ss); + void update_killers(Move m, SearchStack* ss); void update_gains(const Position& pos, Move move, Value before, Value after); int current_search_time(); int nps(); - void poll(SearchStack ss[], int ply); + void poll(); void ponderhit(); void wait_for_stop_or_ponderhit(); - void init_ss_array(SearchStack ss[]); + void init_ss_array(SearchStack* ss, int size); + void print_pv_info(const Position& pos, SearchStack* ss, Value alpha, Value beta, Value value); #if !defined(_MSC_VER) void *init_thread(void *threadID); @@ -336,14 +337,60 @@ void exit_threads() { TM.exit_threads(); } int64_t nodes_searched() { return TM.nodes_searched(); } +/// init_search() is called during startup. It initializes various lookup tables + +void init_search() { + + int d; // depth (OnePly == 2) + int hd; // half depth (OnePly == 1) + int mc; // moveCount + + // Init reductions array + for (hd = 1; hd < 64; hd++) for (mc = 1; mc < 64; mc++) + { + double pvRed = log(double(hd)) * log(double(mc)) / 3.0; + double nonPVRed = log(double(hd)) * log(double(mc)) / 1.5; + ReductionMatrix[PV][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(OnePly)) : 0); + ReductionMatrix[NonPV][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(OnePly)) : 0); + } + + // Init futility margins array + for (d = 0; d < 16; d++) for (mc = 0; mc < 64; mc++) + FutilityMarginsMatrix[d][mc] = 112 * int(log(double(d * d) / 2) / log(2.0) + 1) - 8 * mc + 45; + + // Init futility move count array + for (d = 0; d < 32; d++) + FutilityMoveCountArray[d] = 3 + (1 << (3 * d / 8)); +} + + +// SearchStack::init() initializes a search stack. Used at the beginning of a +// new search from the root. +void SearchStack::init(int ply) { + + pv[ply] = pv[ply + 1] = MOVE_NONE; + currentMove = threatMove = MOVE_NONE; + reduction = Depth(0); + eval = VALUE_NONE; +} + +void SearchStack::initKillers() { + + mateKiller = MOVE_NONE; + for (int i = 0; i < KILLER_MAX; i++) + killers[i] = MOVE_NONE; +} + + /// perft() is our utility to verify move generation is bug free. All the legal /// moves up to given depth are generated and counted and the sum returned. int perft(Position& pos, Depth depth) { + StateInfo st; Move move; int sum = 0; - MovePicker mp = MovePicker(pos, MOVE_NONE, depth, H); + MovePicker mp(pos, MOVE_NONE, depth, H); // If we are at the last ply we don't need to do and undo // the moves, just to count them. @@ -357,7 +404,6 @@ int perft(Position& pos, Depth depth) CheckInfo ci(pos); while ((move = mp.get_next_move()) != MOVE_NONE) { - StateInfo st; pos.do_move(move, st, ci, pos.move_is_check(move, ci)); sum += perft(pos, depth - OnePly); pos.undo_move(move); @@ -376,9 +422,10 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, int maxNodes, int maxTime, Move searchMoves[]) { // Initialize global search variables - StopOnPonderhit = AbortSearch = Quit = false; - AspirationFailLow = false; + StopOnPonderhit = AbortSearch = Quit = AspirationFailLow = false; + MaxSearchTime = AbsoluteMaxSearchTime = ExtraSearchTime = 0; NodesSincePoll = 0; + TM.resetNodeCounters(); SearchStartTime = get_system_time(); ExactMaxTime = maxTime; MaxDepth = maxDepth; @@ -390,11 +437,10 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, // Look for a book move, only during games, not tests if (UseTimeManagement && get_option_value_bool("OwnBook")) { - Move bookMove; if (get_option_value_string("Book File") != OpeningBook.file_name()) OpeningBook.open(get_option_value_string("Book File")); - bookMove = OpeningBook.get_move(pos); + Move bookMove = OpeningBook.get_move(pos, get_option_value_bool("Best Book Move")); if (bookMove != MOVE_NONE) { if (PonderSearch) @@ -405,46 +451,37 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, } } - TM.resetNodeCounters(); - + // Reset loseOnTime flag at the beginning of a new game if (button_was_pressed("New Game")) - loseOnTime = false; // Reset at the beginning of a new game + loseOnTime = false; // Read UCI option values TT.set_size(get_option_value_int("Hash")); if (button_was_pressed("Clear Hash")) TT.clear(); - bool PonderingEnabled = get_option_value_bool("Ponder"); - MultiPV = get_option_value_int("MultiPV"); - - CheckExtension[1] = Depth(get_option_value_int("Check Extension (PV nodes)")); - CheckExtension[0] = Depth(get_option_value_int("Check Extension (non-PV nodes)")); - + CheckExtension[1] = Depth(get_option_value_int("Check Extension (PV nodes)")); + CheckExtension[0] = Depth(get_option_value_int("Check Extension (non-PV nodes)")); SingleEvasionExtension[1] = Depth(get_option_value_int("Single Evasion Extension (PV nodes)")); SingleEvasionExtension[0] = Depth(get_option_value_int("Single Evasion Extension (non-PV nodes)")); - PawnPushTo7thExtension[1] = Depth(get_option_value_int("Pawn Push to 7th Extension (PV nodes)")); PawnPushTo7thExtension[0] = Depth(get_option_value_int("Pawn Push to 7th Extension (non-PV nodes)")); + PassedPawnExtension[1] = Depth(get_option_value_int("Passed Pawn Extension (PV nodes)")); + PassedPawnExtension[0] = Depth(get_option_value_int("Passed Pawn Extension (non-PV nodes)")); + PawnEndgameExtension[1] = Depth(get_option_value_int("Pawn Endgame Extension (PV nodes)")); + PawnEndgameExtension[0] = Depth(get_option_value_int("Pawn Endgame Extension (non-PV nodes)")); + MateThreatExtension[1] = Depth(get_option_value_int("Mate Threat Extension (PV nodes)")); + MateThreatExtension[0] = Depth(get_option_value_int("Mate Threat Extension (non-PV nodes)")); + + MinimumSplitDepth = get_option_value_int("Minimum Split Depth") * OnePly; + MaxThreadsPerSplitPoint = get_option_value_int("Maximum Number of Threads per Split Point"); + MultiPV = get_option_value_int("MultiPV"); + Chess960 = get_option_value_bool("UCI_Chess960"); + UseLogFile = get_option_value_bool("Use Search Log"); - PassedPawnExtension[1] = Depth(get_option_value_int("Passed Pawn Extension (PV nodes)")); - PassedPawnExtension[0] = Depth(get_option_value_int("Passed Pawn Extension (non-PV nodes)")); - - PawnEndgameExtension[1] = Depth(get_option_value_int("Pawn Endgame Extension (PV nodes)")); - PawnEndgameExtension[0] = Depth(get_option_value_int("Pawn Endgame Extension (non-PV nodes)")); - - MateThreatExtension[1] = Depth(get_option_value_int("Mate Threat Extension (PV nodes)")); - MateThreatExtension[0] = Depth(get_option_value_int("Mate Threat Extension (non-PV nodes)")); - - Chess960 = get_option_value_bool("UCI_Chess960"); - ShowCurrentLine = get_option_value_bool("UCI_ShowCurrLine"); - UseLogFile = get_option_value_bool("Use Search Log"); if (UseLogFile) LogFile.open(get_option_value_string("Search Log Filename").c_str(), std::ios::out | std::ios::app); - MinimumSplitDepth = get_option_value_int("Minimum Split Depth") * OnePly; - MaxThreadsPerSplitPoint = get_option_value_int("Maximum Number of Threads per Split Point"); - read_weights(pos.side_to_move()); // Set the number of active threads @@ -453,10 +490,6 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, { TM.set_active_threads(newActiveThreads); init_eval(TM.active_threads()); - // HACK: init_eval() destroys the static castleRightsMask[] array in the - // Position class. The below line repairs the damage. - Position p(pos.to_fen()); - assert(pos.is_ok()); } // Wake up sleeping threads @@ -494,14 +527,15 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, } } - if (PonderingEnabled) + if (get_option_value_bool("Ponder")) { MaxSearchTime += MaxSearchTime / 4; MaxSearchTime = Min(MaxSearchTime, AbsoluteMaxSearchTime); } } - // Set best NodesBetweenPolls interval + // Set best NodesBetweenPolls interval to avoid lagging under + // heavy time pressure. if (MaxNodes) NodesBetweenPolls = Min(MaxNodes, 30000); else if (myTime && myTime < 1000) @@ -511,7 +545,7 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, else NodesBetweenPolls = 30000; - // Write information to search log file + // Write search information to log file if (UseLogFile) LogFile << "Searching: " << pos.to_fen() << endl << "infinite: " << infinite @@ -520,7 +554,7 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, << " increment: " << myIncrement << " moves to go: " << movesToGo << endl; - // LSN filtering. Used only for developing purpose. Disabled by default. + // LSN filtering. Used only for developing purposes, disabled by default if ( UseLSNFiltering && loseOnTime) { @@ -560,50 +594,6 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, } -/// init_search() is called during startup. It initializes various lookup tables - -void init_search() { - - // Init our reduction lookup tables - for (int i = 1; i < 64; i++) // i == depth (OnePly = 1) - for (int j = 1; j < 64; j++) // j == moveNumber - { - double pvRed = 0.5 + log(double(i)) * log(double(j)) / 6.0; - double nonPVRed = 0.5 + log(double(i)) * log(double(j)) / 3.0; - PVReductionMatrix[i][j] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(OnePly)) : 0); - NonPVReductionMatrix[i][j] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(OnePly)) : 0); - } - - // Init futility margins array - for (int i = 0; i < 14; i++) // i == depth (OnePly = 2) - for (int j = 0; j < 64; j++) // j == moveNumber - { - FutilityMarginsMatrix[i][j] = (i < 2 ? 0 : 112 * bitScanReverse32(i * i / 2)) - 8 * j; // FIXME: test using log instead of BSR - } - - // Init futility move count array - for (int i = 0; i < 32; i++) // i == depth (OnePly = 2) - FutilityMoveCountArray[i] = 3 + (1 << (3 * i / 8)); -} - - -// SearchStack::init() initializes a search stack. Used at the beginning of a -// new search from the root. -void SearchStack::init(int ply) { - - pv[ply] = pv[ply + 1] = MOVE_NONE; - currentMove = threatMove = MOVE_NONE; - reduction = Depth(0); - eval = VALUE_NONE; -} - -void SearchStack::initKillers() { - - mateKiller = MOVE_NONE; - for (int i = 0; i < KILLER_MAX; i++) - killers[i] = MOVE_NONE; -} - namespace { // id_loop() is the main iterative deepening loop. It calls root_search @@ -615,8 +605,10 @@ namespace { Position p(pos); SearchStack ss[PLY_MAX_PLUS_2]; + Move EasyMove = MOVE_NONE; + Value value, alpha = -VALUE_INFINITE, beta = VALUE_INFINITE; - // searchMoves are verified, copied, scored and sorted + // Moves to search are verified, copied, scored and sorted RootMoveList rml(p, searchMoves); // Handle special case of searching on a mate/stale position @@ -625,12 +617,13 @@ namespace { if (PonderSearch) wait_for_stop_or_ponderhit(); - return pos.is_check()? -VALUE_MATE : VALUE_DRAW; + return pos.is_check() ? -VALUE_MATE : VALUE_DRAW; } - // Print RootMoveList c'tor startup scoring to the standard output, - // so that we print information also for iteration 1. - cout << "info depth " << 1 << "\ninfo depth " << 1 + // Print RootMoveList startup scoring to the standard output, + // so to output information also for iteration 1. + cout << "info depth " << 1 + << "\ninfo depth " << 1 << " score " << value_to_string(rml.get_move_score(0)) << " time " << current_search_time() << " nodes " << TM.nodes_searched() @@ -640,12 +633,12 @@ namespace { // Initialize TT.new_search(); H.clear(); - init_ss_array(ss); + init_ss_array(ss, PLY_MAX_PLUS_2); ValueByIteration[1] = rml.get_move_score(0); + p.reset_ply(); Iteration = 1; // Is one move significantly better than others after initial scoring ? - Move EasyMove = MOVE_NONE; if ( rml.move_count() == 1 || rml.get_move_score(0) > rml.get_move_score(1) + EasyMoveMargin) EasyMove = rml.get_move(0); @@ -654,17 +647,12 @@ namespace { while (Iteration < PLY_MAX) { // Initialize iteration - rml.sort(); Iteration++; BestMoveChangesByIteration[Iteration] = 0; - if (Iteration <= 5) - ExtraSearchTime = 0; cout << "info depth " << Iteration << endl; - // Calculate dynamic search window based on previous iterations - Value alpha, beta; - + // Calculate dynamic aspiration window based on previous iterations if (MultiPV == 1 && Iteration >= 6 && abs(ValueByIteration[Iteration - 1]) < VALUE_KNOWN_WIN) { int prevDelta1 = ValueByIteration[Iteration - 1] - ValueByIteration[Iteration - 2]; @@ -676,18 +664,13 @@ namespace { alpha = Max(ValueByIteration[Iteration - 1] - AspirationDelta, -VALUE_INFINITE); beta = Min(ValueByIteration[Iteration - 1] + AspirationDelta, VALUE_INFINITE); } - else - { - alpha = - VALUE_INFINITE; - beta = VALUE_INFINITE; - } - // Search to the current depth - Value value = root_search(p, ss, rml, alpha, beta); + // Search to the current depth, rml is updated and sorted, alpha and beta could change + value = root_search(p, ss, rml, &alpha, &beta); // Write PV to transposition table, in case the relevant entries have // been overwritten during the search. - TT.insert_pv(p, ss[0].pv); + TT.insert_pv(p, ss->pv); if (AbortSearch) break; // Value cannot be trusted. Break out immediately! @@ -695,8 +678,8 @@ namespace { //Save info about search result ValueByIteration[Iteration] = value; - // Drop the easy move if it differs from the new best move - if (ss[0].pv[0] != EasyMove) + // Drop the easy move if differs from the new best move + if (ss->pv[0] != EasyMove) EasyMove = MOVE_NONE; if (UseTimeManagement) @@ -715,10 +698,10 @@ namespace { && abs(ValueByIteration[Iteration-1]) >= abs(VALUE_MATE) - 100) stopSearch = true; - // Stop search early if one move seems to be much better than the rest + // Stop search early if one move seems to be much better than the others int64_t nodes = TM.nodes_searched(); if ( Iteration >= 8 - && EasyMove == ss[0].pv[0] + && EasyMove == ss->pv[0] && ( ( rml.get_move_cumulative_nodes(0) > (nodes * 85) / 100 && current_search_time() > MaxSearchTime / 16) ||( rml.get_move_cumulative_nodes(0) > (nodes * 98) / 100 @@ -738,10 +721,10 @@ namespace { if (stopSearch) { - if (!PonderSearch) - break; - else + if (PonderSearch) StopOnPonderhit = true; + else + break; } } @@ -749,8 +732,6 @@ namespace { break; } - rml.sort(); - // If we are pondering or in infinite search, we shouldn't print the // best move before we are told to do so. if (!AbortSearch && (PonderSearch || InfiniteSearch)) @@ -763,14 +744,18 @@ namespace { << " hashfull " << TT.full() << endl; // Print the best move and the ponder move to the standard output - if (ss[0].pv[0] == MOVE_NONE) + if (ss->pv[0] == MOVE_NONE) { - ss[0].pv[0] = rml.get_move(0); - ss[0].pv[1] = MOVE_NONE; + ss->pv[0] = rml.get_move(0); + ss->pv[1] = MOVE_NONE; } - cout << "bestmove " << ss[0].pv[0]; - if (ss[0].pv[1] != MOVE_NONE) - cout << " ponder " << ss[0].pv[1]; + + assert(ss->pv[0] != MOVE_NONE); + + cout << "bestmove " << ss->pv[0]; + + if (ss->pv[1] != MOVE_NONE) + cout << " ponder " << ss->pv[1]; cout << endl; @@ -784,11 +769,13 @@ namespace { LogFile << "\nNodes: " << TM.nodes_searched() << "\nNodes/second: " << nps() - << "\nBest move: " << move_to_san(p, ss[0].pv[0]); + << "\nBest move: " << move_to_san(p, ss->pv[0]); StateInfo st; - p.do_move(ss[0].pv[0], st); - LogFile << "\nPonder move: " << move_to_san(p, ss[0].pv[1]) << endl; + p.do_move(ss->pv[0], st); + LogFile << "\nPonder move: " + << move_to_san(p, ss->pv[1]) // Works also with MOVE_NONE + << endl; } return rml.get_move_score(0); } @@ -796,41 +783,54 @@ namespace { // root_search() is the function which searches the root node. It is // similar to search_pv except that it uses a different move ordering - // scheme and prints some information to the standard output. + // scheme, prints some information to the standard output and handles + // the fail low/high loops. - Value root_search(Position& pos, SearchStack ss[], RootMoveList& rml, Value& oldAlpha, Value& beta) { + Value root_search(Position& pos, SearchStack* ss, RootMoveList& rml, Value* alphaPtr, Value* betaPtr) { + EvalInfo ei; + StateInfo st; + CheckInfo ci(pos); int64_t nodes; Move move; - StateInfo st; Depth depth, ext, newDepth; - Value value; - CheckInfo ci(pos); - int researchCount = 0; - bool moveIsCheck, captureOrPromotion, dangerous; - Value alpha = oldAlpha; - bool isCheck = pos.is_check(); + Value value, alpha, beta; + bool isCheck, moveIsCheck, captureOrPromotion, dangerous; + int researchCountFH, researchCountFL; - // Evaluate the position statically - EvalInfo ei; - ss[0].eval = !isCheck ? evaluate(pos, ei, 0) : VALUE_NONE; + researchCountFH = researchCountFL = 0; + alpha = *alphaPtr; + beta = *betaPtr; + isCheck = pos.is_check(); - while (1) // Fail low loop + // Step 1. Initialize node and poll (omitted at root, init_ss_array() has already initialized root node) + // Step 2. Check for aborted search (omitted at root) + // Step 3. Mate distance pruning (omitted at root) + // Step 4. Transposition table lookup (omitted at root) + + // Step 5. Evaluate the position statically + // At root we do this only to get reference value for child nodes + if (!isCheck) + ss->eval = evaluate(pos, ei, 0); + + // Step 6. Razoring (omitted at root) + // Step 7. Static null move pruning (omitted at root) + // Step 8. Null move search with verification search (omitted at root) + // Step 9. Internal iterative deepening (omitted at root) + + // Step extra. Fail low loop + // We start with small aspiration window and in case of fail low, we research + // with bigger window until we are not failing low anymore. + while (1) { + // Sort the moves before to (re)search + rml.sort(); - // Loop through all the moves in the root move list + // Step 10. Loop through all moves in the root move list for (int i = 0; i < rml.move_count() && !AbortSearch; i++) { - if (alpha >= beta) - { - // We failed high, invalidate and skip next moves, leave node-counters - // and beta-counters as they are and quickly return, we will try to do - // a research at the next iteration with a bigger aspiration window. - rml.set_move_score(i, -VALUE_INFINITE); - continue; - } - - RootMoveNumber = i + 1; + // This is used by time management + FirstRootMove = (i == 0); // Save the current node count before the move is searched nodes = TM.nodes_searched(); @@ -840,104 +840,98 @@ namespace { // Pick the next root move, and print the move and the move number to // the standard output. - move = ss[0].currentMove = rml.get_move(i); + move = ss->currentMove = rml.get_move(i); if (current_search_time() >= 1000) cout << "info currmove " << move - << " currmovenumber " << RootMoveNumber << endl; + << " currmovenumber " << i + 1 << endl; - // Decide search depth for this move moveIsCheck = pos.move_is_check(move); captureOrPromotion = pos.move_is_capture_or_promotion(move); + + // Step 11. Decide the new search depth depth = (Iteration - 2) * OnePly + InitialDepth; - ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous); + ext = extension(pos, move, captureOrPromotion, moveIsCheck, false, false, &dangerous); newDepth = depth + ext; + // Step 12. Futility pruning (omitted at root) + + // Step extra. Fail high loop + // If move fails high, we research with bigger window until we are not failing + // high anymore. value = - VALUE_INFINITE; - while (1) // Fail high loop + while (1) { - - // Make the move, and search it + // Step 13. Make the move pos.do_move(move, st, ci, moveIsCheck); + // Step extra. pv search + // We do pv search for first moves (i < MultiPV) + // and for fail high research (value > alpha) if (i < MultiPV || value > alpha) { // Aspiration window is disabled in multi-pv case if (MultiPV > 1) alpha = -VALUE_INFINITE; - value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0); + // Full depth PV search, done on first move or after a fail high + value = -search(pos, ss+1, -beta, -alpha, newDepth, 0); } else { - // Try to reduce non-pv search depth by one ply if move seems not problematic, - // if the move fails high will be re-searched at full depth. + // Step 14. Reduced search + // if the move fails high will be re-searched at full depth bool doFullDepthSearch = true; - if ( depth >= 3*OnePly // FIXME was newDepth + if ( depth >= 3 * OnePly && !dangerous && !captureOrPromotion && !move_is_castle(move)) { - ss[0].reduction = pv_reduction(depth, RootMoveNumber - MultiPV + 1); - if (ss[0].reduction) + ss->reduction = reduction(depth, i - MultiPV + 2); + if (ss->reduction) { - value = -search(pos, ss, -alpha, newDepth-ss[0].reduction, 1, true, 0); + // Reduced depth non-pv search using alpha as upperbound + value = -search(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction, 0); doFullDepthSearch = (value > alpha); } } + // Step 15. Full depth search if (doFullDepthSearch) { - ss[0].reduction = Depth(0); - value = -search(pos, ss, -alpha, newDepth, 1, true, 0); + // Full depth non-pv search using alpha as upperbound + ss->reduction = Depth(0); + value = -search(pos, ss+1, -(alpha+1), -alpha, newDepth, 0); + // If we are above alpha then research at same depth but as PV + // to get a correct score or eventually a fail high above beta. if (value > alpha) - value = -search_pv(pos, ss, -beta, -alpha, newDepth, 1, 0); + value = -search(pos, ss+1, -beta, -alpha, newDepth, 0); } } + // Step 16. Undo move pos.undo_move(move); // Can we exit fail high loop ? if (AbortSearch || value < beta) break; - // We are failing high and going to do a research. It's important to update score - // before research in case we run out of time while researching. + // We are failing high and going to do a research. It's important to update + // the score before research in case we run out of time while researching. rml.set_move_score(i, value); update_pv(ss, 0); - TT.extract_pv(pos, ss[0].pv, PLY_MAX); - rml.set_move_pv(i, ss[0].pv); - - // Print search information to the standard output - cout << "info depth " << Iteration - << " score " << value_to_string(value) - << ((value >= beta) ? " lowerbound" : - ((value <= alpha)? " upperbound" : "")) - << " time " << current_search_time() - << " nodes " << TM.nodes_searched() - << " nps " << nps() - << " pv "; - - for (int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++) - cout << ss[0].pv[j] << " "; + TT.extract_pv(pos, ss->pv, PLY_MAX); + rml.set_move_pv(i, ss->pv); - cout << endl; - - if (UseLogFile) - { - ValueType type = (value >= beta ? VALUE_TYPE_LOWER - : (value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT)); - - LogFile << pretty_pv(pos, current_search_time(), Iteration, - TM.nodes_searched(), value, type, ss[0].pv) << endl; - } + // Print information to the standard output + print_pv_info(pos, ss, alpha, beta, value); // Prepare for a research after a fail high, each time with a wider window - researchCount++; - beta = Min(beta + AspirationDelta * (1 << researchCount), VALUE_INFINITE); + *betaPtr = beta = Min(beta + AspirationDelta * (1 << researchCountFH), VALUE_INFINITE); + researchCountFH++; } // End of fail high loop @@ -950,14 +944,16 @@ namespace { break; // Remember beta-cutoff and searched nodes counts for this move. The - // info is used to sort the root moves at the next iteration. + // info is used to sort the root moves for the next iteration. int64_t our, their; TM.get_beta_counters(pos.side_to_move(), our, their); rml.set_beta_counters(i, our, their); rml.set_move_nodes(i, TM.nodes_searched() - nodes); assert(value >= -VALUE_INFINITE && value <= VALUE_INFINITE); + assert(value < beta); + // Step 17. Check for new best move if (value <= alpha && i >= MultiPV) rml.set_move_score(i, -VALUE_INFINITE); else @@ -967,8 +963,8 @@ namespace { // Update PV rml.set_move_score(i, value); update_pv(ss, 0); - TT.extract_pv(pos, ss[0].pv, PLY_MAX); - rml.set_move_pv(i, ss[0].pv); + TT.extract_pv(pos, ss->pv, PLY_MAX); + rml.set_move_pv(i, ss->pv); if (MultiPV == 1) { @@ -978,29 +974,10 @@ namespace { if (i > 0) BestMoveChangesByIteration[Iteration]++; - // Print search information to the standard output - cout << "info depth " << Iteration - << " score " << value_to_string(value) - << ((value >= beta) ? " lowerbound" : - ((value <= alpha)? " upperbound" : "")) - << " time " << current_search_time() - << " nodes " << TM.nodes_searched() - << " nps " << nps() - << " pv "; - - for (int j = 0; ss[0].pv[j] != MOVE_NONE && j < PLY_MAX; j++) - cout << ss[0].pv[j] << " "; - - cout << endl; + // Print information to the standard output + print_pv_info(pos, ss, alpha, beta, value); - if (UseLogFile) - { - ValueType type = (value >= beta ? VALUE_TYPE_LOWER - : (value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT)); - - LogFile << pretty_pv(pos, current_search_time(), Iteration, - TM.nodes_searched(), value, type, ss[0].pv) << endl; - } + // Raise alpha to setup proper non-pv search upper bound if (value > alpha) alpha = value; } @@ -1011,7 +988,7 @@ namespace { { cout << "info multipv " << j + 1 << " score " << value_to_string(rml.get_move_score(j)) - << " depth " << ((j <= i)? Iteration : Iteration - 1) + << " depth " << (j <= i ? Iteration : Iteration - 1) << " time " << current_search_time() << " nodes " << TM.nodes_searched() << " nps " << nps() @@ -1022,288 +999,72 @@ namespace { cout << endl; } - alpha = rml.get_move_score(Min(i, MultiPV-1)); + alpha = rml.get_move_score(Min(i, MultiPV - 1)); } } // PV move or new best move - assert(alpha >= oldAlpha); + assert(alpha >= *alphaPtr); - AspirationFailLow = (alpha == oldAlpha); + AspirationFailLow = (alpha == *alphaPtr); if (AspirationFailLow && StopOnPonderhit) StopOnPonderhit = false; } // Can we exit fail low loop ? - if (AbortSearch || alpha > oldAlpha) + if (AbortSearch || !AspirationFailLow) break; // Prepare for a research after a fail low, each time with a wider window - researchCount++; - alpha = Max(alpha - AspirationDelta * (1 << researchCount), -VALUE_INFINITE); - oldAlpha = alpha; + *alphaPtr = alpha = Max(alpha - AspirationDelta * (1 << researchCountFL), -VALUE_INFINITE); + researchCountFL++; } // Fail low loop - return alpha; - } - - - // search_pv() is the main search function for PV nodes. - - Value search_pv(Position& pos, SearchStack ss[], Value alpha, Value beta, - Depth depth, int ply, int threadID) { - - assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); - assert(beta > alpha && beta <= VALUE_INFINITE); - assert(ply >= 0 && ply < PLY_MAX); - assert(threadID >= 0 && threadID < TM.active_threads()); - - Move movesSearched[256]; - EvalInfo ei; - StateInfo st; - const TTEntry* tte; - Move ttMove, move; - Depth ext, newDepth; - Value bestValue, value, oldAlpha; - bool isCheck, singleEvasion, moveIsCheck, captureOrPromotion, dangerous; - bool mateThreat = false; - int moveCount = 0; - bestValue = value = -VALUE_INFINITE; - - if (depth < OnePly) - return qsearch(pos, ss, alpha, beta, Depth(0), ply, threadID); - - // Step 1. Initialize node and poll - // Polling can abort search. - init_node(ss, ply, threadID); - - // Step 2. Check for aborted search and immediate draw - if (AbortSearch || TM.thread_should_stop(threadID)) - return Value(0); - - if (pos.is_draw() || ply >= PLY_MAX - 1) - return VALUE_DRAW; - - // Step 3. Mate distance pruning - oldAlpha = alpha; - alpha = Max(value_mated_in(ply), alpha); - beta = Min(value_mate_in(ply+1), beta); - if (alpha >= beta) - return alpha; - - // Step 4. Transposition table lookup - // At PV nodes, we don't use the TT for pruning, but only for move ordering. - // This is to avoid problems in the following areas: - // - // * Repetition draw detection - // * Fifty move rule detection - // * Searching for a mate - // * Printing of full PV line - tte = TT.retrieve(pos.get_key()); - ttMove = (tte ? tte->move() : MOVE_NONE); - - // Step 5. Evaluate the position statically - // At PV nodes we do this only to update gain statistics - isCheck = pos.is_check(); - if (!isCheck) - { - ss[ply].eval = evaluate(pos, ei, threadID); - update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval); - } - - // Step 6. Razoring (is omitted in PV nodes) - // Step 7. Static null move pruning (is omitted in PV nodes) - // Step 8. Null move search with verification search (is omitted in PV nodes) - - // Step 9. Internal iterative deepening - if ( depth >= IIDDepthAtPVNodes - && ttMove == MOVE_NONE) - { - search_pv(pos, ss, alpha, beta, depth-2*OnePly, ply, threadID); - ttMove = ss[ply].pv[ply]; - tte = TT.retrieve(pos.get_key()); - } - - // Step 10. Loop through moves - // Loop through all legal moves until no moves remain or a beta cutoff occurs - - // Initialize a MovePicker object for the current position - mateThreat = pos.has_mate_threat(opposite_color(pos.side_to_move())); - MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]); - CheckInfo ci(pos); - - while ( alpha < beta - && (move = mp.get_next_move()) != MOVE_NONE - && !TM.thread_should_stop(threadID)) - { - assert(move_is_ok(move)); - - singleEvasion = (isCheck && mp.number_of_evasions() == 1); - moveIsCheck = pos.move_is_check(move, ci); - captureOrPromotion = pos.move_is_capture_or_promotion(move); - - // Step 11. Decide the new search depth - ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous); - - // Singular extension search. We extend the TT move if its value is much better than - // its siblings. To verify this we do a reduced search on all the other moves but the - // ttMove, if result is lower then ttValue minus a margin then we extend ttMove. - if ( depth >= SingularExtensionDepthAtPVNodes - && tte - && move == tte->move() - && ext < OnePly - && is_lower_bound(tte->type()) - && tte->depth() >= depth - 3 * OnePly) - { - Value ttValue = value_from_tt(tte->value(), ply); - - if (abs(ttValue) < VALUE_KNOWN_WIN) - { - Value excValue = search(pos, ss, ttValue - SingularExtensionMargin, depth / 2, ply, false, threadID, move); - - if (excValue < ttValue - SingularExtensionMargin) - ext = OnePly; - } - } - - newDepth = depth - OnePly + ext; - - // Update current move (this must be done after singular extension search) - movesSearched[moveCount++] = ss[ply].currentMove = move; - - // Step 12. Futility pruning (is omitted in PV nodes) - - // Step 13. Make the move - pos.do_move(move, st, ci, moveIsCheck); - - // Step extra. pv search (only in PV nodes) - // The first move in list is the expected PV - if (moveCount == 1) - value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID); - else - { - // Step 14. Reduced search - // if the move fails high will be re-searched at full depth. - bool doFullDepthSearch = true; - - if ( depth >= 3*OnePly - && !dangerous - && !captureOrPromotion - && !move_is_castle(move) - && !move_is_killer(move, ss[ply])) - { - ss[ply].reduction = pv_reduction(depth, moveCount); - if (ss[ply].reduction) - { - value = -search(pos, ss, -alpha, newDepth-ss[ply].reduction, ply+1, true, threadID); - doFullDepthSearch = (value > alpha); - } - } - - // Step 15. Full depth search - if (doFullDepthSearch) - { - ss[ply].reduction = Depth(0); - value = -search(pos, ss, -alpha, newDepth, ply+1, true, threadID); - - // Step extra. pv search (only in PV nodes) - if (value > alpha && value < beta) - value = -search_pv(pos, ss, -beta, -alpha, newDepth, ply+1, threadID); - } - } - - // Step 16. Undo move - pos.undo_move(move); - - assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); - - // Step 17. Check for new best move - if (value > bestValue) - { - bestValue = value; - if (value > alpha) - { - alpha = value; - update_pv(ss, ply); - if (value == value_mate_in(ply + 1)) - ss[ply].mateKiller = move; - } - } - - // Step 18. Check for split - if ( TM.active_threads() > 1 - && bestValue < beta - && depth >= MinimumSplitDepth - && Iteration <= 99 - && TM.available_thread_exists(threadID) - && !AbortSearch - && !TM.thread_should_stop(threadID) - && TM.split(pos, ss, ply, &alpha, beta, &bestValue, - depth, &moveCount, &mp, threadID, true)) - break; - } - - // Step 19. Check for mate and stalemate - // All legal moves have been searched and if there were - // no legal moves, it must be mate or stalemate. - if (moveCount == 0) - return (isCheck ? value_mated_in(ply) : VALUE_DRAW); - - // Step 20. Update tables - // If the search is not aborted, update the transposition table, - // history counters, and killer moves. - if (AbortSearch || TM.thread_should_stop(threadID)) - return bestValue; - - if (bestValue <= oldAlpha) - TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE); - - else if (bestValue >= beta) - { - TM.incrementBetaCounter(pos.side_to_move(), depth, threadID); - move = ss[ply].pv[ply]; - if (!pos.move_is_capture_or_promotion(move)) - { - update_history(pos, move, depth, movesSearched, moveCount); - update_killers(move, ss[ply]); - } - TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move); - } - else - TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, depth, ss[ply].pv[ply]); + // Sort the moves