X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fsearch.cpp;h=a36601bffc48f6965652694e886747c4a29a838a;hp=1e9c5010c97df7c56f2221b6b96081bdd49dc466;hb=ecd3218b6b24bb54509dbe6e9b24517b7df7390d;hpb=93195555ed230df1d29933de6236d6847ae88310 diff --git a/src/search.cpp b/src/search.cpp index 1e9c5010..aafbf80f 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -2,6 +2,7 @@ Stockfish, a UCI chess playing engine derived from Glaurung 2.1 Copyright (C) 2004-2008 Tord Romstad (Glaurung author) Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad + Copyright (C) 2015-2017 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad Stockfish is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by @@ -28,6 +29,7 @@ #include "misc.h" #include "movegen.h" #include "movepick.h" +#include "position.h" #include "search.h" #include "timeman.h" #include "thread.h" @@ -39,13 +41,11 @@ namespace Search { SignalsType Signals; LimitsType Limits; - StateStackPtr SetupStates; } namespace Tablebases { int Cardinality; - uint64_t Hits; bool RootInTB; bool UseRule50; Depth ProbeDepth; @@ -60,22 +60,36 @@ using namespace Search; namespace { - // Different node types, used as template parameter - enum NodeType { Root, PV, NonPV }; + // Different node types, used as a template parameter + enum NodeType { NonPV, PV }; + + // Sizes and phases of the skip-blocks, used for distributing search depths across the threads + const int skipSize[] = { 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4 }; + const int skipPhase[] = { 0, 1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 6, 7 }; // Razoring and futility margin based on depth - const int razor_margin[4] = { 483, 570, 603, 554 }; - Value futility_margin(Depth d) { return Value(200 * d); } + // razor_margin[0] is unused as long as depth >= ONE_PLY in search + const int razor_margin[] = { 0, 570, 603, 554 }; + Value futility_margin(Depth d) { return Value(150 * d / ONE_PLY); } // Futility and reductions lookup tables, initialized at startup - int FutilityMoveCounts[2][16]; // [improving][depth] - Depth Reductions[2][2][64][64]; // [pv][improving][depth][moveNumber] + int FutilityMoveCounts[2][16]; // [improving][depth] + int Reductions[2][2][64][64]; // [pv][improving][depth][moveNumber] + + // Threshold used for countermoves based pruning + const int CounterMovePruneThreshold = 0; template Depth reduction(bool i, Depth d, int mn) { - return Reductions[PvNode][i][std::min(d, 63 * ONE_PLY)][std::min(mn, 63)]; + return Reductions[PvNode][i][std::min(d / ONE_PLY, 63)][std::min(mn, 63)] * ONE_PLY; } - // Skill struct is used to implement strength limiting + // History and stats update bonus, based on depth + int stat_bonus(Depth depth) { + int d = depth / ONE_PLY ; + return d > 17 ? 0 : d * d + 2 * d - 2; + } + + // Skill structure is used to implement strength limit struct Skill { Skill(int l) : level(l) {} bool enabled() const { return level < 20; } @@ -87,8 +101,8 @@ namespace { Move best = MOVE_NONE; }; - // EasyMoveManager struct is used to detect a so called 'easy move'; when PV is - // stable across multiple search iterations we can fast return the best move. + // EasyMoveManager structure is used to detect an 'easy move'. When the PV is stable + // across multiple search iterations, we can quickly return the best move. struct EasyMoveManager { void clear() { @@ -105,7 +119,7 @@ namespace { assert(newPv.size() >= 3); - // Keep track of how many times in a row 3rd ply remains stable + // Keep track of how many times in a row the 3rd ply remains stable stableCnt = (newPv[2] == pv[2]) ? stableCnt + 1 : 0; if (!std::equal(newPv.begin(), newPv.begin() + 3, pv)) @@ -113,8 +127,8 @@ namespace { std::copy(newPv.begin(), newPv.begin() + 3, pv); StateInfo st[2]; - pos.do_move(newPv[0], st[0], pos.gives_check(newPv[0], CheckInfo(pos))); - pos.do_move(newPv[1], st[1], pos.gives_check(newPv[1], CheckInfo(pos))); + pos.do_move(newPv[0], st[0]); + pos.do_move(newPv[1], st[1]); expectedPosKey = pos.key(); pos.undo_move(newPv[1]); pos.undo_move(newPv[0]); @@ -127,20 +141,19 @@ namespace { }; EasyMoveManager EasyMove; - double BestMoveChanges; Value DrawValue[COLOR_NB]; - CounterMovesHistoryStats CounterMovesHistory; template - Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode); + Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode, bool skipEarlyPruning); template - Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth); + Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth = DEPTH_ZERO); Value value_to_tt(Value v, int ply); Value value_from_tt(Value v, int ply); void update_pv(Move* pv, Move move, Move* childPv); - void update_stats(const Position& pos, Stack* ss, Move move, Depth depth, Move* quiets, int quietsCnt); + void update_cm_stats(Stack* ss, Piece pc, Square s, int bonus); + void update_stats(const Position& pos, Stack* ss, Move move, Move* quiets, int quietsCnt, int bonus); void check_time(); } // namespace @@ -150,54 +163,58 @@ namespace { void Search::init() { - const double K[][2] = {{ 0.799, 2.281 }, { 0.484, 3.023 }}; - - for (int pv = 0; pv <= 1; ++pv) - for (int imp = 0; imp <= 1; ++imp) - for (int d = 1; d < 64; ++d) - for (int mc = 1; mc < 64; ++mc) - { - double r = K[pv][0] + log(d) * log(mc) / K[pv][1]; + for (int imp = 0; imp <= 1; ++imp) + for (int d = 1; d < 64; ++d) + for (int mc = 1; mc < 64; ++mc) + { + double r = log(d) * log(mc) / 