X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fsearch.cpp;h=915e1af25d69ccee4e5faead5f68cf58b14ecd96;hp=bc0fff881ef7f003ead9e194d35ab91b887cc207;hb=ce2845d3334520d07e38750ff481212f092a3ceb;hpb=6b8026806c80bb894e57d276629b35ed703f8489 diff --git a/src/search.cpp b/src/search.cpp index bc0fff88..915e1af2 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -129,7 +129,7 @@ namespace { void extract_pv_from_tt(Position& pos); void insert_pv_in_tt(Position& pos); - std::string pv_info_to_uci(Position& pos, Value alpha, Value beta, int pvLine = 0); + std::string pv_info_to_uci(Position& pos, int depth, Value alpha, Value beta, int pvLine); int64_t nodes; Value pv_score; @@ -145,11 +145,11 @@ namespace { typedef std::vector Base; - RootMoveList(Position& pos, Move searchMoves[]); - void set_non_pv_scores(const Position& pos, Move ttm, SearchStack* ss); - + void init(Position& pos, Move searchMoves[]); void sort() { insertion_sort(begin(), end()); } void sort_multipv(int n) { insertion_sort(begin(), begin() + n); } + + int bestMoveChanges; }; @@ -203,16 +203,12 @@ namespace { // Extensions. Configurable UCI options // Array index 0 is used at non-PV nodes, index 1 at PV nodes. - Depth CheckExtension[2], SingleEvasionExtension[2], PawnPushTo7thExtension[2]; - Depth PassedPawnExtension[2], PawnEndgameExtension[2], MateThreatExtension[2]; + Depth CheckExtension[2], PawnPushTo7thExtension[2], PassedPawnExtension[2]; + Depth PawnEndgameExtension[2], MateThreatExtension[2]; // Minimum depth for use of singular extension const Depth SingularExtensionDepth[2] = { 8 * ONE_PLY /* non-PV */, 6 * ONE_PLY /* PV */}; - // If the TT move is at least SingularExtensionMargin better then the - // remaining ones we will extend it. - const Value SingularExtensionMargin = Value(0x20); - // Step 12. Futility pruning // Futility margin for quiescence search @@ -233,11 +229,6 @@ namespace { template inline Depth reduction(Depth d, int mn) { return (Depth) ReductionMatrix[PV][Min(d / 2, 63)][Min(mn, 63)]; } - // Common adjustments - - // Search depth at iteration 1 - const Depth InitialDepth = ONE_PLY; - // Easy move margin. An easy move candidate must be at least this much // better than the second best move. const Value EasyMoveMargin = Value(0x200); @@ -248,23 +239,13 @@ namespace { // Book object Book OpeningBook; - // Pointer to root move list - RootMoveList* Rml; - - // Iteration counter - int Iteration; - - // Scores and number of times the best move changed for each iteration - Value ValueByIteration[PLY_MAX_PLUS_2]; - int BestMoveChangesByIteration[PLY_MAX_PLUS_2]; - - // Search window management - int AspirationDelta; + // Root move list + RootMoveList Rml; // MultiPV mode int MultiPV; - // Time managment variables + // Time management variables int SearchStartTime, MaxNodes, MaxDepth, ExactMaxTime; bool UseTimeManagement, InfiniteSearch, Pondering, StopOnPonderhit; bool FirstRootMove, StopRequest, QuitRequest, AspirationFailLow; @@ -289,7 +270,6 @@ namespace { /// Local functions Move id_loop(Position& pos, Move searchMoves[], Move* ponderMove); - Value root_search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, RootMoveList& rml); template Value search(Position& pos, SearchStack* ss, Value alpha, Value beta, Depth depth, int ply); @@ -305,7 +285,7 @@ namespace { } template - Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck, bool singleEvasion, bool mateThreat, bool* dangerous); + Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck, bool mateThreat, bool* dangerous); bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta, Value *bValue); bool connected_moves(const Position& pos, Move m1, Move m2); @@ -321,10 +301,9 @@ namespace { int current_search_time(); std::string value_to_uci(Value v); - int nps(const Position& pos); + std::string speed_to_uci(int64_t nodes); void poll(const Position& pos); void wait_for_stop_or_ponderhit(); - void init_ss_array(SearchStack* ss, int size); #if !defined(_MSC_VER) void* init_thread(void* threadID); @@ -332,7 +311,73 @@ namespace { DWORD WINAPI init_thread(LPVOID threadID); #endif -} + + // MovePickerExt is an extended MovePicker used to choose at compile time + // the proper move source according to the type of node. + template struct MovePickerExt; + + // In Root nodes use RootMoveList Rml as source. Score and sort the root moves + // before to search them. + template<> struct MovePickerExt : public MovePicker { + + MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, SearchStack* ss, Value b) + : MovePicker(p, ttm, d, h, ss, b), firstCall(true) { + Move move; + Value score = VALUE_ZERO; + + // Score root moves using the standard way used in main search, the moves + // are scored according to the order in which they are returned by MovePicker. + // This is the second order score that is used to compare the moves when + // the first order pv scores of both moves are equal. + while ((move = MovePicker::get_next_move()) != MOVE_NONE) + for (rm = Rml.begin(); rm != Rml.end(); ++rm) + if (rm->pv[0] == move) + { + rm->non_pv_score = score--; + break; + } + + Rml.sort(); + rm = Rml.begin(); + } + + Move get_next_move() { + + if (!firstCall) + ++rm; + else + firstCall = false; + + return rm != Rml.end() ? rm->pv[0] : MOVE_NONE; + } + + RootMoveList::iterator rm; + bool firstCall; + }; + + // In SpNodes use split point's shared MovePicker object as move source + template<> struct MovePickerExt : public MovePicker { + + MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, + SearchStack* ss, Value b) : MovePicker(p, ttm, d, h, ss, b), + mp(ss->sp->mp) {} + + Move get_next_move() { return mp->get_next_move(); } + + RootMoveList::iterator rm; // Dummy, needed to compile + MovePicker* mp; + }; + + // Default case, create and use a MovePicker object as source + template<> struct MovePickerExt : public MovePicker { + + MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, + SearchStack* ss, Value b) : MovePicker(p, ttm, d, h, ss, b) {} + + RootMoveList::iterator