X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fsearch.cpp;h=8a8f9297fd547574aa99ff40fa7f5c3e2016fdd4;hp=484a97e181d30b1cc631aac97733b5791d5be7ee;hb=e2e360fcbc02e0ca3329a36766239e7175501103;hpb=5c8f571459fd4812543ead27d3644dcf46a5682d diff --git a/src/search.cpp b/src/search.cpp index 484a97e1..8a8f9297 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -94,8 +94,16 @@ namespace { struct RootMove { - RootMove(); - bool operator<(const RootMove&) const; // Used to sort + RootMove() { nodes = cumulativeNodes = ourBeta = theirBeta = 0ULL; } + + // RootMove::operator<() is the comparison function used when + // sorting the moves. A move m1 is considered to be better + // than a move m2 if it has a higher score, or if the moves + // have equal score but m1 has the higher node count. + bool operator<(const RootMove& m) const { + + return score != m.score ? score < m.score : theirBeta <= m.theirBeta; + } Move move; Value score; @@ -111,16 +119,18 @@ namespace { public: RootMoveList(Position& pos, Move searchMoves[]); - inline Move get_move(int moveNum) const; - inline Value get_move_score(int moveNum) const; - inline void set_move_score(int moveNum, Value score); - inline void set_move_nodes(int moveNum, int64_t nodes); - inline void set_beta_counters(int moveNum, int64_t our, int64_t their); + + int move_count() const { return count; } + Move get_move(int moveNum) const { return moves[moveNum].move; } + Value get_move_score(int moveNum) const { return moves[moveNum].score; } + void set_move_score(int moveNum, Value score) { moves[moveNum].score = score; } + Move get_move_pv(int moveNum, int i) const { return moves[moveNum].pv[i]; } + int64_t get_move_cumulative_nodes(int moveNum) const { return moves[moveNum].cumulativeNodes; } + + void set_move_nodes(int moveNum, int64_t nodes); + void set_beta_counters(int moveNum, int64_t our, int64_t their); void set_move_pv(int moveNum, const Move pv[]); - inline Move get_move_pv(int moveNum, int i) const; - inline int64_t get_move_cumulative_nodes(int moveNum) const; - inline int move_count() const; - inline void sort(); + void sort(); void sort_multipv(int n); private: @@ -166,12 +176,6 @@ namespace { // evaluation of the position is more than NullMoveMargin below beta. const Value NullMoveMargin = Value(0x300); - // Pruning criterions. See the code and comments in ok_to_prune() to - // understand their precise meaning. - const bool PruneEscapeMoves = false; - const bool PruneDefendingMoves = false; - const bool PruneBlockingMoves = false; - // If the TT move is at least SingleReplyMargin better then the // remaining ones we will extend it. const Value SingleReplyMargin = Value(0x20); @@ -246,8 +250,7 @@ namespace { Lock MPLock; Lock IOLock; bool AllThreadsShouldExit = false; - const int MaxActiveSplitPoints = 8; // FIXME, sync with UCI Option - SplitPoint SplitPointStack[THREAD_MAX][MaxActiveSplitPoints]; + SplitPoint SplitPointStack[THREAD_MAX][ACTIVE_SPLIT_POINTS_MAX]; bool Idle = true; #if !defined(_MSC_VER) @@ -285,7 +288,8 @@ namespace { bool ok_to_do_nullmove(const Position& pos); bool ok_to_prune(const Position& pos, Move m, Move threat); bool ok_to_use_TT(const TTEntry* tte, Depth depth, Value beta, int ply); - void update_history(const Position& pos, Move m, Depth depth, Move movesSearched[], int moveCount); + Value refine_eval(const TTEntry* tte, Value defaultEval, int ply); + void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount); void update_killers(Move m, SearchStack& ss); bool fail_high_ply_1(); @@ -322,6 +326,13 @@ namespace { //// Functions //// +//FIXME: HACK +static double lnArray[512]; + +inline double ln(int i) +{ + return lnArray[i]; +} /// perft() is our utility to verify move generation is bug free. All the legal /// moves up to given depth are generated and counted and the sum returned. @@ -558,8 +569,14 @@ bool think(const Position& pos, bool infinite, bool ponder, int side_to_move, /// and initializes the split point stack and the global locks and condition /// objects. +#include //FIXME: HACK + void init_threads() { + // FIXME: HACK!! + for (int i = 0; i < 512; i++) + lnArray[i] = log(double(i)); + volatile int i; #if !defined(_MSC_VER) @@ -593,7 +610,7 @@ void init_threads() { } // Launch the helper threads - for(i = 1; i < THREAD_MAX; i++) + for (i = 1; i < THREAD_MAX; i++) { #if !defined(_MSC_VER) pthread_create(pthread, NULL, init_thread, (void*)(&i)); @@ -620,7 +637,7 @@ void stop_threads() { for (int i = 1; i < THREAD_MAX; i++) { Threads[i].stop = true; - while(Threads[i].running); + while (Threads[i].running); } destroy_split_point_stack(); } @@ -895,7 +912,7 @@ namespace { int64_t nodes; Move move; StateInfo st; - Depth ext, newDepth; + Depth depth, ext, newDepth; RootMoveNumber = i + 1; FailHigh = false; @@ -918,8 +935,9 @@ namespace { bool moveIsCheck = pos.move_is_check(move); bool captureOrPromotion = pos.move_is_capture_or_promotion(move); bool dangerous; + depth = (Iteration - 2) * OnePly + InitialDepth; ext = extension(pos, move, true, captureOrPromotion, moveIsCheck, false, false, &dangerous); - newDepth = (Iteration - 2) * OnePly + ext + InitialDepth; + newDepth = depth + ext; // Make the move, and search it pos.do_move(move, st, ci, moveIsCheck); @@ -946,14 +964,19 @@ namespace { { // Try to reduce non-pv search depth by one ply if move seems not problematic, // if the move fails high will be re-searched at full depth. - if ( newDepth >= 3*OnePly - && i >= MultiPV + LMRPVMoves + if ( depth >= 3*OnePly // FIXME was newDepth && !dangerous && !captureOrPromotion && !move_is_castle(move)) { - ss[0].reduction = OnePly; - value = -search(pos, ss, -alpha, newDepth-OnePly, 1, true, 0); + double red = 0.5 + ln(RootMoveNumber - MultiPV + 1) * ln(depth / 2) / 6.0; + if (red >= 1.0) + { + ss[0].reduction = Depth(int(floor(red * int(OnePly)))); + value = -search(pos, ss, -alpha, newDepth-ss[0].reduction, 1, true, 0); + } + else + value = alpha + 1; // Just to trigger next condition } else value = alpha + 1; // Just to trigger next condition @@ -1198,14 +1221,19 @@ namespace { // Try to reduce non-pv search depth by one ply if move seems not problematic, // if the move fails high will be re-searched at full depth. if ( depth >= 3*OnePly - && moveCount >= LMRPVMoves && !dangerous && !captureOrPromotion && !move_is_castle(move) && !move_is_killer(move, ss[ply])) { - ss[ply].reduction = OnePly; - value = -search(pos, ss, -alpha, newDepth-OnePly, ply+1, true, threadID); + double red = 0.5 + ln(moveCount) * ln(depth / 2) / 6.0; + if (red >= 1.0) + { + ss[ply].reduction = Depth(int(floor(red * int(OnePly)))); + value = -search(pos, ss, -alpha, newDepth-ss[ply].reduction, ply+1, true, threadID); + } + else + value = alpha + 1; // Just to trigger next condition } else value = alpha + 1; // Just to trigger next condition @@ -1357,7 +1385,7 @@ namespace { return value_from_tt(tte->value(), ply); } - approximateEval = quick_evaluate(pos); + approximateEval = refine_eval(tte, quick_evaluate(pos), ply); isCheck = pos.is_check(); // Null move search @@ -1373,7 +1401,7 @@ namespace { pos.do_null_move(st); // Null move dynamic reduction based on depth - int R = (depth >= 5 * OnePly ? 4 : 3); + int R = 3 + (depth >= 5 * OnePly ? depth / 8 : 0); // Null move dynamic reduction based on value if (approximateEval - beta > PawnValueMidgame) @@ -1523,14 +1551,20 @@ namespace { // Try to reduce non-pv search depth by one ply if move seems not problematic, // if the move fails high will be re-searched at full depth. if ( depth >= 3*OnePly - && moveCount >= LMRNonPVMoves && !dangerous && !captureOrPromotion && !move_is_castle(move) - && !move_is_killer(move, ss[ply])) + && !move_is_killer(move, ss[ply]) + /* && move != ttMove*/) { - ss[ply].reduction = OnePly; - value = -search(pos, ss, -(beta-1), newDepth-OnePly, ply+1, true, threadID); + double red = 0.5 + ln(moveCount) * ln(depth / 2) / 3.0; + if (red >= 1.0) + { + ss[ply].reduction = Depth(int(floor(red * int(OnePly)))); + value = -search(pos, ss, -(beta-1), newDepth-ss[ply].reduction, ply+1, true, threadID); + } + else + value = beta; // Just to trigger next condition } else value = beta; // Just to trigger next condition @@ -1864,13 +1898,18 @@ namespace { // Try to reduce non-pv search depth by one ply if move seems not problematic, // if the move fails high will be re-searched at full depth. if ( !dangerous - && moveCount >= LMRNonPVMoves && !captureOrPromotion && !move_is_castle(move) && !move_is_killer(move, ss[sp->ply])) { - ss[sp->ply].reduction = OnePly; - value = -search(pos, ss, -(sp->beta-1), newDepth - OnePly, sp->ply+1, true, threadID); + double red = 0.5 + ln(moveCount) * ln(sp->depth / 2) / 3.0; + if (red >= 1.0) + { + ss[sp->ply].reduction = Depth(int(floor(red * int(OnePly)))); + value = -search(pos, ss, -(sp->beta-1), newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID); + } + else + value = sp->beta; // Just to trigger next condition } else value = sp->beta; // Just to trigger next condition @@ -1970,13 +2009,18 @@ namespace { // Try to reduce non-pv search depth by one ply if move seems not problematic, // if the move fails high will be re-searched at full depth. if ( !dangerous - && moveCount >= LMRPVMoves && !captureOrPromotion && !move_is_castle(move) && !move_is_killer(move, ss[sp->ply])) { - ss[sp->ply].reduction = OnePly; - value = -search(pos, ss, -sp->alpha, newDepth - OnePly, sp->ply+1, true, threadID); + double red = 0.5 + ln(moveCount) * ln(sp->depth / 2) / 