1.95; - if (r >= 1.5) - Reductions[pv][imp][d][mc] = int(r) * ONE_PLY; + Reductions[NonPV][imp][d][mc] = int(std::round(r)); + Reductions[PV][imp][d][mc] = std::max(Reductions[NonPV][imp][d][mc] - 1, 0); - // Increase reduction when eval is not improving - if (!pv && !imp && Reductions[pv][imp][d][mc] >= 2 * ONE_PLY) - Reductions[pv][imp][d][mc] += ONE_PLY; - } + // Increase reduction for non-PV nodes when eval is not improving + if (!imp && Reductions[NonPV][imp][d][mc] >= 2) + Reductions[NonPV][imp][d][mc]++; + } for (int d = 0; d < 16; ++d) { - FutilityMoveCounts[0][d] = int(2.4 + 0.773 * pow(d + 0.00, 1.8)); - FutilityMoveCounts[1][d] = int(2.9 + 1.045 * pow(d + 0.49, 1.8)); + FutilityMoveCounts[0][d] = int(2.4 + 0.74 * pow(d, 1.78)); + FutilityMoveCounts[1][d] = int(5.0 + 1.00 * pow(d, 2.00)); } } -/// Search::clear() resets to zero search state, to obtain reproducible results +/// Search::clear() resets search state to its initial value, to obtain reproducible results void Search::clear() { TT.clear(); - CounterMovesHistory.clear(); for (Thread* th : Threads) { - th->history.clear(); - th->counterMoves.clear(); + th->resetCalls = true; + th->counterMoves.fill(MOVE_NONE); + th->history.fill(0); + + for (auto& to : th->counterMoveHistory) + for (auto& h : to) + h.fill(0); + + th->counterMoveHistory[NO_PIECE][0].fill(CounterMovePruneThreshold - 1); } + + Threads.main()->previousScore = VALUE_INFINITE; } /// Search::perft() is our utility to verify move generation. All the leaf nodes -/// up to the given depth are generated and counted and the sum returned. +/// up to the given depth are generated and counted, and the sum is returned. template uint64_t Search::perft(Position& pos, Depth depth) { StateInfo st; uint64_t cnt, nodes = 0; - CheckInfo ci(pos); const bool leaf = (depth == 2 * ONE_PLY); for (const auto& m : MoveList(pos)) @@ -206,7 +223,7 @@ uint64_t Search::perft(Position& pos, Depth depth) { cnt = 1, nodes++; else { - pos.do_move(m, st, pos.gives_check(m, ci)); + pos.do_move(m, st); cnt = leaf ? MoveList(pos).size() : perft(pos, depth - ONE_PLY); nodes += cnt; pos.undo_move(m); @@ -221,8 +238,7 @@ template uint64_t Search::perft(Position&, Depth); /// MainThread::search() is called by the main thread when the program receives -/// the UCI 'go' command. It searches from root position and at the end prints -/// the "bestmove" to output. +/// the UCI 'go' command. It searches from the root position and outputs the "bestmove". void MainThread::search() { @@ -233,19 +249,6 @@ void MainThread::search() { DrawValue[ us] = VALUE_DRAW - Value(contempt); DrawValue[~us] = VALUE_DRAW + Value(contempt); - TB::Hits = 0; - TB::RootInTB = false; - TB::UseRule50 = Options["Syzygy50MoveRule"]; - TB::ProbeDepth = Options["SyzygyProbeDepth"] * ONE_PLY; - TB::Cardinality = Options["SyzygyProbeLimit"]; - - // Skip TB probing when no TB found: !TBLargest -> !TB::Cardinality - if (TB::Cardinality > TB::MaxCardinality) - { - TB::Cardinality = TB::MaxCardinality; - TB::ProbeDepth = DEPTH_ZERO; - } - if (rootMoves.empty()) { rootMoves.push_back(RootMove(MOVE_NONE)); @@ -255,54 +258,15 @@ void MainThread::search() { } else { - if (TB::Cardinality >= rootPos.count(WHITE) - + rootPos.count(BLACK)) - { - // If the current root position is in the tablebases then RootMoves - // contains only moves that preserve the draw or win. - TB::RootInTB = Tablebases::root_probe(rootPos, rootMoves, TB::Score); - - if (TB::RootInTB) - TB::Cardinality = 0; // Do not probe tablebases during the search - - else // If DTZ tables are missing, use WDL tables as a fallback - { - // Filter out moves that do not preserve a draw or win - TB::RootInTB = Tablebases::root_probe_wdl(rootPos, rootMoves, TB::Score); - - // Only probe during search if winning - if (TB::Score <= VALUE_DRAW) - TB::Cardinality = 0; - } - - if (TB::RootInTB) - { - TB::Hits = rootMoves.size(); - - if (!TB::UseRule50) - TB::Score = TB::Score > VALUE_DRAW ? VALUE_MATE - MAX_PLY - 1 - : TB::Score < VALUE_DRAW ? -VALUE_MATE + MAX_PLY + 1 - : VALUE_DRAW; - } - } - for (Thread* th : Threads) - { - th->maxPly = 0; - th->rootDepth = DEPTH_ZERO; if (th != this) - { - th->rootPos = Position(rootPos, th); - th->rootMoves = rootMoves; th->start_searching(); - } - } Thread::search(); // Let's start searching! } // When playing in 'nodes as time' mode, subtract the searched nodes from - // the available ones before to exit. + // the available ones before exiting. if (Limits.npmsec) Time.availableNodes += Limits.inc[us] - Threads.nodes_searched(); @@ -325,15 +289,27 @@ void MainThread::search() { if (th != this) th->wait_for_search_finished(); - // Check if there are threads with a better score than main thread. + // Check if there are threads with a better score than main thread Thread* bestThread = this; - for (Thread* th : Threads) - if ( th->completedDepth > bestThread->completedDepth - && th->rootMoves[0].score > bestThread->rootMoves[0].score) - bestThread = th; + if ( !this->easyMovePlayed + && Options["MultiPV"] == 1 + && !Limits.depth + && !Skill(Options["Skill Level"]).enabled() + && rootMoves[0].pv[0] != MOVE_NONE) + { + for (Thread* th : Threads) + { + Depth depthDiff = th->completedDepth - bestThread->completedDepth; + Value scoreDiff = th->rootMoves[0].score - bestThread->rootMoves[0].score; + + if (scoreDiff > 0 && depthDiff >= 0) + bestThread = th; + } + } + + previousScore = bestThread->rootMoves[0].score; - // Send new PV when needed. - // FIXME: Breaks multiPV, and skill levels + // Send new PV when needed if (bestThread != this) sync_cout << UCI::pv(bestThread->rootPos, bestThread->completedDepth, -VALUE_INFINITE, VALUE_INFINITE) << sync_endl; @@ -346,28 +322,31 @@ void MainThread::search() { } -// Thread::search() is the main iterative deepening loop. It calls search() -// repeatedly with increasing depth until the allocated thinking time has been -// consumed, user stops the search, or the maximum search depth is reached. +/// Thread::search() is the main iterative deepening loop. It calls search() +/// repeatedly with increasing depth until the allocated thinking time has been +/// consumed, the user stops the search, or the maximum search depth is reached. void Thread::search() { - Stack stack[MAX_PLY+4], *ss = stack+2; // To allow referencing (ss-2) and (ss+2) + Stack stack[MAX_PLY+7], *ss = stack+4; // To allow referencing (ss-4) and (ss+2) Value bestValue, alpha, beta, delta; Move easyMove = MOVE_NONE; - bool isMainThread = (this == Threads.main()); + MainThread* mainThread = (this == Threads.main() ? Threads.main() : nullptr); - std::memset(ss-2, 0, 5 * sizeof(Stack)); + std::memset(ss-4, 0, 7 * sizeof(Stack)); + for(int i = 4; i > 0; i--) + (ss-i)->history = &this->counterMoveHistory[NO_PIECE][0]; // Use as sentinel bestValue = delta = alpha = -VALUE_INFINITE; beta = VALUE_INFINITE; completedDepth = DEPTH_ZERO; - if (isMainThread) + if (mainThread) { easyMove = EasyMove.get(rootPos.key()); EasyMove.clear(); - BestMoveChanges = 0; + mainThread->easyMovePlayed = mainThread->failedLow = false; + mainThread->bestMoveChanges = 0; TT.new_search(); } @@ -381,16 +360,22 @@ void Thread::search() { multiPV = std::min(multiPV, rootMoves.size()); - // Iterative deepening loop until requested to stop or target depth reached - while (++rootDepth < DEPTH_MAX && !Signals.stop && (!Limits.depth || rootDepth <= Limits.depth)) + // Iterative deepening loop until requested to stop or the target depth is reached + while ( (rootDepth += ONE_PLY) < DEPTH_MAX + && !Signals.stop + && (!Limits.depth || Threads.main()->rootDepth / ONE_PLY <= Limits.depth)) { - // Set up the new depth for the helper threads - if (!isMainThread) - rootDepth = std::min(DEPTH_MAX - ONE_PLY, Threads.main()->rootDepth + Depth(int(2.2 * log(1 + this->idx)))); + // Distribute search depths across the threads + if (idx) + { + int i = (idx - 1) % 20; + if (((rootDepth / ONE_PLY + rootPos.game_ply() + skipPhase[i]) / skipSize[i]) % 2) + continue; + } // Age out PV variability metric - if (isMainThread) - BestMoveChanges *= 0.5; + if (mainThread) + mainThread->bestMoveChanges *= 0.505, mainThread->failedLow = false; // Save the last iteration's scores before first PV line is searched and // all the move scores except the (new) PV are set to -VALUE_INFINITE. @@ -413,7 +398,7 @@ void Thread::search() { // high/low anymore. while (true) { - bestValue = ::search(rootPos, ss, alpha, beta, rootDepth, false); + bestValue = ::search(rootPos, ss, alpha, beta, rootDepth, false, false); // Bring the best move to the front. It is critical that sorting // is done with a stable algorithm because all the values but the @@ -423,20 +408,15 @@ void Thread::search() { // search the already searched PV lines are preserved. std::stable_sort(rootMoves.begin() + PVIdx, rootMoves.end()); - // Write PV back to transposition table in case the relevant - // entries have been overwritten during the search. - for (size_t i = 0; i <= PVIdx; ++i) - rootMoves[i].insert_pv_in_tt(rootPos); - - // If search has been stopped break immediately. Sorting and + // If search has been stopped, we break immediately. Sorting and // writing PV back to TT is safe because RootMoves is still - // valid, although it refers to previous iteration. + // valid, although it refers to the previous iteration. if (Signals.stop) break; // When failing high/low give some update (without cluttering // the UI) before a re-search. - if ( isMainThread + if ( mainThread && multiPV == 1 && (bestValue <= alpha || bestValue >= beta) && Time.elapsed() > 3000) @@ -449,9 +429,9 @@ void Thread::search() { beta = (alpha + beta) / 2; alpha = std::max(bestValue - delta, -VALUE_INFINITE); - if (isMainThread) + if (mainThread) { - Signals.failedLowAtRoot = true; + mainThread->failedLow = true; Signals.stopOnPonderhit = false; } } @@ -471,21 +451,17 @@ void Thread::search() { // Sort the PV lines searched so far and update the GUI std::stable_sort(rootMoves.begin(), rootMoves.begin() + PVIdx + 1); - if (!isMainThread) - break; - - if (Signals.stop) - sync_cout << "info nodes " << Threads.nodes_searched() - << " time " << Time.elapsed() << sync_endl; + if (!mainThread) + continue; - else if (PVIdx + 1 == multiPV || Time.elapsed() > 3000) + if (Signals.stop || PVIdx + 1 == multiPV || Time.elapsed() > 3000) sync_cout << UCI::pv(rootPos, rootDepth, alpha, beta) << sync_endl; } if (!Signals.stop) completedDepth = rootDepth; - if (!isMainThread) + if (!mainThread) continue; // If skill level is enabled and time is up, pick a sub-optimal best move @@ -503,18 +479,22 @@ void Thread::search() { { if (!Signals.stop && !Signals.stopOnPonderhit) { - // Take some extra time if the best move has changed - if (rootDepth > 4 * ONE_PLY && multiPV == 1) - Time.pv_instability(BestMoveChanges); - - // Stop