before to return + rml.sort(); - return bestValue; + return alpha; } - // search() is the search function for zero-width nodes. + // search<>() is the main search function for both PV and non-PV nodes - Value search(Position& pos, SearchStack ss[], Value beta, Depth depth, - int ply, bool allowNullmove, int threadID, Move excludedMove) { + template + Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int threadID) { - assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE); - assert(ply >= 0 && ply < PLY_MAX); + assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); + assert(beta > alpha && beta <= VALUE_INFINITE); + assert(PvNode || alpha == beta - 1); + assert(pos.ply() > 0 && pos.ply() < PLY_MAX); assert(threadID >= 0 && threadID < TM.active_threads()); Move movesSearched[256]; EvalInfo ei; StateInfo st; const TTEntry* tte; - Move ttMove, move; + Key posKey; + Move ttMove, move, excludedMove; Depth ext, newDepth; - Value bestValue, refinedValue, nullValue, value, futilityValueScaled; + Value bestValue, value, oldAlpha; + Value refinedValue, nullValue, futilityValueScaled; // Non-PV specific bool isCheck, singleEvasion, moveIsCheck, captureOrPromotion, dangerous; bool mateThreat = false; int moveCount = 0; + int ply = pos.ply(); refinedValue = bestValue = value = -VALUE_INFINITE; + oldAlpha = alpha; - if (depth < OnePly) - return qsearch(pos, ss, beta-1, beta, Depth(0), ply, threadID); + // Step 1. Initialize node and poll. Polling can abort search + TM.incrementNodeCounter(threadID); + ss->init(ply); + (ss + 2)->initKillers(); - // Step 1. Initialize node and poll - // Polling can abort search. - init_node(ss, ply, threadID); + if (threadID == 0 && ++NodesSincePoll > NodesBetweenPolls) + { + NodesSincePoll = 0; + poll(); + } // Step 2. Check for aborted search and immediate draw if (AbortSearch || TM.thread_should_stop(threadID)) @@ -1313,79 +1074,98 @@ namespace { return VALUE_DRAW; // Step 3. Mate distance pruning - if (value_mated_in(ply) >= beta) - return beta; - - if (value_mate_in(ply + 1) < beta) - return beta - 1; + alpha = Max(value_mated_in(ply), alpha); + beta = Min(value_mate_in(ply+1), beta); + if (alpha >= beta) + return alpha; // Step 4. Transposition table lookup // We don't want the score of a partial search to overwrite a previous full search // TT value, so we use a different position key in case of an excluded move exists. - Key posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key(); + excludedMove = ss->excludedMove; + posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key(); tte = TT.retrieve(posKey); ttMove = (tte ? tte->move() : MOVE_NONE); - if (tte && ok_to_use_TT(tte, depth, beta, ply)) + // At PV nodes, we don't use the TT for pruning, but only for move ordering. + // This is to avoid problems in the following areas: + // + // * Repetition draw detection + // * Fifty move rule detection + // * Searching for a mate + // * Printing of full PV line + + if (!PvNode && tte && ok_to_use_TT(tte, depth, beta, ply)) { - ss[ply].currentMove = ttMove; // Can be MOVE_NONE + // Refresh tte entry to avoid aging + TT.store(posKey, tte->value(), tte->type(), tte->depth(), ttMove, tte->static_value(), tte->king_danger()); + + ss->currentMove = ttMove; // Can be MOVE_NONE return value_from_tt(tte->value(), ply); } // Step 5. Evaluate the position statically + // At PV nodes we do this only to update gain statistics isCheck = pos.is_check(); - if (!isCheck) { - if (tte && (tte->type() & VALUE_TYPE_EVAL)) - ss[ply].eval = value_from_tt(tte->value(), ply); + if (tte && tte->static_value() != VALUE_NONE) + { + ss->eval = tte->static_value(); + ei.kingDanger[pos.side_to_move()] = tte->king_danger(); + } else - ss[ply].eval = evaluate(pos, ei, threadID); + ss->eval = evaluate(pos, ei, threadID); - refinedValue = refine_eval(tte, ss[ply].eval, ply); // Enhance accuracy with TT value if possible - update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval); + refinedValue = refine_eval(tte, ss->eval, ply); // Enhance accuracy with TT value if possible + update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval); } - // Step 6. Razoring - if ( !value_is_mate(beta) + // Step 6. Razoring (is omitted in PV nodes) + if ( !PvNode + && depth < RazorDepth && !isCheck - && depth < RazorDepth - && refinedValue < beta - razor_margin(depth) - && ss[ply - 1].currentMove != MOVE_NULL - && ttMove == MOVE_NONE + && refinedValue < beta - razor_margin(depth) + && ttMove == MOVE_NONE + && (ss-1)->currentMove != MOVE_NULL + && !value_is_mate(beta) && !pos.has_pawn_on_7th(pos.side_to_move())) { Value rbeta = beta - razor_margin(depth); - Value v = qsearch(pos, ss, rbeta-1, rbeta, Depth(0), ply, threadID); + Value v = qsearch(pos, ss, rbeta-1, rbeta, Depth(0), threadID); if (v < rbeta) - return v; //FIXME: Logically should be: return (v + razor_margin(depth)); + // Logically we should return (v + razor_margin(depth)), but + // surprisingly this did slightly weaker in tests. + return v; } - // Step 7. Static null move pruning + // Step 7. Static null move pruning (is omitted in PV nodes) // We're betting that the opponent doesn't have a move that will reduce - // the score by more than fuility_margin(depth) if we do a null move. - if ( !isCheck - && allowNullmove - && depth < RazorDepth - && refinedValue - futility_margin(depth, 0) >= beta) + // the score by more than futility_margin(depth) if we do a null move. + if ( !PvNode + && !ss->skipNullMove + && depth < RazorDepth + && refinedValue >= beta + futility_margin(depth, 0) + && !isCheck + && !value_is_mate(beta) + && pos.non_pawn_material(pos.side_to_move())) return refinedValue - futility_margin(depth, 0); - // Step 8. Null move search with verification search + // Step 8. Null move search with verification search (is omitted in PV nodes) // When we jump directly to qsearch() we do a null move only if static value is // at least beta. Otherwise we do a null move if static value is not more than // NullMoveMargin under beta. - if ( allowNullmove + if ( !PvNode + && !ss->skipNullMove && depth > OnePly + && refinedValue >= beta - (depth >= 4 * OnePly ? NullMoveMargin : 0) && !isCheck && !value_is_mate(beta) - && ok_to_do_nullmove(pos) - && refinedValue >= beta - (depth >= 4 * OnePly ? NullMoveMargin : 0)) + && pos.non_pawn_material(pos.side_to_move())) { - ss[ply].currentMove = MOVE_NULL; - - pos.do_null_move(st); + ss->currentMove = MOVE_NULL; // Null move dynamic reduction based on depth int R = 3 + (depth >= 5 * OnePly ? depth / 8 : 0); @@ -1394,20 +1174,36 @@ namespace { if (refinedValue - beta > PawnValueMidgame) R++; - nullValue = -search(pos, ss, -(beta-1), depth-R*OnePly, ply+1, false, threadID); + pos.do_null_move(st); + + (ss+1)->skipNullMove = true; + + nullValue = depth-R*OnePly < OnePly ? -qsearch(pos, ss+1, -beta, -alpha, Depth(0), threadID) + : - search(pos, ss+1, -beta, -alpha, depth-R*OnePly, threadID); + + (ss+1)->skipNullMove = false; pos.undo_null_move(); if (nullValue >= beta) { + // Do not return unproven mate scores + if (nullValue >= value_mate_in(PLY_MAX)) + nullValue = beta; + + // Do zugzwang verification search at high depths if (depth < 6 * OnePly) - return beta; + return nullValue; - // Do zugzwang verification search - Value v = search(pos, ss, beta, depth-5*OnePly, ply, false, threadID); - if (v >= beta) - return beta; - } else { + ss->skipNullMove = true; + Value v = search(pos, ss, alpha, beta, depth-5*OnePly, threadID); + ss->skipNullMove = false; + + if (v >= beta) + return nullValue; + } + else + { // The null move failed low, which means that we may be faced with // some kind of threat. If the previous move was reduced, check if // the move that refuted the null move was somehow connected to the @@ -1417,32 +1213,44 @@ namespace { if (nullValue == value_mated_in(ply + 2)) mateThreat = true; - ss[ply].threatMove = ss[ply + 1].currentMove; + ss->threatMove = (ss+1)->currentMove; if ( depth < ThreatDepth - && ss[ply - 1].reduction - && connected_moves(pos, ss[ply - 1].currentMove, ss[ply].threatMove)) + && (ss-1)->reduction + && connected_moves(pos, (ss-1)->currentMove, ss->threatMove)) return beta - 1; } } // Step 9. Internal iterative deepening - if ( depth >= IIDDepthAtNonPVNodes - && ttMove == MOVE_NONE - && !isCheck - && ss[ply].eval >= beta - IIDMargin) + if ( depth >= IIDDepth[PvNode] + && (ttMove == MOVE_NONE || (PvNode && tte->depth() <= depth - 4 * OnePly)) + && (PvNode || (!isCheck && ss->eval >= beta - IIDMargin))) { - search(pos, ss, beta, depth/2, ply, false, threadID); - ttMove = ss[ply].pv[ply]; + Depth d = (PvNode ? depth - 2 * OnePly : depth / 2); + + ss->skipNullMove = true; + search(pos, ss, alpha, beta, d, threadID); + ss->skipNullMove = false; + + ttMove = ss->pv[ply]; tte = TT.retrieve(posKey); } - // Step 10. Loop through moves - // Loop through all legal moves until no moves remain or a beta cutoff occurs + // Expensive mate threat detection (only for PV nodes) + if (PvNode) + mateThreat = pos.has_mate_threat(opposite_color(pos.side_to_move())); // Initialize a MovePicker object for the current position - MovePicker mp = MovePicker(pos, ttMove, depth, H, &ss[ply]); + MovePicker mp = MovePicker(pos, ttMove, depth, H, ss, (PvNode ? -VALUE_INFINITE : beta)); CheckInfo ci(pos); + bool singularExtensionNode = depth >= SingularExtensionDepth[PvNode] + && tte && tte->move() + && !excludedMove // Do not allow recursive singular extension search + && is_lower_bound(tte->type()) + && tte->depth() >= depth - 3 * OnePly; + // Step 10. Loop through moves + // Loop through all legal moves until no moves remain or a beta cutoff occurs while ( bestValue < beta && (move = mp.get_next_move()) != MOVE_NONE && !TM.thread_should_stop(threadID)) @@ -1452,31 +1260,32 @@ namespace { if (move == excludedMove) continue; - moveIsCheck = pos.move_is_check(move, ci); singleEvasion = (isCheck && mp.number_of_evasions() == 1); + moveIsCheck = pos.move_is_check(move, ci); captureOrPromotion = pos.move_is_capture_or_promotion(move); // Step 11. Decide the new search depth - ext = extension(pos, move, false, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous); + ext = extension(pos, move, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous); // Singular extension search. We extend the TT move if its value is much better than // its siblings. To verify this we do a reduced search on all the other moves but the // ttMove, if result is lower then ttValue minus a margin then we extend ttMove. - if ( depth >= SingularExtensionDepthAtNonPVNodes - && tte + if ( singularExtensionNode && move == tte->move() - && !excludedMove // Do not allow recursive single-reply search - && ext < OnePly - && is_lower_bound(tte->type()) - && tte->depth() >= depth - 3 * OnePly) + && ext < OnePly) { Value ttValue = value_from_tt(tte->value(), ply); if (abs(ttValue) < VALUE_KNOWN_WIN) { - Value excValue = search(pos, ss, ttValue - SingularExtensionMargin, depth / 2, ply, false, threadID, move); - - if (excValue < ttValue - SingularExtensionMargin) + Value b = ttValue - SingularExtensionMargin; + ss->excludedMove = move; + ss->skipNullMove = true; + Value v = search(pos, ss, b - 1, b, depth / 2, threadID); + ss->skipNullMove = false; + ss->excludedMove = MOVE_NONE; + + if (v < ttValue - SingularExtensionMargin) ext = OnePly; } } @@ -1484,25 +1293,28 @@ namespace { newDepth = depth - OnePly + ext; // Update current move (this must be done after singular extension search) - movesSearched[moveCount++] = ss[ply].currentMove = move; + movesSearched[moveCount++] = ss->currentMove = move; - // Step 12. Futility pruning - if ( !isCheck - && !dangerous + // Step 12. Futility pruning (is omitted in PV nodes) + if ( !PvNode && !captureOrPromotion - && !move_is_castle(move) - && move != ttMove) + && !isCheck + && !dangerous + && move != ttMove + && !move_is_castle(move)) { // Move count based pruning if ( moveCount >= futility_move_count(depth) - && ok_to_prune(pos, move, ss[ply].threatMove) + && !