6.0; + if (red >= 1.0) + { + ss[sp->ply].reduction = Depth(int(floor(red * int(OnePly)))); + value = -search(pos, ss, -sp->alpha, newDepth-ss[sp->ply].reduction, sp->ply+1, true, threadID); + } + else + value = sp->alpha + 1; // Just to trigger next condition } else value = sp->alpha + 1; // Just to trigger next condition @@ -2081,30 +2125,9 @@ namespace { } - /// The RootMove class - - // Constructor - - RootMove::RootMove() { - nodes = cumulativeNodes = ourBeta = theirBeta = 0ULL; - } - - // RootMove::operator<() is the comparison function used when - // sorting the moves. A move m1 is considered to be better - // than a move m2 if it has a higher score, or if the moves - // have equal score but m1 has the higher node count. - - bool RootMove::operator<(const RootMove& m) const { - - if (score != m.score) - return (score < m.score); - - return theirBeta <= m.theirBeta; - } - /// The RootMoveList class - // Constructor + // RootMoveList c'tor RootMoveList::RootMoveList(Position& pos, Move searchMoves[]) : count(0) { @@ -2142,56 +2165,37 @@ namespace { } - // Simple accessor methods for the RootMoveList class - - inline Move RootMoveList::get_move(int moveNum) const { - return moves[moveNum].move; - } - - inline Value RootMoveList::get_move_score(int moveNum) const { - return moves[moveNum].score; - } + // RootMoveList simple methods definitions - inline void RootMoveList::set_move_score(int moveNum, Value score) { - moves[moveNum].score = score; - } + void RootMoveList::set_move_nodes(int moveNum, int64_t nodes) { - inline void RootMoveList::set_move_nodes(int moveNum, int64_t nodes) { moves[moveNum].nodes = nodes; moves[moveNum].cumulativeNodes += nodes; } - inline void RootMoveList::set_beta_counters(int moveNum, int64_t our, int64_t their) { + void RootMoveList::set_beta_counters(int moveNum, int64_t our, int64_t their) { + moves[moveNum].ourBeta = our; moves[moveNum].theirBeta = their; } void RootMoveList::set_move_pv(int moveNum, const Move pv[]) { - int j; - for(j = 0; pv[j] != MOVE_NONE; j++) - moves[moveNum].pv[j] = pv[j]; - moves[moveNum].pv[j] = MOVE_NONE; - } - inline Move RootMoveList::get_move_pv(int moveNum, int i) const { - return moves[moveNum].pv[i]; - } + int j; - inline int64_t RootMoveList::get_move_cumulative_nodes(int moveNum) const { - return moves[moveNum].cumulativeNodes; - } + for (j = 0; pv[j] != MOVE_NONE; j++) + moves[moveNum].pv[j] = pv[j]; - inline int RootMoveList::move_count() const { - return count; + moves[moveNum].pv[j] = MOVE_NONE; } // RootMoveList::sort() sorts the root move list at the beginning of a new // iteration. - inline void RootMoveList::sort() { + void RootMoveList::sort() { - sort_multipv(count - 1); // all items + sort_multipv(count - 1); // Sort all items } @@ -2201,20 +2205,22 @@ namespace { void RootMoveList::sort_multipv(int n) { - for (int i = 1; i <= n; i++) + int i,j; + + for (i = 1; i <= n; i++) { - RootMove rm = moves[i]; - int j; - for (j = i; j > 0 && moves[j-1] < rm; j--) - moves[j] = moves[j-1]; - moves[j] = rm; + RootMove rm = moves[i]; + for (j = i; j > 0 && moves[j - 1] < rm; j--) + moves[j] = moves[j - 1]; + + moves[j] = rm; } } // init_node() is called at the beginning of all the search functions - // (search(), search_pv(), qsearch(), and so on) and initializes the search - // stack object corresponding to the current node. Once every + // (search(), search_pv(), qsearch(), and so on) and initializes the + // search stack object corresponding to the current node. Once every // NodesBetweenPolls nodes, init_node() also calls poll(), which polls // for user input and checks whether it is time to stop the search. @@ -2235,48 +2241,56 @@ namespace { } } ss[ply].init(ply); - ss[ply+2].initKillers(); + ss[ply + 2].initKillers(); if (Threads[threadID].printCurrentLine) print_current_line(ss, ply, threadID); } - // update_pv() is called whenever a search returns a value > alpha. It - // updates the PV in the SearchStack object corresponding to the current - // node. + // update_pv() is called whenever a search returns a value > alpha. + // It updates the PV in the SearchStack object corresponding to the + // current node. void update_pv(SearchStack ss[], int ply) { + assert(ply >= 0 && ply < PLY_MAX); - ss[ply].pv[ply] = ss[ply].currentMove; int p; - for(p = ply + 1; ss[ply+1].pv[p] != MOVE_NONE; p++) - ss[ply].pv[p] = ss[ply+1].pv[p]; + + ss[ply].pv[ply] = ss[ply].currentMove; + + for (p = ply + 1; ss[ply + 1].pv[p] != MOVE_NONE; p++) + ss[ply].pv[p] = ss[ply + 1].pv[p]; + ss[ply].pv[p] = MOVE_NONE; } - // sp_update_pv() is a variant of update_pv for use at split points. The + // sp_update_pv() is a variant of update_pv for use at split points. The // difference between the two functions is that