the search if only one legal move is available or all - // of the available time has been used or we matched an easyMove + // Stop the search if only one legal move is available, or if all + // of the available time has been used, or if we matched an easyMove // from the previous search and just did a fast verification. + const int F[] = { mainThread->failedLow, + bestValue - mainThread->previousScore }; + + int improvingFactor = std::max(229, std::min(715, 357 + 119 * F[0] - 6 * F[1])); + double unstablePvFactor = 1 + mainThread->bestMoveChanges; + + bool doEasyMove = rootMoves[0].pv[0] == easyMove + && mainThread->bestMoveChanges < 0.03 + && Time.elapsed() > Time.optimum() * 5 / 44; + if ( rootMoves.size() == 1 - || Time.elapsed() > Time.available() - || ( rootMoves[0].pv[0] == easyMove - && BestMoveChanges < 0.03 - && Time.elapsed() > Time.available() / 10)) + || Time.elapsed() > Time.optimum() * unstablePvFactor * improvingFactor / 628 + || (mainThread->easyMovePlayed = doEasyMove, doEasyMove)) { // If we are allowed to ponder do not stop the search now but // keep pondering until the GUI sends "ponderhit" or "stop". @@ -532,12 +512,12 @@ void Thread::search() { } } - if (!isMainThread) + if (!mainThread) return; // Clear any candidate easy move that wasn't stable for the last search // iterations; the second condition prevents consecutive fast moves. - if (EasyMove.stableCnt < 6 || Time.elapsed() < Time.available()) + if (EasyMove.stableCnt < 6 || mainThread->easyMovePlayed) EasyMove.clear(); // If skill level is enabled, swap best PV line with the sub-optimal one @@ -552,40 +532,49 @@ namespace { // search<>() is the main search function for both PV and non-PV nodes template - Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) { + Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode, bool skipEarlyPruning) { - const bool RootNode = NT == Root; - const bool PvNode = NT == PV || NT == Root; + const bool PvNode = NT == PV; + const bool rootNode = PvNode && (ss-1)->ply == 0; assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE); assert(PvNode || (alpha == beta - 1)); assert(DEPTH_ZERO < depth && depth < DEPTH_MAX); + assert(!(PvNode && cutNode)); + assert(depth / ONE_PLY * ONE_PLY == depth); Move pv[MAX_PLY+1], quietsSearched[64]; StateInfo st; TTEntry* tte; Key posKey; Move ttMove, move, excludedMove, bestMove; - Depth extension, newDepth, predictedDepth; - Value bestValue, value, ttValue, eval, nullValue, futilityValue; + Depth extension, newDepth; + Value bestValue, value, ttValue, eval; bool ttHit, inCheck, givesCheck, singularExtensionNode, improving; - bool captureOrPromotion, doFullDepthSearch; + bool captureOrPromotion, doFullDepthSearch, moveCountPruning, skipQuiets; + Piece moved_piece; int moveCount, quietCount; // Step 1. Initialize node Thread* thisThread = pos.this_thread(); inCheck = pos.checkers(); - moveCount = quietCount = ss->moveCount = 0; + moveCount = quietCount = ss->moveCount = 0; + ss->statScore = 0; bestValue = -VALUE_INFINITE; ss->ply = (ss-1)->ply + 1; - // Check for available remaining time + // Check for the available remaining time if (thisThread->resetCalls.load(std::memory_order_relaxed)) { thisThread->resetCalls = false; - thisThread->callsCnt = 0; + + // At low node count increase the checking rate to about 0.1% of nodes + // otherwise use a default value. + thisThread->callsCnt = Limits.nodes ? std::min(4096, int(Limits.nodes / 1024)) + : 4096; } - if (++thisThread->callsCnt > 4096) + + if (--thisThread->callsCnt <= 0) { for (Thread* th : Threads) th->resetCalls = true; @@ -597,10 +586,10 @@ namespace { if (PvNode && thisThread->maxPly < ss->ply) thisThread->maxPly = ss->ply; - if (!RootNode) + if (!rootNode) { // Step 2. Check for aborted search and immediate draw - if (Signals.stop.load(std::memory_order_relaxed) || pos.is_draw() || ss->ply >= MAX_PLY) + if (Signals.stop.load(std::memory_order_relaxed) || pos.is_draw(ss->ply) || ss->ply >= MAX_PLY) return ss->ply >= MAX_PLY && !inCheck ? evaluate(pos) : DrawValue[pos.side_to_move()]; @@ -618,19 +607,20 @@ namespace { assert(0 <= ss->ply && ss->ply < MAX_PLY); - ss->currentMove = ss->ttMove = (ss+1)->excludedMove = bestMove = MOVE_NONE; - (ss+1)->skipEarlyPruning = false; (ss+1)->reduction = DEPTH_ZERO; + ss->currentMove = (ss+1)->excludedMove = bestMove = MOVE_NONE; + ss->history = &thisThread->counterMoveHistory[NO_PIECE][0]; (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE; + Square prevSq = to_sq((ss-1)->currentMove); // Step 4. Transposition table lookup. We don't want the score of a partial // search to overwrite a previous full search TT value, so we use a different // position key in case of an excluded move. excludedMove = ss->excludedMove; - posKey = excludedMove ? pos.exclusion_key() : pos.key(); + posKey = pos.key() ^ Key(excludedMove); tte = TT.probe(posKey, ttHit); ttValue = ttHit ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE; - ss->ttMove = ttMove = RootNode ? thisThread->rootMoves[thisThread->PVIdx].pv[0] - : ttHit ? tte->move() : MOVE_NONE; + ttMove = rootNode ? thisThread->rootMoves[thisThread->PVIdx].pv[0] + : ttHit ? tte->move() : MOVE_NONE; // At non-PV nodes we check for an early TT cutoff if ( !PvNode @@ -640,29 +630,45 @@ namespace { && (ttValue >= beta ? (tte->bound() & BOUND_LOWER) : (tte->bound() & BOUND_UPPER))) { - ss->currentMove = ttMove; // Can