(ss->threatMove && connected_threat(pos, move, ss->threatMove)) && bestValue > value_mated_in(PLY_MAX)) continue; // Value based pruning - Depth predictedDepth = newDepth - nonpv_reduction(depth, moveCount); // We illogically ignore reduction condition depth >= 3*OnePly - futilityValueScaled = ss[ply].eval + futility_margin(predictedDepth, moveCount) - + H.gain(pos.piece_on(move_from(move)), move_to(move)) + 45; + // We illogically ignore reduction condition depth >= 3*OnePly for predicted depth, + // but fixing this made program slightly weaker. + Depth predictedDepth = newDepth - reduction(depth, moveCount); + futilityValueScaled = ss->eval + futility_margin(predictedDepth, moveCount) + + H.gain(pos.piece_on(move_from(move)), move_to(move)); if (futilityValueScaled < beta) { @@ -1515,29 +1327,60 @@ namespace { // Step 13. Make the move pos.do_move(move, st, ci, moveIsCheck); - // Step 14. Reduced search - // if the move fails high will be re-searched at full depth. - bool doFullDepthSearch = true; - - if ( depth >= 3*OnePly - && !dangerous - && !captureOrPromotion - && !move_is_castle(move) - && !move_is_killer(move, ss[ply])) + // Step extra. pv search (only in PV nodes) + // The first move in list is the expected PV + if (PvNode && moveCount == 1) + value = newDepth < OnePly ? -qsearch(pos, ss+1, -beta, -alpha, Depth(0), threadID) + : - search(pos, ss+1, -beta, -alpha, newDepth, threadID); + else { - ss[ply].reduction = nonpv_reduction(depth, moveCount); - if (ss[ply].reduction) + // Step 14. Reduced depth search + // If the move fails high will be re-searched at full depth. + bool doFullDepthSearch = true; + + if ( depth >= 3 * OnePly + && !captureOrPromotion + && !dangerous + && !move_is_castle(move) + && !move_is_killer(move, ss)) { - value = -search(pos, ss, -(beta-1), newDepth-ss[ply].reduction, ply+1, true, threadID); - doFullDepthSearch = (value >= beta); + ss->reduction = reduction(depth, moveCount); + if (ss->reduction) + { + Depth d = newDepth - ss->reduction; + value = d < OnePly ? -qsearch(pos, ss+1, -(alpha+1), -alpha, Depth(0), threadID) + : - search(pos, ss+1, -(alpha+1), -alpha, d, threadID); + + doFullDepthSearch = (value > alpha); + } + + // The move failed high, but if reduction is very big we could + // face a false positive, retry with a less aggressive reduction, + // if the move fails high again then go with full depth search. + if (doFullDepthSearch && ss->reduction > 2 * OnePly) + { + assert(newDepth - OnePly >= OnePly); + + ss->reduction = OnePly; + value = -search(pos, ss+1, -(alpha+1), -alpha, newDepth-ss->reduction, threadID); + doFullDepthSearch = (value > alpha); + } + ss->reduction = Depth(0); // Restore original reduction } - } - // Step 15. Full depth search - if (doFullDepthSearch) - { - ss[ply].reduction = Depth(0); - value = -search(pos, ss, -(beta-1), newDepth, ply+1, true, threadID); + // Step 15. Full depth search + if (doFullDepthSearch) + { + value = newDepth < OnePly ? -qsearch(pos, ss+1, -(alpha+1), -alpha, Depth(0), threadID) + : - search(pos, ss+1, -(alpha+1), -alpha, newDepth, threadID); + + // Step extra. pv search (only in PV nodes) + // Search only for possible new PV nodes, if instead value >= beta then + // parent node fails low with value <= alpha and tries another move. + if (PvNode && value > alpha && value < beta) + value = newDepth < OnePly ? -qsearch(pos, ss+1, -beta, -alpha, Depth(0), threadID) + : - search(pos, ss+1, -beta, -alpha, newDepth, threadID); + } } // Step 16. Undo move @@ -1549,32 +1392,36 @@ namespace { if (value > bestValue) { bestValue = value; - if (value >= beta) + if (value > alpha) + { + if (PvNode && value < beta) // This guarantees that always: alpha < beta + alpha = value; + update_pv(ss, ply); - if (value == value_mate_in(ply + 1)) - ss[ply].mateKiller = move; + if (value == value_mate_in(ply + 1)) + ss->mateKiller = move; + } } // Step 18. Check for split - if ( TM.active_threads() > 1 + if ( depth >= MinimumSplitDepth + && TM.active_threads() > 1 && bestValue < beta - && depth >= MinimumSplitDepth - && Iteration <= 99 && TM.available_thread_exists(threadID) && !AbortSearch && !TM.thread_should_stop(threadID) - && TM.split(pos, ss, ply, NULL, beta, &bestValue, - depth, &moveCount, &mp, threadID, false)) - break; + && Iteration <= 99) + TM.split(pos, ss, &alpha, beta, &bestValue, depth, + mateThreat, &moveCount, &mp, threadID, PvNode); } // Step 19. Check for mate and stalemate - // All legal moves have been searched and if there were + // All legal moves have been searched and if there are // no legal moves, it must be mate or stalemate. - // If one move was excluded return fail low. + // If one move was excluded return fail low score. if (!moveCount) - return excludedMove ? beta - 1 : (pos.is_check() ? value_mated_in(ply) : VALUE_DRAW); + return excludedMove ? oldAlpha : (isCheck ? value_mated_in(ply) : VALUE_DRAW); // Step 20. Update tables // If the search is not aborted, update the transposition table, @@ -1582,20 +1429,22 @@ namespace { if (AbortSearch || TM.thread_should_stop(threadID)) return bestValue; - if (bestValue < beta) - TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE); - else + if (bestValue <= oldAlpha) + TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, depth, MOVE_NONE, ss->eval, ei.kingDanger[pos.side_to_move()]); + + else if (bestValue >= beta) { TM.incrementBetaCounter(pos.side_to_move(), depth, threadID); - move = ss[ply].pv[ply]; - TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move); + move = ss->pv[ply]; + TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, depth, move, ss->eval, ei.kingDanger[pos.side_to_move()]); if (!pos.move_is_capture_or_promotion(move)) { update_history(pos, move, depth, movesSearched, moveCount); - update_killers(move, ss[ply]); + update_killers(move, ss); } - } + else + TT.store(posKey, value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, depth, ss->pv[ply], ss->eval, ei.kingDanger[pos.side_to_move()]); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); @@ -1607,13 +1456,14 @@ namespace { // search function when the remaining depth is zero (or, to be more precise, // less than OnePly). - Value qsearch(Position& pos, SearchStack ss[], Value alpha, Value beta, - Depth depth, int ply, int threadID) { + template + Value qsearch(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int threadID) { assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); assert(beta >= -VALUE_INFINITE && beta <= VALUE_INFINITE); + assert(PvNode || alpha == beta - 1); assert(depth <= 0); - assert(ply >= 0 && ply < PLY_MAX); + assert(pos.ply() > 0 && pos.ply() < PLY_MAX); assert(threadID >= 0 && threadID < TM.active_threads()); EvalInfo ei; @@ -1623,17 +1473,13 @@ namespace { bool isCheck, enoughMaterial, moveIsCheck, evasionPrunable; const TTEntry* tte = NULL; int moveCount = 0; - bool pvNode = (beta - alpha != 1); + int ply = pos.ply(); Value oldAlpha = alpha; - // Initialize, and make an early exit in case of an aborted search, - // an instant draw, maximum ply reached, etc. - init_node(ss, ply, threadID); - - // After init_node() that calls poll() - if (AbortSearch || TM.thread_should_stop(threadID)) - return Value(0); + TM.incrementNodeCounter(threadID); + ss->init(ply); + // Check for an instant draw or maximum ply reached if (pos.is_draw() || ply >= PLY_MAX - 1) return VALUE_DRAW; @@ -1642,11 +1488,9 @@ namespace { tte = TT.retrieve(pos.get_key()); ttMove = (tte ? tte->move() : MOVE_NONE); - if (!pvNode && tte && ok_to_use_TT(tte, depth, beta, ply)) + if (!PvNode && tte && ok_to_use_TT(tte, depth, beta, ply)) { - assert(tte->type() != VALUE_TYPE_EVAL); - - ss[ply].currentMove = ttMove; // Can be MOVE_NONE + ss->currentMove = ttMove; // Can be MOVE_NONE return value_from_tt(tte->value(), ply); } @@ -1655,15 +1499,18 @@ namespace { // Evaluate the position statically if (isCheck) staticValue = -VALUE_INFINITE; - else if (tte && (tte->type() & VALUE_TYPE_EVAL)) - staticValue = value_from_tt(tte->value(), ply); + else if (tte && tte->static_value() != VALUE_NONE) + { + staticValue = tte->static_value(); + ei.kingDanger[pos.side_to_move()] = tte->king_danger(); + } else staticValue = evaluate(pos, ei, threadID); if (!isCheck) { - ss[ply].eval = staticValue; - update_gains(pos, ss[ply - 1].currentMove, ss[ply - 1].eval, ss[ply].eval); + ss->eval = staticValue; + update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval); } // Initialize "stand pat score", and return it immediately if it is @@ -1673,8 +1520,8 @@ namespace { if (bestValue >= beta) { // Store the score to avoid a future costly evaluation() call - if (!isCheck && !tte && ei.futilityMargin[pos.side_to_move()] == 0) - TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EV_LO, Depth(-127*OnePly), MOVE_NONE); + if (!isCheck && !tte) + TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, Depth(-127*OnePly), MOVE_NONE, ss->eval, ei.kingDanger[pos.side_to_move()]); return bestValue; } @@ -1683,7 +1530,7 @@ namespace { alpha = bestValue; // If we are near beta then try to get a cutoff pushing checks a bit further - bool deepChecks = depth == -OnePly && staticValue >= beta - PawnValueMidgame / 8; + bool deepChecks = (depth == -OnePly && staticValue >= beta - PawnValueMidgame / 8); // Initialize a MovePicker object for the current position, and prepare // to search the moves. Because the depth is <= 0 here, only captures, @@ -1692,10 +1539,9 @@ namespace { MovePicker mp = MovePicker(pos, ttMove, deepChecks ? Depth(0) : depth, H); CheckInfo ci(pos); enoughMaterial = pos.non_pawn_material(pos.side_to_move()) > RookValueMidgame; - futilityBase = staticValue + FutilityMarginQS + ei.futilityMargin[pos.side_to_move()]; + futilityBase = staticValue + FutilityMarginQS + ei.kingDanger[pos.side_to_move()]; - // Loop through the moves until no moves remain or a beta cutoff - // occurs. + // Loop through the moves until no moves remain or a beta cutoff occurs while ( alpha < beta && (move = mp.get_next_move()) != MOVE_NONE) { @@ -1705,12 +1551,12 @@ namespace { // Update current move moveCount++; - ss[ply].currentMove = move; + ss->currentMove = move; // Futility pruning - if ( enoughMaterial + if ( !PvNode + && enoughMaterial && !isCheck - && !pvNode && !moveIsCheck && move != ttMove && !move_is_promotion(move) @@ -1730,14 +1576,14 @@ namespace { // Detect blocking evasions that are candidate to be pruned evasionPrunable = isCheck - && bestValue != -VALUE_INFINITE + && bestValue > value_mated_in(PLY_MAX) && !pos.move_is_capture(move) && pos.type_of_piece_on(move_from(move)) != KING && !pos.can_castle(pos.side_to_move()); // Don't search moves with negative SEE values - if ( (!isCheck || evasionPrunable) - && !pvNode + if ( !PvNode + && (!isCheck || evasionPrunable) && move != ttMove && !move_is_promotion(move) && pos.see_sign(move) < 0) @@ -1745,7 +1591,7 @@ namespace { // Make and search the move pos.do_move(move, st, ci, moveIsCheck); - value = -qsearch(pos, ss, -beta, -alpha, depth-OnePly, ply+1, threadID); + value = -qsearch(pos, ss+1, -beta, -alpha, depth-OnePly, threadID); pos.undo_move(move); assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); @@ -1764,7 +1610,7 @@ namespace { // All legal moves have been searched. A special case: If we're in check // and no legal moves were found, it is checkmate. - if (!moveCount && pos.is_check()) // Mate! + if (!moveCount && isCheck) // Mate! return value_mated_in(ply); // Update transposition table @@ -1773,20 +1619,19 @@ namespace { { // If bestValue isn't changed it means it is still the static evaluation // of the node, so keep this info to avoid a future evaluation() call. - ValueType type = (bestValue == staticValue && !ei.futilityMargin[pos.side_to_move()] ? VALUE_TYPE_EV_UP : VALUE_TYPE_UPPER); - TT.store(pos.get_key(), value_to_tt(bestValue, ply), type, d, MOVE_NONE); + TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_UPPER, d, MOVE_NONE, ss->eval, ei.kingDanger[pos.side_to_move()]); } else if (bestValue >= beta) { - move = ss[ply].pv[ply]; - TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, d, move); + move = ss->pv[ply]; + TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_LOWER, d, move, ss->eval, ei.kingDanger[pos.side_to_move()]); // Update killers only for good checking moves if (!pos.move_is_capture_or_promotion(move)) - update_killers(move, ss[ply]); + update_killers(move, ss); } else - TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, d, ss[ply].pv[ply]); + TT.store(pos.get_key(), value_to_tt(bestValue, ply), VALUE_TYPE_EXACT, d, ss->pv[ply], ss->eval, ei.kingDanger[pos.side_to_move()]); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); @@ -1801,8 +1646,8 @@ namespace { // splitting, we don't have to repeat all this work in sp_search(). We // also don't need to store anything to the hash table here: This is taken // care of after we return from the split point. - // FIXME: We are currently ignoring mateThreat flag here + template void sp_search(SplitPoint* sp, int threadID) { assert(threadID >= 0 && threadID < TM.active_threads()); @@ -1811,14 +1656,16 @@ namespace { StateInfo st; Move move; Depth ext, newDepth; - Value value, futilityValueScaled; + Value value; + Value futilityValueScaled; // NonPV specific bool isCheck, moveIsCheck, captureOrPromotion, dangerous; int moveCount; value = -VALUE_INFINITE; Position pos(*sp->pos); CheckInfo ci(pos); - SearchStack* ss = sp->sstack[threadID]; + int ply = pos.ply(); + SearchStack* ss = sp->sstack[threadID] + 1; isCheck = pos.is_check(); // Step 10. Loop through moves @@ -1826,10 +1673,10 @@ namespace { lock_grab(&(sp->lock)); while ( sp->bestValue < sp->beta - && !TM.thread_should_stop(threadID) - && (move = sp->mp->get_next_move()) != MOVE_NONE) + && (move = sp->mp->get_next_move()) != MOVE_NONE + && !TM.thread_should_stop(threadID)) { - moveCount = ++sp->moves; + moveCount = ++sp->moveCount; lock_release(&(sp->lock)); assert(move_is_ok(move)); @@ -1838,21 +1685,22 @@ namespace { captureOrPromotion = pos.move_is_capture_or_promotion(move); // Step 11. Decide the new search depth - ext = extension(pos, move, false, captureOrPromotion, moveIsCheck, false, false, &dangerous); + ext = extension(pos, move, captureOrPromotion, moveIsCheck, false, sp->mateThreat, &dangerous); newDepth = sp->depth - OnePly + ext; // Update current move - ss[sp->ply].currentMove = move; + ss->currentMove = move; - // Step 12. Futility pruning - if ( !isCheck - && !dangerous + // Step 12. Futility pruning (is omitted in PV nodes) + if ( !PvNode && !captureOrPromotion + && !isCheck + && !dangerous && !move_is_castle(move)) { // Move count based pruning if ( moveCount >= futility_move_count(sp->depth) - && ok_to_prune(pos, move, ss[sp->ply].threatMove) + && !(ss->threatMove && connected_threat(pos, move, ss->threatMove)) && sp->bestValue > value_mated_in(PLY_MAX)) { lock_grab(&(sp->lock)); @@ -1860,9 +1708,9 @@ namespace { } // Value based pruning - Depth predictedDepth = newDepth - nonpv_reduction(sp->depth, moveCount); - futilityValueScaled = ss[sp->ply].eval + futility_margin(predictedDepth, moveCount) - + H.gain(pos.piece_on(move_from(move)), move_to(move)) + 45; + Depth predictedDepth = newDepth - reduction(sp->depth, moveCount); + futilityValueScaled = ss->eval + futility_margin(predictedDepth, moveCount) + + H.gain(pos.piece_on(move_from(move)), move_to(move)); if (futilityValueScaled < sp->beta) { @@ -1878,144 +1726,52 @@ namespace { pos.do_move(move, st, ci, moveIsCheck); // Step 14. Reduced search - // if the move fails high will be re-searched at full depth. + // If the move fails high will be re-searched at full depth. bool doFullDepthSearch = true; - if ( !dangerous - && !captureOrPromotion + if ( !captureOrPromotion + && !dangerous && !move_is_castle(move) - && !move_is_killer(move, ss[sp->ply])) + && !move_is_killer(move, ss)) { - ss[sp->ply].reduction = nonpv_reduction(sp->depth, moveCount); - if (ss[sp->ply].reduction) + ss->reduction = reduction(sp->depth, moveCount); + if (ss->reduction) { - value = -search(pos, ss, -(sp->beta-1), newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID); - doFullDepthSearch = (value >= sp->beta && !TM.thread_should_stop(threadID)); + Value localAlpha = sp->alpha; + Depth d = newDepth - ss->reduction; + value = d < OnePly ? -qsearch(pos, ss+1, -(localAlpha+1), -localAlpha, Depth(0), threadID) + : - search(pos, ss+1, -(localAlpha+1), -localAlpha, d, threadID); + doFullDepthSearch = (value > localAlpha); } - } - - // Step 15. Full depth search - if (doFullDepthSearch) - { - ss[sp->ply].reduction = Depth(0); - value = -search(pos, ss, -(sp->beta - 1), newDepth, sp->ply+1, true, threadID); - } - // Step 16. Undo move - pos.undo_move(move); - - assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); - - // Step 17. Check for new best move - lock_grab(&(sp->lock)); - - if (value > sp->bestValue && !TM.thread_should_stop(threadID)) - { - sp->bestValue = value; - if (sp->bestValue >= sp->beta) + // The move failed high, but if reduction is very big we could + // face a false positive, retry with a less aggressive reduction, + // if the move fails high again then go with full depth search. + if (doFullDepthSearch && ss->reduction > 2 * OnePly) { - sp->stopRequest = true; - sp_update_pv(sp->parentSstack, ss, sp->ply); - } - } - } - - /* Here we have the lock still grabbed */ + assert(newDepth - OnePly >= OnePly); - sp->slaves[threadID] = 0; - sp->cpus--; - - lock_release(&(sp->lock)); - } - - - // sp_search_pv() is used to search from a PV split point. This function - // is called by each thread working at the split point. It is similar to - // the normal search_pv() function, but simpler. Because we have already - // probed the hash table and searched the first move before splitting, we - // don't have to repeat all this work in sp_search_pv(). We also don't - // need to store anything to the hash table here: This is taken care of - // after we return from the split point. - // FIXME: We are ignoring mateThreat flag! - - void sp_search_pv(SplitPoint* sp, int threadID) { - - assert(threadID >= 0 && threadID < TM.active_threads()); - assert(TM.active_threads() > 1); - - StateInfo st; - Move move; - Depth ext, newDepth; - Value value; - bool moveIsCheck, captureOrPromotion, dangerous; - int moveCount; - value = -VALUE_INFINITE; - - Position pos(*sp->pos); - CheckInfo ci(pos); - SearchStack* ss = sp->sstack[threadID]; - - // Step 10. Loop through moves - // Loop through all legal moves until no moves remain or a beta cutoff occurs - lock_grab(&(sp->lock)); - - while ( sp->alpha < sp->beta - && !TM.thread_should_stop(threadID) - && (move = sp->mp->get_next_move()) != MOVE_NONE) - { - moveCount = ++sp->moves; - lock_release(&(sp->lock)); - - assert(move_is_ok(move)); - - moveIsCheck = pos.move_is_check(move, ci); - captureOrPromotion = pos.move_is_capture_or_promotion(move); - - // Step 11. Decide the new search depth - ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous); - newDepth = sp->depth - OnePly + ext; - - // Update current move - ss[sp->ply].currentMove = move; - - // Step 12. Futility pruning (is omitted in PV nodes) - - // Step 13. Make the move - pos.do_move(move, st, ci, moveIsCheck); - - // Step 14. Reduced search - // if the move fails high will be re-searched at full depth. - bool doFullDepthSearch = true; - - if ( !dangerous - && !captureOrPromotion - && !move_is_castle(move) - && !move_is_killer(move, ss[sp->ply])) - { - ss[sp->ply].reduction = pv_reduction(sp->depth, moveCount); - if (ss[sp->ply].reduction) - { + ss->reduction = OnePly; Value localAlpha = sp->alpha; - value = -search(pos, ss, -localAlpha, newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID); - doFullDepthSearch = (value > localAlpha && !TM.thread_should_stop(threadID)); + value = -search(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth-ss->reduction, threadID); + doFullDepthSearch = (value > localAlpha); } + ss->reduction = Depth(0); // Restore original reduction } // Step 15. Full depth search if (doFullDepthSearch) { Value localAlpha = sp->alpha; - ss[sp->ply].reduction = Depth(0); - value = -search(pos, ss, -localAlpha, newDepth, sp->ply+1, true, threadID); - - if (value > localAlpha && value < sp->beta && !TM.thread_should_stop(threadID)) - { - // If another thread has failed high then sp->alpha has been increased - // to be higher or equal then beta, if