rm; // Dummy, needed to compile + }; + +} // namespace //// @@ -406,7 +451,7 @@ int64_t perft(Position& pos, Depth depth) /// think() is the external interface to Stockfish's search, and is called when /// the program receives the UCI 'go' command. It initializes various -/// search-related global variables, and calls root_search(). It returns false +/// search-related global variables, and calls id_loop(). It returns false /// when a quit command is received during the search. bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[], @@ -450,8 +495,6 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[ CheckExtension[1] = Options["Check Extension (PV nodes)"].value(); CheckExtension[0] = Options["Check Extension (non-PV nodes)"].value(); - SingleEvasionExtension[1] = Options["Single Evasion Extension (PV nodes)"].value(); - SingleEvasionExtension[0] = Options["Single Evasion Extension (non-PV nodes)"].value(); PawnPushTo7thExtension[1] = Options["Pawn Push to 7th Extension (PV nodes)"].value(); PawnPushTo7thExtension[0] = Options["Pawn Push to 7th Extension (non-PV nodes)"].value(); PassedPawnExtension[1] = Options["Passed Pawn Extension (PV nodes)"].value(); @@ -496,12 +539,13 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[ std::string name = Options["Search Log Filename"].value(); LogFile.open(name.c_str(), std::ios::out | std::ios::app); - LogFile << "Searching: " << pos.to_fen() - << "\ninfinite: " << infinite - << " ponder: " << ponder - << " time: " << myTime - << " increment: " << myIncrement - << " moves to go: " << movesToGo << endl; + LogFile << "\nSearching: " << pos.to_fen() + << "\ninfinite: " << infinite + << " ponder: " << ponder + << " time: " << myTime + << " increment: " << myIncrement + << " moves to go: " << movesToGo + << endl; } // We're ready to start thinking. Call the iterative deepening loop function @@ -509,25 +553,20 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[ Move bestMove = id_loop(pos, searchMoves, &ponderMove); // Print final search statistics - cout << "info nodes " << pos.nodes_searched() - << " nps " << nps(pos) - << " time " << current_search_time() << endl; + cout << "info" << speed_to_uci(pos.nodes_searched()) << endl; if (UseLogFile) { - LogFile << "\nNodes: " << pos.nodes_searched() - << "\nNodes/second: " << nps(pos) - << "\nBest move: " << move_to_san(pos, bestMove); + int t = current_search_time(); + + LogFile << "Nodes: " << pos.nodes_searched() + << "\nNodes/second: " << (t > 0 ? int(pos.nodes_searched() * 1000 / t) : 0) + << "\nBest move: " << move_to_san(pos, bestMove); StateInfo st; pos.do_move(bestMove, st); - LogFile << "\nPonder move: " - << move_to_san(pos, ponderMove) // Works also with MOVE_NONE - << endl; - - // Return from think() with unchanged position - pos.undo_move(bestMove); - + LogFile << "\nPonder move: " << move_to_san(pos, ponderMove) << endl; + pos.undo_move(bestMove); // Return from think() with unchanged position LogFile.close(); } @@ -548,106 +587,87 @@ bool think(Position& pos, bool infinite, bool ponder, int time[], int increment[ namespace { - // id_loop() is the main iterative deepening loop. It calls root_search - // repeatedly with increasing depth until the allocated thinking time has - // been consumed, the user stops the search, or the maximum search depth is - // reached. + // id_loop() is the main iterative deepening loop. It calls search() repeatedly + // with increasing depth until the allocated thinking time has been consumed, + // user stops the search, or the maximum search depth is reached. Move id_loop(Position& pos, Move searchMoves[], Move* ponderMove) { SearchStack ss[PLY_MAX_PLUS_2]; - Depth depth; - Move EasyMove = MOVE_NONE; - Value value, alpha = -VALUE_INFINITE, beta = VALUE_INFINITE; - int researchCountFL, researchCountFH; + Value bestValues[PLY_MAX_PLUS_2]; + int bestMoveChanges[PLY_MAX_PLUS_2]; + int depth, researchCountFL, researchCountFH, aspirationDelta; + Value value, alpha, beta; + Move bestMove, easyMove; - // Moves to search are verified, scored and sorted - RootMoveList rml(pos, searchMoves); - Rml = &rml; + // Moves to search are verified and copied + Rml.init(pos, searchMoves); - // Handle special case of searching on a mate/stale position - if (rml.size() == 0) + // Initialize FIXME move before Rml.init() + TT.new_search(); + H.clear(); + memset(ss, 0, 4 * sizeof(SearchStack)); + *ponderMove = bestMove = easyMove = MOVE_NONE; + depth = aspirationDelta = 0; + ss->currentMove = MOVE_NULL; // Hack to skip update_gains() + alpha = -VALUE_INFINITE, beta = VALUE_INFINITE; + + // Handle special case of searching on a mate/stalemate position + if (Rml.size() == 0) { - Value s = (pos.is_check() ? -VALUE_MATE : VALUE_DRAW); - - cout << "info depth " << 1 - << " score " << value_to_uci(s) << endl; + cout << "info depth 0 score " + << value_to_uci(pos.is_check() ? -VALUE_MATE : VALUE_DRAW) + << endl; return MOVE_NONE; } - // Initialize - TT.new_search(); - H.clear(); - init_ss_array(ss, PLY_MAX_PLUS_2); - ValueByIteration[1] = rml[0].pv_score; - Iteration = 1; - - // Send initial RootMoveList scoring (iteration 1) - cout << set960(pos.is_chess960()) // Is enough to set once at the beginning - << "info depth " << Iteration - << "\n" << rml[0].pv_info_to_uci(pos, alpha, beta) << endl; - - // Is one move significantly better than others after initial scoring ? - if ( rml.size() == 1 - || rml[0].pv_score > rml[1].pv_score + EasyMoveMargin) - EasyMove = rml[0].pv[0]; - // Iterative deepening loop - while (Iteration < PLY_MAX) + while (++depth <= PLY_MAX && (!MaxDepth || depth <= MaxDepth) && !StopRequest) { - // Initialize iteration - Iteration++; - BestMoveChangesByIteration[Iteration] = 0; - - cout << "info depth " << Iteration << endl; + Rml.bestMoveChanges = researchCountFL = researchCountFH = 0; + cout << "info depth " << depth << endl; // Calculate dynamic aspiration window based on previous iterations - if (MultiPV == 1 && Iteration >= 6 && abs(ValueByIteration[Iteration - 1]) < VALUE_KNOWN_WIN) + if (MultiPV == 1 && depth >= 5 && abs(bestValues[depth - 1]) < VALUE_KNOWN_WIN) { - int prevDelta1 = ValueByIteration[Iteration - 1] - ValueByIteration[Iteration - 2]; - int prevDelta2 = ValueByIteration[Iteration - 2] - ValueByIteration[Iteration - 3]; + int prevDelta1 = bestValues[depth - 1] - bestValues[depth - 2]; + int prevDelta2 = bestValues[depth - 2] - bestValues[depth - 3]; - AspirationDelta = Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16); - AspirationDelta = (AspirationDelta + 7) / 8 * 8; // Round to match grainSize + aspirationDelta = Min(Max(abs(prevDelta1) + abs(prevDelta2) / 2, 16), 24); + aspirationDelta = (aspirationDelta + 7) / 8 * 8; // Round to match grainSize - alpha = Max(ValueByIteration[Iteration - 1] - AspirationDelta, -VALUE_INFINITE); - beta = Min(ValueByIteration[Iteration - 1] + AspirationDelta, VALUE_INFINITE); + alpha = Max(bestValues[depth - 1] - aspirationDelta, -VALUE_INFINITE); + beta = Min(bestValues[depth - 1] + aspirationDelta, VALUE_INFINITE); } - depth = (Iteration - 2) * ONE_PLY + InitialDepth; - - researchCountFL = researchCountFH = 0; - - // We start with small aspiration window and in case of fail high/low, we - // research with bigger window until we are not failing high/low anymore. + // Start with a small aspiration window and, in case of fail high/low, + // research with bigger window until not failing high/low anymore. while (true) { - // Sort the moves before to (re)search - rml.set_non_pv_scores(pos, rml[0].pv[0], ss); - rml.sort(); - - // Search to the current depth, rml is updated and sorted - //value = root_search(pos, ss, alpha, beta, depth, rml); - value = search(pos, ss, alpha, beta, depth, 0); + // Search starting from ss+1 to allow calling update_gains() + value = search(pos, ss+1, alpha, beta, depth * ONE_PLY, 0); - // Sort the moves before to return - rml.sort(); - - // Write PV lines to transposition table, in case the relevant entries - // have been overwritten during the search. - for (int i = 0; i < Min(MultiPV, (int)rml.size()); i++) - rml[i].insert_pv_in_tt(pos); + // Send PV line to GUI and write to transposition table in case the + // relevant entries have been overwritten during the search. + for (int i = 0; i < Min(MultiPV, (int)Rml.size()); i++) + { + Rml[i].insert_pv_in_tt(pos); + cout << set960(pos.is_chess960()) + << Rml[i].pv_info_to_uci(pos, depth, alpha, beta, i) << endl; + } + // Value cannot be trusted. Break out immediately! if (StopRequest) break; assert(value >= alpha); + // In case of failing high/low increase aspiration window and research, + // otherwise exit the fail high/low loop. if (value >= beta) { - // Prepare for a research after a fail high, each time with a wider window - beta = Min(beta + AspirationDelta * (1 << researchCountFH), VALUE_INFINITE); + beta = Min(beta + aspirationDelta * (1 << researchCountFH), VALUE_INFINITE); researchCountFH++; } else if (value <= alpha) @@ -655,61 +675,61 @@ namespace { AspirationFailLow = true; StopOnPonderhit = false; - // Prepare for a research after a fail low, each time with a wider window - alpha = Max(alpha - AspirationDelta * (1 << researchCountFL), -VALUE_INFINITE); + alpha = Max(alpha - aspirationDelta * (1 << researchCountFL), -VALUE_INFINITE); researchCountFL++; } else break; } - if (StopRequest) - break; // Value cannot be trusted. Break out immediately! + // Collect info about search result + bestMove = Rml[0].pv[0]; + bestValues[depth] = value; + bestMoveChanges[depth] = Rml.bestMoveChanges; - //Save info about search result - ValueByIteration[Iteration] = value; + if (UseLogFile) + LogFile << pretty_pv(pos, depth, value, current_search_time(), Rml[0].pv) << endl; - // Drop the easy move if differs from the new best move - if (rml[0].pv[0] != EasyMove) - EasyMove = MOVE_NONE; + // Init easyMove after first iteration or drop if differs from the best move + if (depth == 1 && (Rml.size() == 1 || Rml[0].pv_score > Rml[1].pv_score + EasyMoveMargin)) + easyMove = bestMove; + else if (bestMove != easyMove) + easyMove = MOVE_NONE; - if (UseTimeManagement) + if (UseTimeManagement && !StopRequest) { // Time to stop? - bool stopSearch = false; - - // Stop search early if there is only a single legal move, - // we search up to Iteration 6 anyway to get a proper score. - if (Iteration >= 6 && rml.size() == 1) - stopSearch = true; + bool noMoreTime = false; // Stop search early when the last two iterations returned a mate score - if ( Iteration >= 6 - && abs(ValueByIteration[Iteration]) >= abs(VALUE_MATE) - 100 - && abs(ValueByIteration[Iteration-1]) >= abs(VALUE_MATE) - 100) - stopSearch = true; - - // Stop search early if one move seems to be much better than the others - if ( Iteration >= 8 - && EasyMove == rml[0].pv[0] - && ( ( rml[0].nodes > (pos.nodes_searched() * 85) / 100 + if ( depth >= 5 + && abs(bestValues[depth]) >= abs(VALUE_MATE) - 100 + && abs(bestValues[depth - 1]) >= abs(VALUE_MATE) - 100) + noMoreTime = true; + + // Stop search early if one move seems to be much better than the + // others or if there is only a single legal move. In this latter + // case we search up to Iteration 8 anyway to get a proper score. + if ( depth >= 7 + && easyMove == bestMove + && ( Rml.size() == 1 + ||( Rml[0].nodes > (pos.nodes_searched() * 85) / 100 && current_search_time() > TimeMgr.available_time() / 16) - ||( rml[0].nodes > (pos.nodes_searched() * 98) / 100 + ||( Rml[0].nodes > (pos.nodes_searched() * 98) / 100 && current_search_time() > TimeMgr.available_time() / 32))) - stopSearch = true; + noMoreTime = true; // Add some extra time if the best move has changed during the last two iterations - if (Iteration > 5 && Iteration <= 50) - TimeMgr.pv_instability(BestMoveChangesByIteration[Iteration], - BestMoveChangesByIteration[Iteration-1]); + if (depth > 4 && depth < 50) + TimeMgr.pv_instability(bestMoveChanges[depth], bestMoveChanges[depth-1]); // Stop