sp_update_pv also updates // the PV at the parent node. void sp_update_pv(SearchStack* pss, SearchStack ss[], int ply) { + assert(ply >= 0 && ply < PLY_MAX); - ss[ply].pv[ply] = pss[ply].pv[ply] = ss[ply].currentMove; int p; - for(p = ply + 1; ss[ply+1].pv[p] != MOVE_NONE; p++) - ss[ply].pv[p] = pss[ply].pv[p] = ss[ply+1].pv[p]; + + ss[ply].pv[ply] = pss[ply].pv[ply] = ss[ply].currentMove; + + for (p = ply + 1; ss[ply + 1].pv[p] != MOVE_NONE; p++) + ss[ply].pv[p] = pss[ply].pv[p] = ss[ply + 1].pv[p]; + ss[ply].pv[p] = pss[ply].pv[p] = MOVE_NONE; } // connected_moves() tests whether two moves are 'connected' in the sense // that the first move somehow made the second move possible (for instance - // if the moving piece is the same in both moves). The first move is - // assumed to be the move that was made to reach the current position, while - // the second move is assumed to be a move from the current position. + // if the moving piece is the same in both moves). The first move is assumed + // to be the move that was made to reach the current position, while the + // second move is assumed to be a move from the current position. bool connected_moves(const Position& pos, Move m1, Move m2) { @@ -2306,36 +2320,23 @@ namespace { && bit_is_set(squares_between(f2, t2), f1)) return true; - // Case 4: The destination square for m2 is attacked by the moving piece in m1 + // Case 4: The destination square for m2 is defended by the moving piece in m1 p = pos.piece_on(t1); if (bit_is_set(pos.attacks_from(p, t1), t2)) return true; // Case 5: Discovered check, checking piece is the piece moved in m1 - if ( piece_is_slider(p) - && bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), f2) + if ( piece_is_slider(p) + && bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), f2) && !bit_is_set(squares_between(t1, pos.king_square(pos.side_to_move())), t2)) { - Bitboard occ = pos.occupied_squares(); - Color us = pos.side_to_move(); - Square ksq = pos.king_square(us); - clear_bit(&occ, f2); - if (type_of_piece(p) == BISHOP) - { - if (bit_is_set(bishop_attacks_bb(ksq, occ), t1)) - return true; - } - else if (type_of_piece(p) == ROOK) - { - if (bit_is_set(rook_attacks_bb(ksq, occ), t1)) - return true; - } - else - { - assert(type_of_piece(p) == QUEEN); - if (bit_is_set(queen_attacks_bb(ksq, occ), t1)) - return true; - } + // discovered_check_candidates() works also if the Position's side to + // move is the opposite of the checking piece. + Color them = opposite_color(pos.side_to_move()); + Bitboard dcCandidates = pos.discovered_check_candidates(them); + + if (bit_is_set(dcCandidates, f2)) + return true; } return false; } @@ -2368,7 +2369,7 @@ namespace { // extension() decides whether a move should be searched with normal depth, - // or with extended depth. Certain classes of moves (checking moves, in + // or with extended depth. Certain classes of moves (checking moves, in // particular) are searched with bigger depth than ordinary moves and in // any case are marked as 'dangerous'. Note that also if a move is not // extended, as example because the corresponding UCI option is set to zero, @@ -2434,11 +2435,11 @@ namespace { // ok_to_do_nullmove() looks at the current position and decides whether - // doing a 'null move' should be allowed. In order to avoid zugzwang + // doing a 'null move' should be allowed. In order to avoid zugzwang // problems, null moves are not allowed when the side to move has very - // little material left. Currently, the test is a bit too simple: Null - // moves are avoided only when the side to move has only pawns left. It's - // probably a good idea to avoid null moves in at least some more + // little material left. Currently, the test is a bit too simple: Null + // moves are avoided only when the side to move has only pawns left. + // It's probably a good idea to avoid null moves in at least some more // complicated endgames, e.g. KQ vs KR. FIXME bool ok_to_do_nullmove(const Position& pos) { @@ -2447,7 +2448,7 @@ namespace { } - // ok_to_prune() tests whether it is safe to forward prune a move. Only + // ok_to_prune() tests whether it is safe to forward prune a move. Only // non-tactical moves late in the move list close to the leaves are // candidates for pruning. @@ -2461,6 +2462,11 @@ namespace { Square mfrom, mto, tfrom, tto; + // Prune if there isn't any threat move and + // is not a castling move (common case). + if (threat == MOVE_NONE && !move_is_castle(m)) + return true; + mfrom = move_from(m); mto = move_to(m); tfrom = move_from(threat); @@ -2471,14 +2477,12 @@ namespace { return false; // Case 2: Don't prune moves which move the threatened piece - if (!PruneEscapeMoves && threat != MOVE_NONE && mfrom == tto) + if (mfrom == tto) return