be MOVE_NONE - - // If ttMove is quiet, update killers, history, counter move on TT hit - if (ttValue >= beta && ttMove && !pos.capture_or_promotion(ttMove)) - update_stats(pos, ss, ttMove, depth, nullptr, 0); + // If ttMove is quiet, update move sorting heuristics on TT hit + if (ttMove) + { + if (ttValue >= beta) + { + if (!pos.capture_or_promotion(ttMove)) + update_stats(pos, ss, ttMove, nullptr, 0, stat_bonus(depth)); + // Extra penalty for a quiet TT move in previous ply when it gets refuted + if ((ss-1)->moveCount == 1 && !pos.captured_piece()) + update_cm_stats(ss-1, pos.piece_on(prevSq), prevSq, -stat_bonus(depth + ONE_PLY)); + } + // Penalty for a quiet ttMove that fails low + else if (!pos.capture_or_promotion(ttMove)) + { + int penalty = -stat_bonus(depth); + thisThread->history.update(pos.side_to_move(), ttMove, penalty); + update_cm_stats(ss, pos.moved_piece(ttMove), to_sq(ttMove), penalty); + } + } return ttValue; } // Step 4a. Tablebase probe - if (!RootNode && TB::Cardinality) + if (!rootNode && TB::Cardinality) { - int piecesCnt = pos.count(WHITE) + pos.count(BLACK); + int piecesCount = pos.count(); - if ( piecesCnt <= TB::Cardinality - && (piecesCnt < TB::Cardinality || depth >= TB::ProbeDepth) - && pos.rule50_count() == 0) + if ( piecesCount <= TB::Cardinality + && (piecesCount < TB::Cardinality || depth >= TB::ProbeDepth) + && pos.rule50_count() == 0 + && !pos.can_castle(ANY_CASTLING)) { - int found, v = Tablebases::probe_wdl(pos, &found); + TB::ProbeState err; + TB::WDLScore v = Tablebases::probe_wdl(pos, &err); - if (found) + if (err != TB::ProbeState::FAIL) { - TB::Hits++; + thisThread->tbHits++; int drawScore = TB::UseRule50 ? 1 : 0; @@ -707,51 +713,49 @@ namespace { ss->staticEval, TT.generation()); } - if (ss->skipEarlyPruning) + if (skipEarlyPruning) goto moves_loop; // Step 6. Razoring (skipped when in check) if ( !PvNode && depth < 4 * ONE_PLY - && eval + razor_margin[depth] <= alpha - && ttMove == MOVE_NONE) + && eval + razor_margin[depth / ONE_PLY] <= alpha) { - if ( depth <= ONE_PLY - && eval + razor_margin[3 * ONE_PLY] <= alpha) - return qsearch(pos, ss, alpha, beta, DEPTH_ZERO); + if (depth <= ONE_PLY) + return qsearch(pos, ss, alpha, alpha+1); - Value ralpha = alpha - razor_margin[depth]; - Value v = qsearch(pos, ss, ralpha, ralpha+1, DEPTH_ZERO); + Value ralpha = alpha - razor_margin[depth / ONE_PLY]; + Value v = qsearch(pos, ss, ralpha, ralpha+1); if (v <= ralpha) return v; } // Step 7. Futility pruning: child node (skipped when in check) - if ( !RootNode + if ( !rootNode && depth < 7 * ONE_PLY && eval - futility_margin(depth) >= beta && eval < VALUE_KNOWN_WIN // Do not return unproven wins && pos.non_pawn_material(pos.side_to_move())) - return eval - futility_margin(depth); + return eval; // Step 8. Null move search with verification search (is omitted in PV nodes) if ( !PvNode - && depth >= 2 * ONE_PLY && eval >= beta + && (ss->staticEval >= beta - 35 * (depth / ONE_PLY - 6) || depth >= 13 * ONE_PLY) && pos.non_pawn_material(pos.side_to_move())) { - ss->currentMove = MOVE_NULL; assert(eval - beta >= 0); // Null move dynamic reduction based on depth and value - Depth R = ((823 + 67 * depth) / 256 + std::min((eval - beta) / PawnValueMg, 3)) * ONE_PLY; + Depth R = ((823 + 67 * depth / ONE_PLY) / 256 + std::min((eval - beta) / PawnValueMg, 3)) * ONE_PLY; + + ss->currentMove = MOVE_NULL; + ss->history = &thisThread->counterMoveHistory[NO_PIECE][0]; pos.do_null_move(st); - (ss+1)->skipEarlyPruning = true; - nullValue = depth-R < ONE_PLY ? -qsearch(pos, ss+1, -beta, -beta+1, DEPTH_ZERO) - : - search(pos, ss+1, -beta, -beta+1, depth-R, !cutNode); - (ss+1)->skipEarlyPruning = false; + Value nullValue = depth-R < ONE_PLY ? -qsearch(pos, ss+1, -beta, -beta+1) + : - search(pos, ss+1, -beta, -beta+1, depth-R, !cutNode, true); pos.undo_null_move(); if (nullValue >= beta) @@ -764,10 +768,8 @@ namespace { return nullValue; // Do verification search at high depths - ss->skipEarlyPruning = true; - Value v = depth-R < ONE_PLY ? qsearch(pos, ss, beta-1, beta, DEPTH_ZERO) - : search(pos, ss, beta-1, beta, depth-R, false); - ss->skipEarlyPruning = false; + Value v = depth-R < ONE_PLY ? qsearch(pos, ss, beta-1, beta) + : search(pos, ss, beta-1, beta, depth-R, false, true); if (v >= beta) return nullValue; @@ -775,9 +777,8 @@ namespace { } // Step 9. ProbCut (skipped when in check) - // If we have a very good capture (i.e. SEE > seeValues[captured_piece_type]) - // and a reduced search returns a value much above beta, we can (almost) - // safely prune the previous move. + // If we have a good enough capture and a reduced search returns a value + // much above beta, we can (almost) safely prune the previous move. if ( !PvNode && depth >= 5 * ONE_PLY && abs(beta) < VALUE_MATE_IN_MAX_PLY) @@ -786,18 +787,18 @@ namespace { Depth rdepth = depth - 4 * ONE_PLY; assert(rdepth >= ONE_PLY); - assert((ss-1)->currentMove != MOVE_NONE); - assert((ss-1)->currentMove != MOVE_NULL); + assert(is_ok((ss-1)->currentMove)); - MovePicker mp(pos, ttMove, thisThread->history, PieceValue[MG][pos.captured_piece_type()]); - CheckInfo ci(pos); + MovePicker mp(pos, ttMove, rbeta - ss->staticEval); while ((move = mp.next_move()) != MOVE_NONE) - if (pos.legal(move, ci.pinned)) + if (pos.legal(move)) { ss->currentMove = move; - pos.do_move(move, st, pos.gives_check(move, ci)); - value = -search(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode); + ss->history = &thisThread->counterMoveHistory[pos.moved_piece(move)][to_sq(move)]; + + pos.do_move(move, st); + value = -search(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode, false); pos.undo_move(move); if (value >= rbeta) return value; @@ -805,14 +806,12 @@ namespace { } // Step 10. Internal iterative deepening (skipped when in check) - if ( depth >= (PvNode ? 