search if most of MaxSearchTime is consumed at the end of the // iteration. We probably don't have enough time to search the first // move at the next iteration anyway. if (current_search_time() > (TimeMgr.available_time() * 80) / 128) - stopSearch = true; + noMoreTime = true; - if (stopSearch) + if (noMoreTime) { if (Pondering) StopOnPonderhit = true; @@ -717,235 +737,10 @@ namespace { break; } } - - if (MaxDepth && Iteration >= MaxDepth) - break; - } - - *ponderMove = rml[0].pv[1]; - return rml[0].pv[0]; - } - - - // root_search() is the function which searches the root node. It is - // similar to search_pv except that it prints some information to the - // standard output and handles the fail low/high loops. - - Value root_search(Position& pos, SearchStack* ss, Value alpha, - Value beta, Depth depth, RootMoveList& rml) { - - assert(alpha >= -VALUE_INFINITE && alpha <= VALUE_INFINITE); - assert(beta > alpha && beta <= VALUE_INFINITE); - assert(pos.thread() >= 0 && pos.thread() < ThreadsMgr.active_threads()); - - Move movesSearched[MOVES_MAX]; - StateInfo st; - Key posKey; - Move move; - Depth ext, newDepth; - ValueType vt; - Value bestValue, value, oldAlpha; - bool isCheck, moveIsCheck, captureOrPromotion, dangerous, isPvMove; - int moveCount = 0; - - bestValue = value = -VALUE_INFINITE; - oldAlpha = alpha; - isCheck = pos.is_check(); - - // Step 1. Initialize node (polling is omitted at root) - ss->currentMove = ss->bestMove = MOVE_NONE; - (ss+2)->killers[0] = (ss+2)->killers[1] = (ss+2)->mateKiller = MOVE_NONE; - - // Step 2. Check for aborted search (omitted at root) - // Step 3. Mate distance pruning (omitted at root) - // Step 4. Transposition table lookup (omitted at root) - posKey = pos.get_key(); - - // Step 5. Evaluate the position statically - // At root we do this only to get reference value for child nodes - ss->evalMargin = VALUE_NONE; - ss->eval = isCheck ? VALUE_NONE : evaluate(pos, ss->evalMargin); - - // Step 6. Razoring (omitted at root) - // Step 7. Static null move pruning (omitted at root) - // Step 8. Null move search with verification search (omitted at root) - // Step 9. Internal iterative deepening (omitted at root) - - CheckInfo ci(pos); - int64_t nodes; - RootMoveList::iterator rm = rml.begin(); - bestValue = alpha; - - // Step 10. Loop through moves - // Loop through all legal moves until no moves remain or a beta cutoff occurs - while ( bestValue < beta - && rm != rml.end() - && !StopRequest) - { - move = ss->currentMove = rm->pv[0]; - movesSearched[moveCount++] = move; - isPvMove = (moveCount <= MultiPV); - - // This is used by time management - FirstRootMove = (rm == rml.begin()); - - // Save the current node count before the move is searched - nodes = pos.nodes_searched(); - - // If it's time to send nodes info, do it here where we have the - // correct accumulated node counts searched by each thread. - if (SendSearchedNodes) - { - SendSearchedNodes = false; - cout << "info nodes " << nodes - << " nps " << nps(pos) - << " time " << current_search_time() << endl; - } - - if (current_search_time() >= 1000) - cout << "info currmove " << move - << " currmovenumber " << moveCount << endl; - - moveIsCheck = pos.move_is_check(move); - captureOrPromotion = pos.move_is_capture_or_promotion(move); - - // Step 11. Decide the new search depth - ext = extension(pos, move, captureOrPromotion, moveIsCheck, false, false, &dangerous); - newDepth = depth + ext; - - // Step 12. Futility pruning (omitted at root) - // Step 13. Make the move - pos.do_move(move, st, ci, moveIsCheck); - - // Step extra. pv search - // We do pv search for PV moves - if (isPvMove) - { - // Aspiration window is disabled in multi-pv case - if (MultiPV > 1) - alpha = -VALUE_INFINITE; - - // Full depth PV search, done on first move or after a fail high - value = -search(pos, ss+1, -beta, -alpha, newDepth, 1); - } - else - { - // Step 14. Reduced search - // if the move fails high will be re-searched at full depth - bool doFullDepthSearch = true; - - if ( depth >= 3 * ONE_PLY - && !captureOrPromotion - && !dangerous - && !move_is_castle(move) - && ss->killers[0] != move - && ss->killers[1] != move) - { - ss->reduction = reduction(depth, moveCount - MultiPV + 1); - - if (ss->reduction) - { - Depth d = newDepth - ss->reduction; - value = -search(pos, ss+1, -(alpha+1), -alpha, d, 1); - - doFullDepthSearch = (value > alpha); - } - ss->reduction = DEPTH_ZERO; // Restore original reduction - } - - // Step 15. Full depth search - if (doFullDepthSearch) - { - // Full depth non-pv search using alpha as upperbound - value = -search(pos, ss+1, -(alpha+1), -alpha, newDepth, 1); - - // If we are above alpha then research at same depth but as PV - // to get a correct score or eventually a fail high above beta. - if (value > alpha) - value = -search(pos, ss+1, -beta, -alpha, newDepth, 1); - } - } - - // Step 16. Undo move - pos.undo_move(move); - - assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); - - // Finished searching the move. If StopRequest is true, the search - // was aborted because the user interrupted the search or because we - // ran out of time. In this case, the return value of the search cannot - // be trusted, and we break out of the loop without updating the best - // move and/or PV. - if (StopRequest) - break; - - // Remember searched nodes counts for this move - rm->nodes += pos.nodes_searched() - nodes; - - // Step 17. Check for new best move - if (!isPvMove && value <= alpha) - rm->pv_score = -VALUE_INFINITE; - else - { - // PV move or new best move! - - // Update PV - ss->bestMove = move; - rm->pv_score = value; - rm->extract_pv_from_tt(pos); - - // We record how often the best move has been changed in each - // iteration. This information is used for time managment: When - // the best move changes frequently, we allocate some more time. - if (!isPvMove && MultiPV == 1) - BestMoveChangesByIteration[Iteration]++; - - // Inform GUI that PV has changed, in