false; // Case 3: If the threatened piece has value less than or equal to the // value of the threatening piece, don't prune move which defend it. - if ( !PruneDefendingMoves - && threat != MOVE_NONE - && pos.move_is_capture(threat) + if ( pos.move_is_capture(threat) && ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto) || pos.type_of_piece_on(tfrom) == KING) && pos.move_attacks_square(m, tto)) @@ -2486,9 +2490,7 @@ namespace { // Case 4: If the moving piece in the threatened move is a slider, don't // prune safe moves which block its ray. - if ( !PruneBlockingMoves - && threat != MOVE_NONE - && piece_is_slider(pos.piece_on(tfrom)) + if ( piece_is_slider(pos.piece_on(tfrom)) && bit_is_set(squares_between(tfrom, tto), mto) && pos.see_sign(m) >= 0) return false; @@ -2513,19 +2515,41 @@ namespace { } + // refine_eval() returns the transposition table score if + // possible otherwise falls back on static position evaluation. + + Value refine_eval(const TTEntry* tte, Value defaultEval, int ply) { + + if (!tte) + return defaultEval; + + Value v = value_from_tt(tte->value(), ply); + + if ( (is_lower_bound(tte->type()) && v >= defaultEval) + || (is_upper_bound(tte->type()) && v < defaultEval)) + return v; + + return defaultEval; + } + // update_history() registers a good move that produced a beta-cutoff // in history and marks as failures all the other moves of that ply. - void update_history(const Position& pos, Move m, Depth depth, + void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount) { - H.success(pos.piece_on(move_from(m)), move_to(m), depth); + Move m; + + H.success(pos.piece_on(move_from(move)), move_to(move), depth); for (int i = 0; i < moveCount - 1; i++) { - assert(m != movesSearched[i]); - if (!pos.move_is_capture_or_promotion(movesSearched[i])) - H.failure(pos.piece_on(move_from(movesSearched[i])), move_to(movesSearched[i]), depth); + m = movesSearched[i]; + + assert(m != move); + + if (!pos.move_is_capture_or_promotion(m)) + H.failure(pos.piece_on(move_from(m)), move_to(m), depth); } } @@ -2547,11 +2571,11 @@ namespace { // fail_high_ply_1() checks if some thread is currently resolving a fail // high at ply 1 at the node below the first root node. This information - // is used for time managment. + // is used for time management. bool fail_high_ply_1() { - for(int i = 0; i < ActiveThreads; i++) + for (int i = 0; i < ActiveThreads; i++) if (Threads[i].failHighPly1) return true; @@ -2563,6 +2587,7 @@ namespace { // since the beginning of the current search. int current_search_time() { + return get_system_time() - SearchStartTime; } @@ -2570,12 +2595,13 @@ namespace { // nps() computes the current nodes/second count. int nps() { + int t = current_search_time(); - return (t > 0)? int((nodes_searched() * 1000) / t) : 0; + return (t > 0 ? int((nodes_searched() * 1000) / t) : 0); } - // poll() performs two different functions: It polls for user input, and it + // poll() performs two different functions: It polls for user input, and it // looks at the time consumed so far and decides if it's time to abort the // search. @@ -2589,6 +2615,7 @@ namespace { { // We are line oriented, don't read single chars std::string command; + if (!std::getline(std::cin, command)) command = "quit"; @@ -2607,6 +2634,7 @@ namespace { else if (command == "ponderhit") ponderhit(); } + // Print search information if (t < 1000) lastInfoTime = 0; @@ -2620,6 +2648,7 @@ namespace { { lastInfoTime = t; lock_grab(&IOLock); + if (dbg_show_mean) dbg_print_mean(); @@ -2628,20 +2657,32 @@ namespace { cout << "info nodes " << nodes_searched() << " nps " << nps() << " time " << t << " hashfull " << TT.full() << endl; + lock_release(&IOLock); + if (ShowCurrentLine) Threads[0].printCurrentLine = true; } + // Should we stop the search? if (PonderSearch) return; - bool overTime = t > AbsoluteMaxSearchTime - || (RootMoveNumber == 1 && t > MaxSearchTime + ExtraSearchTime && !FailLow) //FIXME: We are not checking any problem flags, BUG? - || ( !FailHigh && !FailLow && !fail_high_ply_1() && !Problem - && t > 6*(MaxSearchTime + ExtraSearchTime)); + bool stillAtFirstMove = RootMoveNumber == 1 + && !FailLow + && t > MaxSearchTime + ExtraSearchTime; - if ( (Iteration >= 3 && (!InfiniteSearch && overTime)) + bool noProblemFound = !FailHigh + && !FailLow + && !fail_high_ply_1() + && !Problem + && t > 6 * (MaxSearchTime + ExtraSearchTime); + + bool noMoreTime = t > AbsoluteMaxSearchTime + || stillAtFirstMove //FIXME: We are not checking any problem flags, BUG? + || noProblemFound; + + if ( (Iteration >= 3 && !InfiniteSearch && noMoreTime) || (ExactMaxTime && t >= ExactMaxTime) || (Iteration >= 3 && MaxNodes && nodes_searched() >= MaxNodes)) AbortSearch = true; @@ -2656,19 +2697,28 @@ namespace { int t = current_search_time(); PonderSearch = false; - if (Iteration >= 3 && - (!InfiniteSearch && (StopOnPonderhit || - t > AbsoluteMaxSearchTime || - (RootMoveNumber == 1 && - t > MaxSearchTime + ExtraSearchTime && !FailLow) || - (!FailHigh && !FailLow && !fail_high_ply_1() && !Problem && - t > 6*(MaxSearchTime + ExtraSearchTime))))) - AbortSearch = true; + + bool stillAtFirstMove = RootMoveNumber == 1 + && !FailLow + && t > MaxSearchTime + ExtraSearchTime; + + bool noProblemFound = !FailHigh + && !FailLow + && !fail_high_ply_1() + && !Problem + && t > 6 * (MaxSearchTime + ExtraSearchTime); + + bool noMoreTime = t > AbsoluteMaxSearchTime + || stillAtFirstMove + || noProblemFound; + + if (Iteration >= 3 && !InfiniteSearch && (noMoreTime || StopOnPonderhit)) + AbortSearch = true; } // print_current_line() prints the current line of search for a given - // thread. Called when the UCI option UCI_ShowCurrLine is 'true'. + // thread. Called when the UCI option UCI_ShowCurrLine is 'true'. void print_current_line(SearchStack ss[], int ply, int threadID) { @@ -2704,8 +2754,8 @@ namespace { // wait_for_stop_or_ponderhit() is called when the maximum depth is reached - // while the program is pondering. The point is to work around a wrinkle in - // the UCI protocol: When pondering, the engine is not allowed to give a + // while the program is pondering. The point is to work around a wrinkle in + // the UCI protocol: When pondering, the engine is not allowed to give a // "bestmove" before the GUI sends it a "stop" or "ponderhit" command. // We simply wait here until one of these commands is sent, and return, // after which the bestmove and pondermove will be printed (in id_loop()). @@ -2735,41 +2785,48 @@ namespace { // object for which the current thread is the master. void idle_loop(int threadID, SplitPoint* waitSp) { + assert(threadID >= 0 && threadID < THREAD_MAX); Threads[threadID].running = true; - while(true) { - if(AllThreadsShouldExit && threadID != 0) - break; + while (true) + { + if (AllThreadsShouldExit && threadID != 0) + break; + + // If we are not thinking, wait for a condition to be signaled + // instead of wasting CPU time polling for work. + while (threadID != 0 && (Idle || threadID >= ActiveThreads)) + { - // If we are not thinking, wait for a condition to be signaled instead - // of wasting CPU time polling for work: - while(threadID != 0 && (Idle || threadID >= ActiveThreads)) { #if !defined(_MSC_VER) - pthread_mutex_lock(&WaitLock); - if(Idle || threadID >= ActiveThreads) - pthread_cond_wait(&WaitCond, &WaitLock); - pthread_mutex_unlock(&WaitLock); + pthread_mutex_lock(&WaitLock); + if (Idle || threadID >= ActiveThreads) + pthread_cond_wait(&WaitCond, &WaitLock); + + pthread_mutex_unlock(&WaitLock); #else - WaitForSingleObject(SitIdleEvent[threadID], INFINITE); + WaitForSingleObject(SitIdleEvent[threadID], INFINITE); #endif - } + } // If this thread has been assigned work, launch a search - if(Threads[threadID].workIsWaiting) { - Threads[threadID].workIsWaiting = false; - if(Threads[threadID].splitPoint->pvNode) - sp_search_pv(Threads[threadID].splitPoint, threadID); - else - sp_search(Threads[threadID].splitPoint, threadID); - Threads[threadID].idle = true; + if (Threads[threadID].workIsWaiting) + { + Threads[threadID].workIsWaiting = false; + if (Threads[threadID].splitPoint->pvNode) + sp_search_pv(Threads[threadID].splitPoint, threadID); + else + sp_search(Threads[threadID].splitPoint, threadID); + + Threads[threadID].idle = true; } // If this thread is the master of a split point and all threads have // finished their work at this split point, return from the idle loop. - if(waitSp != NULL && waitSp->cpus == 0) - return; + if (waitSp != NULL && waitSp->cpus == 0) + return; } Threads[threadID].running = false; @@ -2780,11 +2837,13 @@ namespace { // initializes all split point objects. void init_split_point_stack() { - for(int i = 0; i < THREAD_MAX; i++) - for(int j = 0; j < MaxActiveSplitPoints; j++) { - SplitPointStack[i][j].parent = NULL; - lock_init(&(SplitPointStack[i][j].lock), NULL); - } + + for (int i = 0; i < THREAD_MAX; i++) + for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++) + { + SplitPointStack[i][j].parent = NULL; + lock_init(&(SplitPointStack[i][j].lock), NULL); + } } @@ -2792,62 +2851,66 @@ namespace { // destroys all locks in the precomputed split point objects. void destroy_split_point_stack() { - for(int i = 0; i < THREAD_MAX; i++) - for(int j = 0; j < MaxActiveSplitPoints; j++) - lock_destroy(&(SplitPointStack[i][j].lock)); + + for (int i = 0; i < THREAD_MAX; i++) + for (int j = 0; j < ACTIVE_SPLIT_POINTS_MAX; j++) + lock_destroy(&(SplitPointStack[i][j].lock)); } // thread_should_stop() checks whether the