5 * ONE_PLY : 8 * ONE_PLY) + if ( depth >= 6 * ONE_PLY && !ttMove && (PvNode || ss->staticEval + 256 >= beta)) { - Depth d = depth - 2 * ONE_PLY - (PvNode ? DEPTH_ZERO : depth / 4); - ss->skipEarlyPruning = true; - search(pos, ss, alpha, beta, d, true); - ss->skipEarlyPruning = false; + Depth d = (3 * depth / (4 * ONE_PLY) - 2) * ONE_PLY; + search(pos, ss, alpha, beta, d, cutNode, true); tte = TT.probe(posKey, ttHit); ttMove = ttHit ? tte->move() : MOVE_NONE; @@ -820,29 +819,28 @@ namespace { moves_loop: // When in check search starts from here - Square prevSq = to_sq((ss-1)->currentMove); - Move cm = thisThread->counterMoves[pos.piece_on(prevSq)][prevSq]; - const CounterMovesStats& cmh = CounterMovesHistory[pos.piece_on(prevSq)][prevSq]; + const PieceToHistory& cmh = *(ss-1)->history; + const PieceToHistory& fmh = *(ss-2)->history; + const PieceToHistory& fm2 = *(ss-4)->history; - MovePicker mp(pos, ttMove, depth, thisThread->history, cmh, cm, ss); - CheckInfo ci(pos); + MovePicker mp(pos, ttMove, depth, ss); value = bestValue; // Workaround a bogus 'uninitialized' warning under gcc improving = ss->staticEval >= (ss-2)->staticEval - || ss->staticEval == VALUE_NONE + /* || ss->staticEval == VALUE_NONE Already implicit in the previous condition */ ||(ss-2)->staticEval == VALUE_NONE; - singularExtensionNode = !RootNode + singularExtensionNode = !rootNode && depth >= 8 * ONE_PLY && ttMove != MOVE_NONE - /* && ttValue != VALUE_NONE Already implicit in the next condition */ - && abs(ttValue) < VALUE_KNOWN_WIN + && ttValue != VALUE_NONE && !excludedMove // Recursive singular search is not allowed && (tte->bound() & BOUND_LOWER) && tte->depth() >= depth - 3 * ONE_PLY; + skipQuiets = false; // Step 11. Loop through moves // Loop through all pseudo-legal moves until no moves remain or a beta cutoff occurs - while ((move = mp.next_move()) != MOVE_NONE) + while ((move = mp.next_move(skipQuiets)) != MOVE_NONE) { assert(is_ok(move)); @@ -852,110 +850,114 @@ moves_loop: // When in check search starts from here // At root obey the "searchmoves" option and skip moves not listed in Root // Move List. As a consequence any illegal move is also skipped. In MultiPV // mode we also skip PV moves which have been already searched. - if (RootNode && !std::count(thisThread->rootMoves.begin() + thisThread->PVIdx, + if (rootNode && !std::count(thisThread->rootMoves.begin() + thisThread->PVIdx, thisThread->rootMoves.end(), move)) continue; ss->moveCount = ++moveCount; - if (RootNode && thisThread == Threads.main()) - { - Signals.firstRootMove = (moveCount == 1); - - if (Time.elapsed() > 3000) - sync_cout << "info depth " << depth / ONE_PLY - << " currmove " << UCI::move(move, pos.is_chess960()) - << " currmovenumber " << moveCount + thisThread->PVIdx << sync_endl; - } + if (rootNode && thisThread == Threads.main() && Time.elapsed() > 3000) + sync_cout << "info depth " << depth / ONE_PLY + << " currmove " << UCI::move(move, pos.is_chess960()) + << " currmovenumber " << moveCount + thisThread->PVIdx << sync_endl; if (PvNode) (ss+1)->pv = nullptr; extension = DEPTH_ZERO; captureOrPromotion = pos.capture_or_promotion(move); + moved_piece = pos.moved_piece(move); - givesCheck = type_of(move) == NORMAL && !ci.dcCandidates - ? ci.checkSquares[type_of(pos.piece_on(from_sq(move)))] & to_sq(move) - : pos.gives_check(move, ci); + givesCheck = type_of(move) == NORMAL && !pos.discovered_check_candidates() + ? pos.check_squares(type_of(pos.piece_on(from_sq(move)))) & to_sq(move) + : pos.gives_check(move); - // Step 12. Extend checks - if (givesCheck && pos.see_sign(move) >= VALUE_ZERO) - extension = ONE_PLY; + moveCountPruning = depth < 16 * ONE_PLY + && moveCount >= FutilityMoveCounts[improving][depth / ONE_PLY]; + + // Step 12. Singular and Gives Check Extensions // Singular extension search. If all moves but one fail low on a search of // (alpha-s, beta-s), and just one fails high on (alpha, beta), then that move // is singular and should be extended. To verify this we do a reduced search // on all the other moves but the ttMove and if the result is lower than - // ttValue minus a margin then we extend the ttMove. + // ttValue minus a margin then we will extend the ttMove. if ( singularExtensionNode && move == ttMove - && !extension - && pos.legal(move, ci.pinned)) + && pos.legal(move)) { - Value rBeta = ttValue - 2 * depth / ONE_PLY; + Value rBeta = std::max(ttValue - 2 * depth / ONE_PLY, -VALUE_MATE); + Depth d = (depth / (2 * ONE_PLY)) * ONE_PLY; ss->excludedMove = move; - ss->skipEarlyPruning = true; - value = search(pos, ss, rBeta - 1, rBeta, depth / 2, cutNode); - ss->skipEarlyPruning = false; + value = search(pos, ss, rBeta - 1, rBeta, d, cutNode, true); ss->excludedMove = MOVE_NONE; if (value < rBeta) extension = ONE_PLY; } + else if ( givesCheck + && !moveCountPruning + && pos.see_ge(move)) + extension = ONE_PLY; - // Update the current move (this must be done after singular extension search) + // Calculate new