case of multi-pv UCI protocol - // requires we send all the PV lines properly sorted. - rml.sort_multipv(moveCount); - - for (int j = 0; j < Min(MultiPV, (int)rml.size()); j++) - cout << rml[j].pv_info_to_uci(pos, alpha, beta, j) << endl; - - // Update alpha. In multi-pv we don't use aspiration window - if (MultiPV == 1) - { - // Raise alpha to setup proper non-pv search upper bound - if (value > alpha) - alpha = bestValue = value; - } - else // Set alpha equal to minimum score among the PV lines - alpha = bestValue = rml[Min(moveCount, MultiPV) - 1].pv_score; // FIXME why moveCount? - - } // PV move or new best move - - ++rm; - - } // Root moves loop - - // Step 20. Update tables - // If the search is not aborted, update the transposition table, - // history counters, and killer moves. - if (!StopRequest) - { - move = bestValue <= oldAlpha ? MOVE_NONE : ss->bestMove; - vt = bestValue <= oldAlpha ? VALUE_TYPE_UPPER - : bestValue >= beta ? VALUE_TYPE_LOWER : VALUE_TYPE_EXACT; - - TT.store(posKey, value_to_tt(bestValue, 0), vt, depth, move, ss->eval, ss->evalMargin); - - // Update killers and history only for non capture moves that fails high - if ( bestValue >= beta - && !pos.move_is_capture_or_promotion(move)) - { - update_history(pos, move, depth, movesSearched, moveCount); - update_killers(move, ss->killers); - } } - assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); - - return bestValue; + *ponderMove = Rml[0].pv[1]; + return bestMove; } @@ -967,7 +762,6 @@ namespace { Move movesSearched[MOVES_MAX]; int64_t nodes; - RootMoveList::iterator rm; StateInfo st; const TTEntry *tte; Key posKey; @@ -976,9 +770,9 @@ namespace { ValueType vt; Value bestValue, value, oldAlpha; Value refinedValue, nullValue, futilityBase, futilityValueScaled; // Non-PV specific - bool isPvMove, isCheck, singleEvasion, singularExtensionNode, moveIsCheck, captureOrPromotion, dangerous; + bool isPvMove, isCheck, singularExtensionNode, moveIsCheck, captureOrPromotion, dangerous; bool mateThreat = false; - int moveCount = 0; + int moveCount = 0, playedMoveCount = 0; int threadID = pos.thread(); SplitPoint* sp = NULL; @@ -995,52 +789,49 @@ namespace { mateThreat = sp->mateThreat; goto split_point_start; } - else {} // Hack to fix icc's "statement is unreachable" warning + else if (Root) + bestValue = alpha; // Step 1. Initialize node and poll. Polling can abort search - ss->currentMove = ss->bestMove = threatMove = MOVE_NONE; + ss->currentMove = ss->bestMove = threatMove = (ss+1)->excludedMove = MOVE_NONE; + (ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO; (ss+2)->killers[0] = (ss+2)->killers[1] = (ss+2)->mateKiller = MOVE_NONE; - if (!Root) + if (threadID == 0 && ++NodesSincePoll > NodesBetweenPolls) { - if (threadID == 0 && ++NodesSincePoll > NodesBetweenPolls) - { - NodesSincePoll = 0; - poll(pos); - } - - // Step 2. Check for aborted search and immediate draw - if ( StopRequest - || ThreadsMgr.cutoff_at_splitpoint(threadID) - || pos.is_draw() - || ply >= PLY_MAX - 1) - return VALUE_DRAW; - - // Step 3. Mate distance pruning - alpha = Max(value_mated_in(ply), alpha); - beta = Min(value_mate_in(ply+1), beta); - if (alpha >= beta) - return alpha; + NodesSincePoll = 0; + poll(pos); } - // Step 4. Transposition table lookup + // Step 2. Check for aborted search and immediate draw + if (( StopRequest + || ThreadsMgr.cutoff_at_splitpoint(threadID) + || pos.is_draw() + || ply >= PLY_MAX - 1) && !Root) + return VALUE_DRAW; + // Step 3. Mate distance pruning + alpha = Max(value_mated_in(ply), alpha); + beta = Min(value_mate_in(ply+1), beta); + if (alpha >= beta) + return alpha; + + // Step 4. Transposition table lookup // We don't want the score of a partial search to overwrite a previous full search - // TT value, so we use a different position key in case of an excluded move exists. + // TT value, so we use a different position key in case of an excluded move. excludedMove = ss->excludedMove; posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key(); tte = TT.retrieve(posKey); ttMove = tte ? tte->move() : MOVE_NONE; - // At PV nodes, we don't use the TT for pruning, but only for move ordering. - // This is to avoid problems in the following areas: - // - // * Repetition draw detection - // * Fifty move rule detection - // * Searching for a mate - // * Printing of full PV line - if (!PvNode && tte && ok_to_use_TT(tte, depth, beta, ply)) + // At PV nodes we check for exact scores, while at non-PV nodes we check for + // and return a fail high/low. Biggest advantage at probing at PV nodes is + // to have a smooth experience in analysis mode. + if ( !Root + && tte + && (PvNode ? tte->depth() >= depth && tte->type() == VALUE_TYPE_EXACT + : ok_to_use_TT(tte, depth, beta, ply))) { TT.refresh(tte); ss->bestMove = ttMove; // Can be MOVE_NONE @@ -1066,8 +857,7 @@ namespace { } // Save gain for the parent non-capture move - if (!Root) - update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval); + update_gains(pos, (ss-1)->currentMove, (ss-1)->eval, ss->eval); // Step 6. Razoring (is omitted in PV nodes) if ( !PvNode @@ -1160,9 +950,8 @@ namespace { } // Step 9. Internal iterative deepening - if ( !Root - && depth >= IIDDepth[PvNode] - && ttMove == MOVE_NONE + if ( depth >= IIDDepth[PvNode] + && ttMove == MOVE_NONE && (PvNode || (!isCheck && ss->eval >= beta - IIDMargin))) { Depth d = (PvNode ? depth - 2 * ONE_PLY : depth / 2); @@ -1176,18 +965,15 @@ namespace { } // Expensive mate threat detection (only for PV nodes) - if (PvNode && !Root) // FIXME + if (PvNode) mateThreat = pos.has_mate_threat(); split_point_start: // At split points actual search starts from here // Initialize a MovePicker object for the current position - // FIXME currently MovePicker() c'tor is needless called also in SplitPoint - MovePicker mpBase(pos, ttMove, depth, H, ss, (PvNode ? -VALUE_INFINITE : beta)); - MovePicker& mp = SpNode ? *sp->mp : mpBase; + MovePickerExt mp(pos, ttMove, depth, H, ss, (PvNode ? -VALUE_INFINITE : beta)); CheckInfo ci(pos); ss->bestMove = MOVE_NONE; - singleEvasion = !SpNode && isCheck && mp.number_of_evasions() == 1; futilityBase = ss->eval + ss->evalMargin; singularExtensionNode = !Root && !SpNode @@ -1197,12 +983,6 @@ split_point_start: // At split points actual search starts from here && !excludedMove // Do not allow recursive singular extension search && (tte->type() & VALUE_TYPE_LOWER) && tte->depth() >= depth - 3 * ONE_PLY; - if (Root) - { - rm = Rml->begin(); - bestValue = alpha; - } - if (SpNode) { lock_grab(&(sp->lock)); @@ -1212,16 +992,25 @@ split_point_start: // At split points actual search starts from here // Step 10. Loop through moves // Loop through all legal moves until no moves remain or a beta cutoff occurs while ( bestValue < beta - && (!Root || rm != Rml->end()) - && ( Root || (move = mp.get_next_move()) != MOVE_NONE) + && (move = mp.get_next_move()) != MOVE_NONE && !ThreadsMgr.cutoff_at_splitpoint(threadID)) { - if (Root) + assert(move_is_ok(move)); + + if (SpNode) { - move = rm->pv[0]; + moveCount = ++sp->moveCount; + lock_release(&(sp->lock)); + } + else if (move == excludedMove) + continue; + else + moveCount++; + if (Root) + { // This is used by time management - FirstRootMove = (rm == Rml->begin()); + FirstRootMove = (moveCount == 1); // Save the current node count before the move is searched nodes = pos.nodes_searched(); @@ -1231,9 +1020,7 @@ split_point_start: // At split points actual search starts from here if (SendSearchedNodes) { SendSearchedNodes = false; - cout << "info nodes " << nodes - << " nps " << nps(pos) - << " time " << current_search_time() << endl; + cout << "info" << speed_to_uci(pos.nodes_searched()) << endl; } if (current_search_time() >= 1000) @@ -1241,29 +1028,19 @@ split_point_start: // At split points actual search starts from here << " currmovenumber " << moveCount << endl; } - assert(move_is_ok(move)); - - if (SpNode) - { - moveCount = ++sp->moveCount; - lock_release(&(sp->lock)); - } - else if (move == excludedMove) - continue; - else - movesSearched[moveCount++] = move; - - isPvMove = (PvNode && moveCount <= (Root ? MultiPV : 1)); + // At Root and at first iteration do a PV search on all the moves + // to score root moves. Otherwise only the first one is the PV. + isPvMove = (PvNode && moveCount <= (Root ? MultiPV + 1000 * (depth <= ONE_PLY) : 1)); moveIsCheck = pos.move_is_check(move, ci); captureOrPromotion = pos.move_is_capture_or_promotion(move); // Step 11. Decide the new search depth - ext = extension(pos, move, captureOrPromotion, moveIsCheck, singleEvasion, mateThreat, &dangerous); + ext = extension(pos, move, captureOrPromotion, moveIsCheck, mateThreat, &dangerous); // Singular extension search. If all moves but one fail low on a search of (alpha-s, beta-s), // and just one fails high on (alpha, beta), then that move is singular and should be extended. // To verify this we do a reduced search on all the other moves but the ttMove, if result is - // lower then ttValue minus a margin then we extend ttMove. + // lower than ttValue minus a margin then we extend ttMove. if ( singularExtensionNode && move == tte->move() && ext < ONE_PLY) @@ -1272,7 +1049,7 @@ split_point_start: // At split points actual search starts from here if (abs(ttValue) < VALUE_KNOWN_WIN) { - Value b = ttValue - SingularExtensionMargin; + Value b = ttValue - depth; ss->excludedMove = move; ss->skipNullMove = true; Value v = search(pos, ss, b - 1, b, depth / 2, ply); @@ -1286,7 +1063,7 @@ split_point_start: // At split points actual search starts from here // Update current move (this must be done after singular extension search) ss->currentMove = move; - newDepth = depth - (!Root ? ONE_PLY : DEPTH_ZERO) + ext; + newDepth = depth - ONE_PLY + ext; // Step 12. Futility pruning (is omitted in PV nodes) if ( !PvNode @@ -1343,6 +1120,9 @@ split_point_start: // At split points actual search starts from here // Step 13. Make the move pos.do_move(move, st, ci, moveIsCheck); + if (!SpNode && !captureOrPromotion) + movesSearched[playedMoveCount++] = move; + // Step extra. pv search (only in PV nodes) // The first move in list is the expected PV if (isPvMove) @@ -1366,8 +1146,7 @@ split_point_start: // At split points actual search starts from here && ss->killers[0] != move && ss->killers[1] != move) { - ss->reduction = Root ? reduction(depth, moveCount - MultiPV + 1) - : reduction(depth, moveCount); + ss->reduction = reduction(depth, moveCount); if (ss->reduction) { alpha = SpNode ? sp->alpha : alpha; @@ -1406,14 +1185,14 @@ split_point_start: // At split points actual search starts from here alpha = sp->alpha; } - if (!Root && value > bestValue && !(SpNode && ThreadsMgr.cutoff_at_splitpoint(threadID))) + if (value > bestValue && !(SpNode && ThreadsMgr.cutoff_at_splitpoint(threadID))) { bestValue = value; if (SpNode) sp->bestValue = value; - if (value > alpha) + if (!Root && value > alpha) { if (PvNode && value < beta) // We want always alpha < beta { @@ -1431,7 +1210,7 @@ split_point_start: // At split points actual search starts from here ss->bestMove = move; if (SpNode) - sp->parentSstack->bestMove = move; + sp->ss->bestMove = move; } } @@ -1446,47 +1225,35 @@ split_point_start: // At split points actual search starts from here break; // Remember searched nodes counts for this move - rm->nodes += pos.nodes_searched() - nodes; + mp.rm->nodes += pos.nodes_searched() - nodes; - // Step 17. Check for new best move - if (!isPvMove && value <= alpha) - rm->pv_score = -VALUE_INFINITE; - else + // PV move or new best move ? + if (isPvMove || value > alpha) { - // PV move or new best move! - // Update PV ss->bestMove = move; - rm->pv_score = value; - rm->extract_pv_from_tt(pos); + mp.rm->pv_score = value; + mp.rm->extract_pv_from_tt(pos); // We record how often the best move has been changed in each - // iteration. This information is used for time managment: When + // iteration. This information is used for time management: When // the best move changes frequently, we allocate some more time. if (!isPvMove && MultiPV == 1) - BestMoveChangesByIteration[Iteration]++; - - // Inform GUI that PV has changed, in case of multi-pv UCI protocol - // requires we send all the PV lines properly sorted. - Rml->sort_multipv(moveCount); + Rml.bestMoveChanges++; - for (int j = 0; j < Min(MultiPV, (int)Rml->size()); j++) - cout << (*Rml)[j].pv_info_to_uci(pos, alpha, beta, j) << endl; + Rml.sort_multipv(moveCount); - // Update alpha. In multi-pv we don't use aspiration window - if (MultiPV == 1) - { - // Raise alpha to setup proper non-pv search upper bound - if (value > alpha) - alpha = bestValue = value; - } - else // Set alpha equal to minimum score among the PV lines - alpha = bestValue = (*Rml)[Min(moveCount, MultiPV) - 1].pv_score; // FIXME why moveCount? - - } // PV move or new best move + // Update alpha. In multi-pv we don't use aspiration window, so + // set alpha equal to minimum score among the PV lines. + if (MultiPV > 1) + alpha = Rml[Min(moveCount, MultiPV) - 1].pv_score; // FIXME why moveCount? + else if (value > alpha) + alpha = value; + } + else + mp.rm->pv_score = -VALUE_INFINITE; - ++rm; - } + } // Root // Step 18. Check for split if ( !Root @@ -1496,8 +1263,7 @@ split_point_start: // At split points actual search starts from here && bestValue < beta && ThreadsMgr.available_thread_exists(threadID) && !StopRequest - && !ThreadsMgr.cutoff_at_splitpoint(threadID) - && Iteration <= 99) + && !ThreadsMgr.cutoff_at_splitpoint(threadID)) ThreadsMgr.split(pos, ss, ply, &alpha, beta, &bestValue, depth, threatMove, mateThreat, moveCount, &mp, PvNode); } @@ -1524,7 +1290,7 @@ split_point_start: // At split points actual search starts from here if ( bestValue >= beta && !pos.move_is_capture_or_promotion(move)) { - update_history(pos, move, depth, movesSearched, moveCount); + update_history(pos, move, depth, movesSearched, playedMoveCount); update_killers(move, ss->killers); } } @@ -1659,6 +1425,12 @@ split_point_start: // At split points actual search starts from here bestValue = futilityValue; continue; } + + // Prune moves with negative or equal SEE + if ( futilityBase < beta + && depth < DEPTH_ZERO + && pos.see(move) <= 0) + continue; } // Detect non-capture evasions that are candidate to be pruned @@ -1887,22 +1659,19 @@ split_point_start: // At split points actual search starts from here // extended, as example because the corresponding UCI option is set to zero, // the move is marked as 'dangerous' so, at least, we avoid to prune it. template - Depth extension(const Position& pos, Move m, bool captureOrPromotion, bool moveIsCheck, - bool singleEvasion, bool mateThreat, bool* dangerous) { + Depth extension(const Position& pos, Move m, bool captureOrPromotion, + bool moveIsCheck, bool mateThreat, bool* dangerous) { assert(m != MOVE_NONE); Depth result = DEPTH_ZERO; - *dangerous = moveIsCheck | singleEvasion | mateThreat; + *dangerous = moveIsCheck | mateThreat; if (*dangerous) { if (moveIsCheck && pos.see_sign(m) >= 0) result += CheckExtension[PvNode]; - if (singleEvasion) - result += SingleEvasionExtension[PvNode]; - if (mateThreat) result += MateThreatExtension[PvNode]; } @@ -1947,7 +1716,7 @@ split_point_start: // At split points actual search starts from here // connected_threat() tests whether it is safe to forward prune a move or if - // is somehow coonected to the threat move returned by null search. + // is somehow connected to the threat move returned by null search. bool connected_threat(const Position& pos, Move m, Move threat) { @@ -1969,7 +1738,7 @@ split_point_start: // At split points actual search starts from here return true; // Case 2: If the threatened piece has value less than or equal to the - // value of the threatening piece, don't prune move which defend it. + // value of the threatening piece, don't prune moves which defend it. if ( pos.move_is_capture(threat) && ( pos.midgame_value_of_piece_on(tfrom) >= pos.midgame_value_of_piece_on(tto) || pos.type_of_piece_on(tfrom) == KING) @@ -2036,8 +1805,7 @@ split_point_start: // At split points actual search starts from here assert(m != move); - if (!pos.move_is_capture_or_promotion(m)) - H.update(pos.piece_on(move_from(m)), move_to(m), -bonus); + H.update(pos.piece_on(move_from(m)), move_to(m), -bonus); } } @@ -2047,11 +1815,11 @@ split_point_start: // At split points actual search starts from here void update_killers(Move m, Move killers[]) { - if (m == killers[0]) - return; - - killers[1] = killers[0]; - killers[0] = m; + if (m != killers[0]) + { + killers[1] = killers[0]; + killers[0] = m; + } } @@ -2068,22 +1836,12 @@ split_point_start: // At split points actual search starts from here H.update_gain(pos.piece_on(move_to(m)), move_to(m), -(before + after)); } + // current_search_time() returns the number of milliseconds which have passed + // since the beginning of the current search. - // init_ss_array() does a fast reset of the first entries of a SearchStack - // array and of all the excludedMove and skipNullMove entries. - - void init_ss_array(SearchStack* ss, int size) { - - for (int i = 0; i < size; i++, ss++) - { - ss->excludedMove = MOVE_NONE; - ss->skipNullMove = false; - ss->reduction = DEPTH_ZERO; - ss->sp = NULL; + int current_search_time() { - if (i < 3) - ss->killers[0] = ss->killers[1] = ss->mateKiller = MOVE_NONE; - } + return get_system_time() - SearchStartTime; } @@ -2101,27 +1859,25 @@ split_point_start: // At split points actual search starts from here if (abs(v) < VALUE_MATE - PLY_MAX * ONE_PLY) s << "cp " << int(v) * 100 / int(PawnValueMidgame); // Scale to centipawns else - s << "mate " << (v > 0 ? (VALUE_MATE - v + 1) / 2 : -(VALUE_MATE + v) / 2 ); + s << "mate " << (v > 0 ? (VALUE_MATE - v + 1) / 2 : -(VALUE_MATE + v) / 2); return s.str(); } - // current_search_time() returns the number of milliseconds which have passed - // since the beginning of the current search. - - int