thread with a given threadID has - // been asked to stop, directly or indirectly. This can happen if a beta - // cutoff has occured in thre thread's currently active split point, or in + // been asked to stop, directly or indirectly. This can happen if a beta + // cutoff has occurred in the thread's currently active split point, or in // some ancestor of the current split point. bool thread_should_stop(int threadID) { + assert(threadID >= 0 && threadID < ActiveThreads); SplitPoint* sp; - if(Threads[threadID].stop) - return true; - if(ActiveThreads <= 2) - return false; - for(sp = Threads[threadID].splitPoint; sp != NULL; sp = sp->parent) - if(sp->finished) { - Threads[threadID].stop = true; + if (Threads[threadID].stop) return true; - } + if (ActiveThreads <= 2) + return false; + for (sp = Threads[threadID].splitPoint; sp != NULL; sp = sp->parent) + if (sp->finished) + { + Threads[threadID].stop = true; + return true; + } return false; } // thread_is_available() checks whether the thread with threadID "slave" is - // available to help the thread with threadID "master" at a split point. An - // obvious requirement is that "slave" must be idle. With more than two + // available to help the thread with threadID "master" at a split point. An + // obvious requirement is that "slave" must be idle. With more than two // threads, this is not by itself sufficient: If "slave" is the master of // some active split point, it is only available as a slave to the other // threads which are busy searching the split point at the top of "slave"'s // split point stack (the "helpful master concept" in YBWC terminology). bool thread_is_available(int slave, int master) { + assert(slave >= 0 && slave < ActiveThreads); assert(master >= 0 && master < ActiveThreads); assert(ActiveThreads > 1); - if(!Threads[slave].idle || slave == master) - return false; + if (!Threads[slave].idle || slave == master) + return false; - if(Threads[slave].activeSplitPoints == 0) - // No active split points means that the thread is available as a slave - // for any other thread. - return true; + if (Threads[slave].activeSplitPoints == 0) + // No active split points means that the thread is available as + // a slave for any other thread. + return true; - if(ActiveThreads == 2) - return true; + if (ActiveThreads == 2) + return true; - // Apply the "helpful master" concept if possible. - if(SplitPointStack[slave][Threads[slave].activeSplitPoints-1].slaves[master]) - return true; + // Apply the "helpful master" concept if possible + if (SplitPointStack[slave][Threads[slave].activeSplitPoints - 1].slaves[master]) + return true; return false; } @@ -2857,25 +2920,27 @@ namespace { // a slave for the thread with threadID "master". bool idle_thread_exists(int master) { + assert(master >= 0 && master < ActiveThreads); assert(ActiveThreads > 1); - for(int i = 0; i < ActiveThreads; i++) - if(thread_is_available(i, master)) - return true; + for (int i = 0; i < ActiveThreads; i++) + if (thread_is_available(i, master)) + return true; + return false; } // split() does the actual work of distributing the work at a node between - // several threads at PV nodes. If it does not succeed in splitting the + // several threads at PV nodes. If it does not succeed in splitting the // node (because no idle threads are available, or because we have no unused - // split point objects), the function immediately returns false. If + // split point objects), the function immediately returns false. If // splitting is possible, a SplitPoint object is initialized with all the // data that must be copied to the helper threads (the current position and // search stack, alpha, beta, the search depth, etc.), and we tell our - // helper threads that they have been assigned work. This will cause them - // to instantly leave their idle loops and call sp_search_pv(). When all + // helper threads that they have been assigned work. This will cause them + // to instantly leave their idle loops and call sp_search_pv(). When all // threads have returned from sp_search_pv (or, equivalently, when // splitPoint->cpus becomes 0), split() returns true. @@ -2900,22 +2965,23 @@ namespace { // If no other thread is available to help us, or if we have too many // active split points, don't split. - if(!idle_thread_exists(master) || - Threads[master].activeSplitPoints >= MaxActiveSplitPoints) { - lock_release(&MPLock); - return false; + if ( !idle_thread_exists(master) + || Threads[master].activeSplitPoints >= ACTIVE_SPLIT_POINTS_MAX) + { + lock_release(&MPLock); + return false; } // Pick the next available split point object from the split point stack splitPoint = SplitPointStack[master] + Threads[master].activeSplitPoints; Threads[master].activeSplitPoints++; - // Initialize