so, avoid to start a PV search. - localAlpha = sp->alpha; - if (localAlpha < sp->beta) - value = -search_pv(pos, ss, -sp->beta, -localAlpha, newDepth, sp->ply+1, threadID); - } + value = newDepth < OnePly ? -qsearch(pos, ss+1, -(localAlpha+1), -localAlpha, Depth(0), threadID) + : - search(pos, ss+1, -(localAlpha+1), -localAlpha, newDepth, threadID); + + // Step extra. pv search (only in PV nodes) + // Search only for possible new PV nodes, if instead value >= beta then + // parent node fails low with value <= alpha and tries another move. + if (PvNode && value > localAlpha && value < sp->beta) + value = newDepth < OnePly ? -qsearch(pos, ss+1, -sp->beta, -sp->alpha, Depth(0), threadID) + : - search(pos, ss+1, -sp->beta, -sp->alpha, newDepth, threadID); } // Step 16. Undo move @@ -2029,17 +1785,16 @@ namespace { if (value > sp->bestValue && !TM.thread_should_stop(threadID)) { sp->bestValue = value; - if (value > sp->alpha) + + if (sp->bestValue > sp->alpha) { - // Ask threads to stop before to modify sp->alpha - if (value >= sp->beta) + if (!PvNode || value >= sp->beta) sp->stopRequest = true; - sp->alpha = value; + if (PvNode && value < sp->beta) // This guarantees that always: sp->alpha < sp->beta + sp->alpha = value; - sp_update_pv(sp->parentSstack, ss, sp->ply); - if (value == value_mate_in(sp->ply + 1)) - ss[sp->ply].mateKiller = move; + sp_update_pv(sp->parentSstack, ss, ply); } } } @@ -2047,55 +1802,26 @@ namespace { /* Here we have the lock still grabbed */ sp->slaves[threadID] = 0; - sp->cpus--; lock_release(&(sp->lock)); } - - // init_node() is called at the beginning of all the search functions - // (search(), search_pv(), qsearch(), and so on) and initializes the - // search stack object corresponding to the current node. Once every - // NodesBetweenPolls nodes, init_node() also calls poll(), which polls - // for user input and checks whether it is time to stop the search. - - void init_node(SearchStack ss[], int ply, int threadID) { - - assert(ply >= 0 && ply < PLY_MAX); - assert(threadID >= 0 && threadID < TM.active_threads()); - - TM.incrementNodeCounter(threadID); - - if (threadID == 0) - { - NodesSincePoll++; - if (NodesSincePoll >= NodesBetweenPolls) - { - poll(ss, ply); - NodesSincePoll = 0; - } - } - ss[ply].init(ply); - ss[ply + 2].initKillers(); - } - - // update_pv() is called whenever a search returns a value > alpha. // It updates the PV in the SearchStack object corresponding to the // current node. - void update_pv(SearchStack ss[], int ply) { + void update_pv(SearchStack* ss, int ply) { assert(ply >= 0 && ply < PLY_MAX); int p; - ss[ply].pv[ply] = ss[ply].currentMove; + ss->pv[ply] = ss->currentMove; - for (p = ply + 1; ss[ply + 1].pv[p] != MOVE_NONE; p++) - ss[ply].pv[p] = ss[ply + 1].pv[p]; + for (p = ply + 1; (ss+1)->pv[p] != MOVE_NONE; p++) + ss->pv[p] = (ss+1)->pv[p]; - ss[ply].pv[p] = MOVE_NONE; + ss->pv[p] = MOVE_NONE; } @@ -2103,18 +1829,18 @@ namespace { // difference between the two functions is that sp_update_pv also updates // the PV at the parent node. - void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply) { + void sp_update_pv(SearchStack* pss, SearchStack* ss, int ply) { assert(ply >= 0 && ply < PLY_MAX); int p; - ss[ply].pv[ply] = pss[ply].pv[ply] = ss[ply].currentMove; + ss->pv[ply] = pss->pv[ply] = ss->currentMove; - for (p = ply + 1; ss[ply + 1].pv[p] != MOVE_NONE; p++) - ss[ply].pv[p] = pss[ply].pv[p] = ss[ply + 1].pv[p]; + for (p = ply + 1; (ss+1)->pv[p] != MOVE_NONE; p++) + ss->pv[p] = pss->pv[p] = (ss+1)->pv[p]; - ss[ply].pv[p] = pss[ply].pv[p] = MOVE_NONE; + ss->pv[p] = pss->pv[p] = MOVE_NONE; } @@ -2189,9 +1915,9 @@ namespace { // move_is_killer() checks if the given move is among the // killer moves of that ply. - bool move_is_killer(Move m, const SearchStack& ss) { + bool move_is_killer(Move m, SearchStack* ss) { - const Move* k = ss.killers; + const Move* k = ss->killers; for (int i = 0; i < KILLER_MAX; i++, k++) if (*k == m) return true; @@ -2206,9 +1932,9 @@ namespace { // any case are marked as 'dangerous'. Note that also if a move is not // extended, as example because the corresponding UCI option is set to zero, // the move is marked as 'dangerous' so, at least, we avoid to prune it. - - Depth extension(const Position& pos, Move m, bool pvNode, bool captureOrPromotion, - bool moveIsCheck, bool singleEvasion, bool mateThreat, bool* dangerous) { + template + Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck, + bool singleEvasion, bool mateThreat, bool* dangerous) { assert(m != MOVE_NONE); @@ -2218,13 +1944,13 @@ namespace { if (*dangerous) { if (moveIsCheck) - result += CheckExtension[pvNode]; + result += CheckExtension[PvNode]; if (singleEvasion) - result += SingleEvasionExtension[pvNode]; + result += SingleEvasionExtension[PvNode]; if (mateThreat) - result += MateThreatExtension[pvNode]; + result += MateThreatExtension[PvNode]; } if (pos.type_of_piece_on(move_from(m)) == PAWN) @@ -2232,12 +1958,12 @@ namespace { Color c = pos.side_to_move(); if (relative_rank(c, move_to(m)) == RANK_7) { - result += PawnPushTo7thExtension[pvNode]; + result += PawnPushTo7thExtension[PvNode]; *dangerous = true; } if (pos.pawn_is_passed(c, move_to(m))) { - result += PassedPawnExtension[pvNode]; + result += PassedPawnExtension[PvNode]; *dangerous = true; } } @@ -2249,11 +1975,11 @@ namespace { && !move_is_promotion(m) && !move_is_ep(m)) { - result += PawnEndgameExtension[pvNode]; + result += PawnEndgameExtension[PvNode]; *dangerous = true; } - if ( pvNode + if ( PvNode && captureOrPromotion && pos.type_of_piece_on(move_to(m)) != PAWN && pos.see_sign(m) >= 0) @@ -2266,38 +1992,19 @@ namespace { } - // ok_to_do_nullmove() looks at the current position and decides whether - // doing a 'null move' should be allowed. In order to avoid zugzwang - // problems, null moves are not allowed when the side to move has very - // little material left. Currently, the test is a bit too simple: Null - // moves are avoided only when the side to move has only pawns left. - // It's probably a good idea to avoid null moves in at least some more - // complicated endgames, e.g. KQ vs KR. FIXME - - bool ok_to_do_nullmove(const Position& pos) { - - return pos.non_pawn_material(pos.side_to_move()) != Value(0); - } - - - // ok_to_prune() tests whether it is safe to forward prune a move. Only - // non-tactical moves late in the move list close to the leaves are - // candidates for pruning. + // connected_threat() tests whether it is safe to forward prune a move or if + // is somehow coonected to the threat move returned by null search. - bool ok_to_prune(const Position& pos, Move m, Move threat) { + bool connected_threat(const Position& pos, Move m, Move threat) { assert(move_is_ok(m)); - assert(threat == MOVE_NONE || move_is_ok(threat)); + assert(threat && move_is_ok(threat)); assert(!pos.move_is_check(m)); assert(!pos.move_is_capture_or_promotion(m)); assert(!pos.move_is_passed_pawn_push(m)); Square mfrom, mto, tfrom, tto; - // Prune if there isn't any threat move - if (threat == MOVE_NONE) - return true; - mfrom = move_from(m); mto = move_to(m); tfrom = move_from(threat); @@ -2305,7 +2012,7 @@ namespace { // Case 1: Don't prune moves which move the threatened piece if (mfrom == tto) - return false; + return true; // Case 2: If the threatened piece has value less than or equal to the // value of the threatening piece, don't prune move which defend it. @@ -2313,16 +2020,16 @@ namespace { && ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto) || pos.type_of_piece_on(tfrom) == KING) && pos.move_attacks_square(m, tto)) - return false; + return true; // Case 3: If the moving piece in the threatened move is a slider, don't // prune safe moves which block its ray. if ( piece_is_slider(pos.piece_on(tfrom)) && bit_is_set(squares_between(tfrom, tto), mto) && pos.see_sign(m) >= 0) - return false; + return true; - return true; + return false; } @@ -2385,15 +2092,15 @@ namespace { // update_killers() add a good move that produced a beta-cutoff // among the killer moves of that ply. - void update_killers(Move m, SearchStack& ss) { + void update_killers(Move m, SearchStack* ss) { - if (m == ss.killers[0]) + if (m == ss->killers[0]) return; for (int i = KILLER_MAX - 1; i > 0; i--) - ss.killers[i] = ss.killers[i - 1]; + ss->killers[i] = ss->killers[i - 1]; - ss.killers[0] = m; + ss->killers[0] = m; } @@ -2434,7 +2141,7 @@ namespace { // looks at the time consumed so far and decides if it's time to abort the // search. - void poll(SearchStack ss[], int ply) { + void poll() { static int lastInfoTime; int t = current_search_time(); @@ -2485,23 +2192,13 @@ namespace { cout << "info nodes " << TM.nodes_searched() << " nps " << nps() << " time " << t << " hashfull " << TT.full() << endl; - - // We only support current line printing in single thread mode - if (ShowCurrentLine && TM.active_threads() == 1) - { - cout << "info currline"; - for (int p = 0; p < ply; p++) - cout << " " << ss[p].currentMove; - - cout << endl; - } } // Should we stop the search? if (PonderSearch) return; - bool stillAtFirstMove = RootMoveNumber == 1 + bool stillAtFirstMove = FirstRootMove && !AspirationFailLow && t > MaxSearchTime + ExtraSearchTime; @@ -2524,7 +2221,7 @@ namespace { int t = current_search_time(); PonderSearch = false; - bool stillAtFirstMove = RootMoveNumber == 1 + bool stillAtFirstMove = FirstRootMove && !AspirationFailLow && t > MaxSearchTime + ExtraSearchTime; @@ -2536,14 +2233,21 @@ namespace { } - // init_ss_array() does a fast reset of the first entries of a SearchStack array + // init_ss_array() does a fast reset of the first entries of a SearchStack + // array and of all the excludedMove and skipNullMove entries. - void init_ss_array(SearchStack ss[]) { + void init_ss_array(SearchStack* ss, int size) { - for (int i = 0; i < 3; i++) + for (int i = 0; i < size; i++, ss++) { - ss[i].init(i); - ss[i].initKillers(); + ss->excludedMove = MOVE_NONE; + ss->skipNullMove = false; + + if (i < 3) + { + ss->init(i); + ss->initKillers(); + } } } @@ -2575,6 +2279,36 @@ namespace { } + // print_pv_info() prints to standard output and eventually to log file information on + // the current PV line. It is called at each iteration or after a new pv is found. + + void print_pv_info(const Position& pos, SearchStack* ss, Value alpha, Value beta, Value value) { + + cout << "info depth " << Iteration + << " score " << value_to_string(value) + << ((value >= beta) ? " lowerbound" : + ((value <= alpha)? " upperbound" : "")) + << " time " << current_search_time() + << " nodes " << TM.nodes_searched() + << " nps " << nps() + << " pv "; + + for (int j = 0; ss->pv[j] != MOVE_NONE && j < PLY_MAX; j++) + cout << ss->pv[j] << " "; + + cout << endl; + + if (UseLogFile) + { + ValueType type = (value >= beta ? VALUE_TYPE_LOWER + : (value <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT)); + + LogFile << pretty_pv(pos, current_search_time(), Iteration, + TM.nodes_searched(), value, type, ss->pv) << endl; + } + } + + // init_thread() is the function which is called when a new thread is // launched. It simply calls the idle_loop() function with the supplied // threadID. There are two versions of this function; one for POSIX @@ -2593,7 +2327,7 @@ namespace { DWORD WINAPI init_thread(LPVOID threadID) { TM.idle_loop(*(int*)threadID, NULL); - return NULL; + return 0; } #endif @@ -2638,10 +2372,10 @@ namespace { // idle_loop() is where the threads are parked when they have no work to do. - // The parameter "waitSp", if non-NULL, is a pointer to an active SplitPoint + // The parameter 'sp', if non-NULL, is a pointer to an active SplitPoint // object for which the current thread is the master. - void ThreadsManager::idle_loop(int threadID, SplitPoint* waitSp) { + void ThreadsManager::idle_loop(int threadID, SplitPoint* sp) { assert(threadID >= 0 && threadID < MAX_THREADS); @@ -2651,7 +2385,7 @@ namespace { // master should exit as last one. if (AllThreadsShouldExit) { - assert(!waitSp); + assert(!sp); threads[threadID].state = THREAD_TERMINATED; return; } @@ -2660,15 +2394,15 @@ namespace { // instead of wasting CPU time polling for work. while (AllThreadsShouldSleep || threadID >= ActiveThreads) { - assert(!waitSp); + assert(!sp); assert(threadID != 0); threads[threadID].state = THREAD_SLEEPING; #if !defined(_MSC_VER) - pthread_mutex_lock(&WaitLock); + lock_grab(&WaitLock); if (AllThreadsShouldSleep || threadID >= ActiveThreads) pthread_cond_wait(&WaitCond, &WaitLock); - pthread_mutex_unlock(&WaitLock); + lock_release(&WaitLock); #else WaitForSingleObject(SitIdleEvent[threadID], INFINITE); #endif @@ -2686,19 +2420,27 @@ namespace { threads[threadID].state = THREAD_SEARCHING; if (threads[threadID].splitPoint->pvNode) - sp_search_pv(threads[threadID].splitPoint, threadID); + sp_search(threads[threadID].splitPoint, threadID); else - sp_search(threads[threadID].splitPoint, threadID); + sp_search(threads[threadID].splitPoint, threadID); assert(threads[threadID].state == THREAD_SEARCHING); threads[threadID].state = THREAD_AVAILABLE; } - // If this thread is the master of a split point and all threads have + // If this thread is the master of a split point and all slaves have // finished their work at this split point, return from the idle loop. - if (waitSp != NULL && waitSp->cpus == 0) + int i = 0; + for ( ; sp && i < ActiveThreads && !sp->slaves[i]; i++) {} + + if (i == ActiveThreads) { + // Because sp->slaves[] is reset under lock protection, + // be sure sp->lock has been released before to return. + lock_grab(&(sp->lock)); + lock_release(&(sp->lock)); + assert(threads[threadID].state == THREAD_AVAILABLE); threads[threadID].state = THREAD_SEARCHING; @@ -2723,23 +2465,20 @@ namespace { // Initialize global locks lock_init(&MPLock, NULL); - - // Initialize SplitPointStack locks - for (i = 0; i < MAX_THREADS; i++) - for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++) - { - SplitPointStack[i][j].parent = NULL; - lock_init(&(SplitPointStack[i][j].lock), NULL); - } + lock_init(&WaitLock, NULL); #if !defined(_MSC_VER) - pthread_mutex_init(&WaitLock, NULL); pthread_cond_init(&WaitCond, NULL); #else for (i = 0; i < MAX_THREADS; i++) SitIdleEvent[i] = CreateEvent(0, FALSE, FALSE, 0); #endif + // Initialize SplitPointStack locks + for (i = 0; i < MAX_THREADS; i++) + for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++) + lock_init(&(SplitPointStack[i][j].lock), NULL); + // Will be set just before program exits to properly end the threads AllThreadsShouldExit = false; @@ -2759,8 +2498,7 @@ namespace { #if !defined(_MSC_VER) ok = (pthread_create(pthread, NULL, init_thread, (void*)(&i)) == 0); #else - DWORD iID[1]; - ok = (CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, iID) != NULL); + ok = (CreateThread(NULL, 0, init_thread, (LPVOID)(&i), 0, NULL) != NULL); #endif if (!ok) @@ -2770,7 +2508,7 @@ namespace { } // Wait until the thread has finished launching and is gone to sleep - while (threads[i].state != THREAD_SLEEPING); + while (threads[i].state != THREAD_SLEEPING) {} } } @@ -2789,12 +2527,15 @@ namespace { // Wait for thread termination for (int i = 1; i < MAX_THREADS; i++) - while (threads[i].state != THREAD_TERMINATED); + while (threads[i].state != THREAD_TERMINATED) {} // Now we can safely destroy the locks for (int i = 0; i < MAX_THREADS; i++) for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++) lock_destroy(&(SplitPointStack[i][j].lock)); + + lock_destroy(&WaitLock); + lock_destroy(&MPLock); } @@ -2808,7 +2549,7 @@ namespace { SplitPoint* sp; - for (sp = threads[threadID].splitPoint; sp && !sp->stopRequest; sp = sp->parent); + for (sp = threads[threadID].splitPoint; sp && !sp->stopRequest; sp = sp->parent) {} return sp != NULL; } @@ -2868,35 +2609,28 @@ namespace { // split() does the actual work of distributing the work at a node between - // several threads at PV nodes. If it does not succeed in splitting the + // several available threads. If it does not succeed in splitting the // node (because no idle threads are available, or because we have no unused - // split point objects), the function immediately returns false. If - // splitting is possible, a SplitPoint object is initialized with all the - // data that must be copied to the helper threads (the current position and - // search stack, alpha, beta, the search depth, etc.), and we tell our - // helper threads that they have been assigned work. This will cause them - // to instantly leave their idle loops and call sp_search_pv(). When all - // threads have returned from sp_search_pv (or, equivalently, when - // splitPoint->cpus becomes 0), split() returns true. - - bool ThreadsManager::split(const Position& p, SearchStack* sstck, int ply, - Value* alpha, const Value beta, Value* bestValue, - Depth depth, int* moves, MovePicker* mp, int master, bool pvNode) { - + // split point objects), the function immediately returns. If splitting is + // possible, a SplitPoint object is initialized with all the data that must be + // copied to the helper threads and we tell our helper threads that they have + // been assigned work. This will cause them to instantly leave their idle loops + // and call sp_search(). When all threads have returned from sp_search() then + // split() returns. + + template + void ThreadsManager::split(const Position& p, SearchStack* ss, Value* alpha, const Value beta, + Value* bestValue, Depth depth, bool mateThreat, int* moveCount, + MovePicker* mp, int master, bool pvNode) { assert(p.is_ok()); - assert(sstck != NULL); - assert(ply >= 0 && ply < PLY_MAX); assert(*bestValue >= -VALUE_INFINITE); - assert( ( pvNode && *bestValue <= *alpha) - || (!pvNode && *bestValue < beta )); - assert(!pvNode || *alpha < beta); + assert(*bestValue <= *alpha); + assert(*alpha < beta); assert(beta <= VALUE_INFINITE); assert(depth > Depth(0)); assert(master >= 0 && master < ActiveThreads); assert(ActiveThreads > 1); - SplitPoint* splitPoint; - lock_grab(&MPLock); // If no other thread is available to help us, or if we have too many @@ -2905,27 +2639,25 @@ namespace { || threads[master].activeSplitPoints >= ACTIVE_SPLIT_POINTS_MAX) { lock_release(&MPLock); - return false; + return; } // Pick the next available split point object from the split point stack - splitPoint = &SplitPointStack[master][threads[master].activeSplitPoints]; + SplitPoint* splitPoint = &SplitPointStack[master][threads[master].activeSplitPoints]; // Initialize the split point object splitPoint->parent = threads[master].splitPoint; splitPoint->stopRequest = false; - splitPoint->ply = ply; splitPoint->depth = depth; - splitPoint->alpha = pvNode ? *alpha : beta - 1; + splitPoint->mateThreat = mateThreat; + splitPoint->alpha = *alpha; splitPoint->beta = beta; splitPoint->pvNode = pvNode; splitPoint->bestValue = *bestValue; - splitPoint->master = master; splitPoint->mp = mp; - splitPoint->moves = *moves; - splitPoint->cpus = 1; + splitPoint->moveCount = *moveCount; splitPoint->pos = &p; - splitPoint->parentSstack = sstck; + splitPoint->parentSstack = ss; for (int i = 0; i < ActiveThreads; i++) splitPoint->slaves[i] = 0; @@ -2935,17 +2667,19 @@ namespace { // If we are here it means we are not available assert(threads[master].state != THREAD_AVAILABLE); + int workersCnt = 1; // At least the master is included + // Allocate available threads setting state to THREAD_BOOKED - for (int i = 0; i < ActiveThreads && splitPoint->cpus < MaxThreadsPerSplitPoint; i++) + for (int i = 0; !Fake && i < ActiveThreads && workersCnt < MaxThreadsPerSplitPoint; i++) if (thread_is_available(i, master)) { threads[i].state = THREAD_BOOKED; threads[i].splitPoint = splitPoint; splitPoint->slaves[i] = 1; - splitPoint->cpus++; + workersCnt++; } - assert(splitPoint->cpus > 1); + assert(Fake || workersCnt > 1); // We can release the lock because slave threads are already booked and master is not available lock_release(&MPLock); @@ -2955,7 +2689,7 @@ namespace { for (int i = 0; i < ActiveThreads; i++) if (i == master || splitPoint->slaves[i]) { - memcpy(splitPoint->sstack[i] + ply - 1, sstck + ply - 1, 4 * sizeof(SearchStack)); + memcpy(splitPoint->sstack[i], ss - 1, 4 * sizeof(SearchStack)); assert(i == master || threads[i].state == THREAD_BOOKED); @@ -2966,23 +2700,19 @@ namespace { // which it will instantly launch a search, because its state is // THREAD_WORKISWAITING. We send the split point as a second parameter to the // idle loop, which means that the main thread will return from the idle - // loop when all threads have finished their work at this split point - // (i.e. when splitPoint->cpus == 0). + // loop when all threads have finished their work at this split point. idle_loop(master, splitPoint); // We have returned from the idle loop, which means that all threads are - // finished. Update alpha, beta and bestValue, and return. + // finished. Update alpha and bestValue, and return. lock_grab(&MPLock); - if (pvNode) - *alpha = splitPoint->alpha; - + *alpha = splitPoint->alpha; *bestValue = splitPoint->bestValue; threads[master].activeSplitPoints--; threads[master].splitPoint = splitPoint->parent; lock_release(&MPLock); - return true; } @@ -3049,10 +2779,10 @@ namespace { continue; // Find a quick score for the move - init_ss_array(ss); + init_ss_array(ss, PLY_MAX_PLUS_2); pos.do_move(cur->move, st); moves[count].move = cur->move; - moves[count].score = -qsearch(pos, ss, -VALUE_INFINITE, VALUE_INFINITE, Depth(0), 1, 0); + moves[count].score = -qsearch(pos, ss+1, -VALUE_INFINITE, VALUE_INFINITE, Depth(0), 0); moves[count].pv[0] = cur->move; moves[count].pv[1] = MOVE_NONE; pos.undo_move(cur->move);