current_search_time() { + // speed_to_uci() returns a string with time stats of current search suitable + // to be sent to UCI gui. - return get_system_time() - SearchStartTime; - } + std::string speed_to_uci(int64_t nodes) { + std::stringstream s; + int t = current_search_time(); - // nps() computes the current nodes/second count - - int nps(const Position& pos) { + s << " nodes " << nodes + << " nps " << (t > 0 ? int(nodes * 1000 / t) : 0) + << " time " << t; - int t = current_search_time(); - return (t > 0 ? int((pos.nodes_searched() * 1000) / t) : 0); + return s.str(); } @@ -2338,16 +2094,19 @@ split_point_start: // At split points actual search starts from here threads[threadID].state = THREAD_SEARCHING; - // Here we call search() with SplitPoint template parameter set to true + // Copy SplitPoint position and search stack and call search() + // with SplitPoint template parameter set to true. + SearchStack ss[PLY_MAX_PLUS_2]; SplitPoint* tsp = threads[threadID].splitPoint; Position pos(*tsp->pos, threadID); - SearchStack* ss = tsp->sstack[threadID] + 1; - ss->sp = tsp; + + memcpy(ss, tsp->ss - 1, 4 * sizeof(SearchStack)); + (ss+1)->sp = tsp; if (tsp->pvNode) - search(pos, ss, tsp->alpha, tsp->beta, tsp->depth, tsp->ply); + search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth, tsp->ply); else - search(pos, ss, tsp->alpha, tsp->beta, tsp->depth, tsp->ply); + search(pos, ss+1, tsp->alpha, tsp->beta, tsp->depth, tsp->ply); assert(threads[threadID].state == THREAD_SEARCHING); @@ -2592,7 +2351,7 @@ split_point_start: // At split points actual search starts from here splitPoint.moveCount = moveCount; splitPoint.pos = &pos; splitPoint.nodes = 0; - splitPoint.parentSstack = ss; + splitPoint.ss = ss; for (i = 0; i < activeThreads; i++) splitPoint.slaves[i] = 0; @@ -2619,12 +2378,10 @@ split_point_start: // At split points actual search starts from here lock_release(&mpLock); // Tell the threads that they have work to do. This will make them leave - // their idle loop. But before copy search stack tail for each thread. + // their idle loop. for (i = 0; i < activeThreads; i++) if (i == master || splitPoint.slaves[i]) { - memcpy(splitPoint.sstack[i], ss - 1, 4 * sizeof(SearchStack)); - assert(i == master || threads[i].state == THREAD_BOOKED); threads[i].state = THREAD_WORKISWAITING; // This makes the slave to exit from idle_loop() @@ -2735,7 +2492,7 @@ split_point_start: // At split points actual search starts from here k = pos.get_key(); tte = TT.retrieve(k); - // Don't overwrite exsisting correct entries + // Don't overwrite existing correct entries if (!tte || tte->move() != pv[ply]) { v = (pos.is_check() ? VALUE_NONE : evaluate(pos, m)); @@ -2749,10 +2506,10 @@ split_point_start: // At split points actual search starts from here } // pv_info_to_uci() returns a string with information on the current PV line - // formatted according to UCI specification and eventually writes the info - // to a log file. It is called at each iteration or after a new pv is found. + // formatted according to UCI specification. It is called at each iteration + // or after a new pv is found. - std::string RootMove::pv_info_to_uci(Position& pos, Value alpha, Value beta, int pvLine) { + std::string RootMove::pv_info_to_uci(Position& pos, int depth, Value alpha, Value beta, int pvLine) { std::stringstream s, l; Move* m = pv; @@ -2760,42 +2517,28 @@ split_point_start: // At split points actual search starts from here while (*m != MOVE_NONE) l << *m++ << " "; - s << "info depth " << Iteration // FIXME + s << "info depth " << depth << " seldepth " << int(m - pv) << " multipv " << pvLine + 1 << " score " << value_to_uci(pv_score) << (pv_score >= beta ? " lowerbound" : pv_score <= alpha ? " upperbound" : "") - << " time " << current_search_time() - << " nodes " << pos.nodes_searched() - << " nps " << nps(pos) + << speed_to_uci(pos.nodes_searched()) << " pv " << l.str(); - if (UseLogFile && pvLine == 0) - { - ValueType t = pv_score >= beta ? VALUE_TYPE_LOWER : - pv_score <= alpha ? VALUE_TYPE_UPPER : VALUE_TYPE_EXACT; - - LogFile << pretty_pv(pos, current_search_time(), Iteration, pv_score, t, pv) << endl; - } return s.str(); } - RootMoveList::RootMoveList(Position& pos, Move searchMoves[]) { + void RootMoveList::init(Position& pos, Move searchMoves[]) { - SearchStack ss[PLY_MAX_PLUS_2]; MoveStack mlist[MOVES_MAX]; - StateInfo st; Move* sm; - // Initialize search stack - init_ss_array(ss, PLY_MAX_PLUS_2); - ss[0].eval = ss[0].evalMargin = VALUE_NONE; + clear(); + bestMoveChanges = 0; - // Generate all legal moves + // Generate all legal moves and add them to RootMoveList MoveStack* last = generate(pos, mlist); - - // Add each move to the RootMoveList's vector for (MoveStack* cur = mlist; cur != last; cur++) { // If we have a searchMoves[] list then verify cur->move @@ -2805,38 +2548,12 @@ split_point_start: // At split points actual search starts from here if (searchMoves[0] && *sm != cur->move) continue; - // Find a quick score for the move and add to the list - pos.do_move(cur->move, st); - RootMove rm; - rm.pv[0] = ss[0].currentMove = cur->move; + rm.pv[0] = cur->move; rm.pv[1] = MOVE_NONE; - rm.pv_score = -qsearch(pos, ss+1, -VALUE_INFINITE, VALUE_INFINITE, DEPTH_ZERO, 1); + rm.pv_score = -VALUE_INFINITE; push_back(rm); - - pos.undo_move(cur->move); } - sort(); - } - - // Score root moves using the standard way used in main search, the moves - // are scored according to the order in which are returned by MovePicker. - // This is the second order score that is used to compare the moves when - // the first order pv scores of both moves are equal. - - void RootMoveList::set_non_pv_scores(const Position& pos, Move ttm, SearchStack* ss) - { - Move move; - Value score = VALUE_ZERO; - MovePicker mp(pos, ttm, ONE_PLY, H, ss); - - while ((move = mp.get_next_move()) != MOVE_NONE) - for (Base::iterator it = begin(); it != end(); ++it) - if (it->pv[0] == move) - { - it->non_pv_score = score--; - break; - } } } // namespace