the split point object + // Initialize the split point object and copy current position splitPoint->parent = Threads[master].splitPoint; splitPoint->finished = false; splitPoint->ply = ply; splitPoint->depth = depth; - splitPoint->alpha = pvNode? *alpha : (*beta - 1); + splitPoint->alpha = pvNode ? *alpha : (*beta - 1); splitPoint->beta = *beta; splitPoint->pvNode = pvNode; splitPoint->bestValue = *bestValue; @@ -2926,54 +2992,58 @@ namespace { splitPoint->cpus = 1; splitPoint->pos.copy(p); splitPoint->parentSstack = sstck; - for(i = 0; i < ActiveThreads; i++) - splitPoint->slaves[i] = 0; + for (i = 0; i < ActiveThreads; i++) + splitPoint->slaves[i] = 0; - // Copy the current position and the search stack to the master thread - memcpy(splitPoint->sstack[master], sstck, (ply+1)*sizeof(SearchStack)); + // Copy the current search stack to the master thread + memcpy(splitPoint->sstack[master], sstck, (ply+1) * sizeof(SearchStack)); Threads[master].splitPoint = splitPoint; // Make copies of the current position and search stack for each thread - for(i = 0; i < ActiveThreads && splitPoint->cpus < MaxThreadsPerSplitPoint; - i++) - if(thread_is_available(i, master)) { - memcpy(splitPoint->sstack[i], sstck, (ply+1)*sizeof(SearchStack)); - Threads[i].splitPoint = splitPoint; - splitPoint->slaves[i] = 1; - splitPoint->cpus++; - } + for (i = 0; i < ActiveThreads && splitPoint->cpus < MaxThreadsPerSplitPoint; i++) + if (thread_is_available(i, master)) + { + memcpy(splitPoint->sstack[i], sstck, (ply+1) * sizeof(SearchStack)); + Threads[i].splitPoint = splitPoint; + splitPoint->slaves[i] = 1; + splitPoint->cpus++; + } - // Tell the threads that they have work to do. This will make them leave + // Tell the threads that they have work to do. This will make them leave // their idle loop. - for(i = 0; i < ActiveThreads; i++) - if(i == master || splitPoint->slaves[i]) { - Threads[i].workIsWaiting = true; - Threads[i].idle = false; - Threads[i].stop = false; - } + for (i = 0; i < ActiveThreads; i++) + if (i == master || splitPoint->slaves[i]) + { + Threads[i].workIsWaiting = true; + Threads[i].idle = false; + Threads[i].stop = false; + } lock_release(&MPLock); - // Everything is set up. The master thread enters the idle loop, from + // Everything is set up. The master thread enters the idle loop, from // which it will instantly launch a search, because its workIsWaiting // slot is 'true'. We send the split point as a second parameter to the // idle loop, which means that the main thread will return from the idle // loop when all threads have finished their work at this split point - // (i.e. when // splitPoint->cpus == 0). + // (i.e. when splitPoint->cpus == 0). idle_loop(master, splitPoint); // We have returned from the idle loop, which means that all threads are - // finished. Update alpha, beta and bestvalue, and return. + // finished. Update alpha, beta and bestValue, and return. lock_grab(&MPLock); - if(pvNode) *alpha = splitPoint->alpha; + + if (pvNode) + *alpha = splitPoint->alpha; + *beta = splitPoint->beta; *bestValue = splitPoint->bestValue; Threads[master].stop = false; Threads[master].idle = false; Threads[master].activeSplitPoints--; Threads[master].splitPoint = splitPoint->parent; - lock_release(&MPLock); + lock_release(&MPLock); return true; } @@ -2982,39 +3052,45 @@ namespace { // to start a new search from the root. void wake_sleeping_threads() { - if(ActiveThreads > 1) { - for(int i = 1; i < ActiveThreads; i++) { - Threads[i].idle = true; - Threads[i].workIsWaiting = false; - } + + if (ActiveThreads > 1) + { + for (int i = 1; i < ActiveThreads; i++) + { + Threads[i].idle = true; + Threads[i].workIsWaiting = false; + } + #if !defined(_MSC_VER) pthread_mutex_lock(&WaitLock); pthread_cond_broadcast(&WaitCond); pthread_mutex_unlock(&WaitLock); #else - for(int i = 1; i < THREAD_MAX; i++) - SetEvent(SitIdleEvent[i]); + for (int i = 1; i < THREAD_MAX; i++) + SetEvent(SitIdleEvent[i]); #endif } } // init_thread() is the function which is called when a new thread is - // launched. It simply calls the idle_loop() function with the supplied - // threadID. There are two versions of this function; one for POSIX threads - // and one for Windows threads. + // launched. It simply calls the idle_loop() function with the supplied + // threadID. There are two versions of this function; one for POSIX + // threads and one for Windows threads. #if !defined(_MSC_VER) - void *init_thread(void *threadID) { - idle_loop(*(int *)threadID, NULL); + void* init_thread(void *threadID) { + + idle_loop(*(int*)threadID, NULL); return NULL; } #else DWORD WINAPI init_thread(LPVOID threadID) { - idle_loop(*(int *)threadID, NULL); + + idle_loop(*(int*)threadID, NULL); return NULL; }