depth for this move newDepth = depth - ONE_PLY + extension; // Step 13. Pruning at shallow depth - if ( !RootNode - && !captureOrPromotion - && !inCheck - && !givesCheck - && !pos.advanced_pawn_push(move) - && bestValue > VALUE_MATED_IN_MAX_PLY) + if ( !rootNode + && pos.non_pawn_material(pos.side_to_move()) + && bestValue > VALUE_MATED_IN_MAX_PLY) { - // Move count based pruning - if ( depth < 16 * ONE_PLY - && moveCount >= FutilityMoveCounts[improving][depth]) - continue; + if ( !captureOrPromotion + && !givesCheck + && (!pos.advanced_pawn_push(move) || pos.non_pawn_material() >= Value(5000))) + { + // Move count based pruning + if (moveCountPruning) + { + skipQuiets = true; + continue; + } - // History based pruning - if ( depth <= 4 * ONE_PLY - && move != ss->killers[0] - && thisThread->history[pos.moved_piece(move)][to_sq(move)] < VALUE_ZERO - && cmh[pos.moved_piece(move)][to_sq(move)] < VALUE_ZERO) - continue; + // Reduced depth of the next LMR search + int lmrDepth = std::max(newDepth - reduction(improving, depth, moveCount), DEPTH_ZERO) / ONE_PLY; - predictedDepth = newDepth - reduction(improving, depth, moveCount); + // Countermoves based pruning + if ( lmrDepth < 3 + && (cmh[moved_piece][to_sq(move)] < CounterMovePruneThreshold) + && (fmh[moved_piece][to_sq(move)] < CounterMovePruneThreshold)) + continue; - // Futility pruning: parent node - if (predictedDepth < 7 * ONE_PLY) - { - futilityValue = ss->staticEval + futility_margin(predictedDepth) + 256; + // Futility pruning: parent node + if ( lmrDepth < 7 + && !inCheck + && ss->staticEval + 256 + 200 * lmrDepth <= alpha) + continue; - if (futilityValue <= alpha) - { - bestValue = std::max(bestValue, futilityValue); + // Prune moves with negative SEE + if ( lmrDepth < 8 + && !pos.see_ge(move, Value(-35 * lmrDepth * lmrDepth))) continue; - } } - - // Prune moves with negative SEE at low depths - if (predictedDepth < 4 * ONE_PLY && pos.see_sign(move) < VALUE_ZERO) - continue; + else if ( depth < 7 * ONE_PLY + && !extension + && !pos.see_ge(move, -PawnValueEg * (depth / ONE_PLY))) + continue; } // Speculative prefetch as early as possible prefetch(TT.first_entry(pos.key_after(move))); // Check for legality just before making the move - if (!RootNode && !pos.legal(move, ci.pinned)) + if (!rootNode && !pos.legal(move)) { ss->moveCount = --moveCount; continue; } + // Update the current move (this must be done after singular extension search) ss->currentMove = move; + ss->history = &thisThread->counterMoveHistory[moved_piece][to_sq(move)]; // Step 14. Make the move pos.do_move(move, st, givesCheck); @@ -964,59 +966,70 @@ moves_loop: // When in check search starts from here // re-searched at full depth. if ( depth >= 3 * ONE_PLY && moveCount > 1 - && !captureOrPromotion - && move != ss->killers[0] - && move != ss->killers[1]) + && (!captureOrPromotion || moveCountPruning)) { - ss->reduction = reduction(improving, depth, moveCount); - - // Increase reduction for cut nodes and moves with a bad history - if ( (!PvNode && cutNode) - || ( thisThread->history[pos.piece_on(to_sq(move))][to_sq(move)] < VALUE_ZERO - && cmh[pos.piece_on(to_sq(move))][to_sq(move)] <= VALUE_ZERO)) - ss->reduction += ONE_PLY; - - // Decrease reduction for moves with a good history - if ( thisThread->history[pos.piece_on(to_sq(move))][to_sq(move)] > VALUE_ZERO - && cmh[pos.piece_on(to_sq(move))][to_sq(move)] > VALUE_ZERO) - ss->reduction = std::max(DEPTH_ZERO, ss->reduction - ONE_PLY); + Depth r = reduction(improving, depth, moveCount); - // Decrease reduction for moves that escape a capture - if ( ss->reduction - && type_of(move) == NORMAL - && type_of(pos.piece_on(to_sq(move))) != PAWN - && pos.see(make_move(to_sq(move), from_sq(move))) < VALUE_ZERO) - ss->reduction = std::max(DEPTH_ZERO, ss->reduction - ONE_PLY); + if (captureOrPromotion) + r -= r ? ONE_PLY : DEPTH_ZERO; + else + { + // Increase reduction for cut nodes + if (cutNode) + r += 2 * ONE_PLY; + + // Decrease reduction for moves that escape a capture. Filter out + // castling moves, because they are coded as "king captures rook" and + // hence break make_move(). + else if ( type_of(move) == NORMAL + && !pos.see_ge(make_move(to_sq(move), from_sq(move)))) + r -= 2 * ONE_PLY; + + ss->statScore = cmh[moved_piece][to_sq(move)] + + fmh[moved_piece][to_sq(move)] + + fm2[moved_piece][to_sq(move)] + + thisThread->history[~pos.side_to_move()][from_to(move)] + - 4000; // Correction factor + + // Decrease/increase reduction by comparing opponent's stat score + if (ss->statScore > 0 && (ss-1)->statScore < 0) + r -= ONE_PLY; + + else if (ss->statScore < 0 && (ss-1)->statScore > 0) + r += ONE_PLY; + + // Decrease/increase reduction for moves with a good/bad history + r = std::max(DEPTH_ZERO, (r / ONE_PLY - ss->statScore / 20000) * ONE_PLY); + } - Depth d = std::max(newDepth - ss->reduction, ONE_PLY); + Depth d = std::max(newDepth - r, ONE_PLY); - value = -search(pos, ss+1, -(alpha+1), -alpha, d, true); + value = -search(pos, ss+1, -(alpha+1), -alpha, d, true, false); - doFullDepthSearch = (value > alpha && ss->reduction != DEPTH_ZERO); - ss->reduction = DEPTH_ZERO; + doFullDepthSearch = (value > alpha && d != newDepth); } else doFullDepthSearch = !PvNode || moveCount > 1; - // Step 16. Full depth search, when LMR is skipped or fails high + // Step 16. Full depth search when LMR is skipped or fails high if (doFullDepthSearch) value = newDepth < ONE_PLY ? - givesCheck ? -qsearch(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) - : -qsearch(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) - : - search(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode); + givesCheck ? -qsearch(pos, ss+1, -(alpha+1), -alpha) + : -qsearch(pos, ss+1, -(alpha+1), -alpha) + : - search(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode, false); // For PV nodes only, do a full PV search on the first move or after a fail // high (in the latter case search only if value < beta), otherwise let the - // parent node fail low with value <= alpha and to try another move. - if (PvNode && (moveCount == 1 || (value > alpha && (RootNode || value < beta)))) + // parent node fail low with value <= alpha and try another move. + if (PvNode && (moveCount == 1 || (value > alpha && (rootNode || value < beta)))) { (ss+1)->pv = pv; (ss+1)->pv[0] = MOVE_NONE; value = newDepth < ONE_PLY ? - givesCheck ? -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO) - : -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO) - : - search(pos, ss+1, -beta, -alpha, newDepth, false); + givesCheck ? -qsearch(pos, ss+1, -beta, -alpha) + : -qsearch(pos, ss+1, -beta, -alpha) + : - search(pos, ss+1, -beta, -alpha, newDepth, false, false); } // Step 17. Undo move @@ -1024,14 +1037,14 @@ moves_loop: // When in check search starts from here assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); - // Step 18. Check for new best move + // Step 18. Check for a new best move // Finished searching the move. If a stop occurred, the return value of // the search cannot be trusted, and we return immediately without // updating best move, PV and TT. if (Signals.stop.load(std::memory_order_relaxed)) return VALUE_ZERO; - if (RootNode) + if (rootNode) { RootMove& rm = *std::find(thisThread->rootMoves.begin(), thisThread->rootMoves.end(), move); @@ -1051,7 +1064,7 @@ moves_loop: // When in check search starts from here // iteration. This information is used for time management: When // the best move changes frequently, we allocate some more time. if (moveCount > 1 && thisThread == Threads.main()) - ++BestMoveChanges; + ++static_cast(thisThread)->bestMoveChanges; } else // All other moves but the PV are set to the lowest value: this is @@ -1066,16 +1079,9 @@ moves_loop: // When in check search starts from here if (value > alpha) { - // If there is an easy move for this position, clear it if unstable - if ( PvNode - && thisThread == Threads.main() - && EasyMove.get(pos.key()) - && (move != EasyMove.get(pos.key()) || moveCount > 1)) - EasyMove.clear(); - bestMove = move; - if (PvNode && !RootNode) // Update pv even in fail-high case + if (PvNode && !rootNode) // Update pv even in fail-high case update_pv(ss->pv, move, (ss+1)->pv); if (PvNode && value < beta) // Update alpha! Always alpha < beta @@ -1092,7 +1098,7 @@ moves_loop: // When in check search starts from here quietsSearched[quietCount++] = move; } - // Following condition would detect a stop only after move loop has been + // The following condition would detect a stop only after move loop has been // completed. But in this case bestValue is valid because we have fully // searched our subtree, and we can anyhow save the result in TT. /* @@ -1102,34 +1108,35 @@ moves_loop: // When in check search starts from here // Step 20. Check for mate and stalemate // All legal moves have been searched and if there are no legal moves, it - // must be mate or stalemate. If we are in a singular extension search then + // must be a mate or a stalemate. If we are in a singular extension search then // return a fail low score. + + assert(moveCount || !inCheck || excludedMove || !MoveList(pos).size()); + if (!moveCount) bestValue = excludedMove ? alpha : inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()]; + else if (bestMove) + { + // Quiet best move: update move sorting heuristics + if (!pos.capture_or_promotion(bestMove)) + update_stats(pos, ss, bestMove, quietsSearched, quietCount, stat_bonus(depth)); - // Quiet best move: update killers, history and countermoves - else if (bestMove && !pos.capture_or_promotion(bestMove)) - update_stats(pos, ss, bestMove, depth, quietsSearched, quietCount); - + // Extra penalty for a quiet TT move in previous ply when it gets refuted + if ((ss-1)->moveCount == 1 && !pos.captured_piece()) + update_cm_stats(ss-1, pos.piece_on(prevSq), prevSq, -stat_bonus(depth + ONE_PLY)); + } // Bonus for prior countermove that caused the fail low else if ( depth >= 3 * ONE_PLY - && !bestMove - && !inCheck - && !pos.captured_piece_type() - && is_ok((ss - 1)->currentMove) - && is_ok((ss - 2)->currentMove)) - { - Value bonus = Value((depth / ONE_PLY) * (depth / ONE_PLY) + depth / ONE_PLY - 1); - Square prevPrevSq = to_sq((ss - 2)->currentMove); - CounterMovesStats& prevCmh = CounterMovesHistory[pos.piece_on(prevPrevSq)][prevPrevSq]; - prevCmh.update(pos.piece_on(prevSq), prevSq, bonus); - } + && !pos.captured_piece() + && is_ok((ss-1)->currentMove)) + update_cm_stats(ss-1, pos.piece_on(prevSq), prevSq, stat_bonus(depth)); - tte->save(posKey, value_to_tt(bestValue, ss->ply), - bestValue >= beta ? BOUND_LOWER : - PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER, - depth, bestMove, ss->staticEval, TT.generation()); + if (!excludedMove) + tte->save(posKey, value_to_tt(bestValue, ss->ply), + bestValue >= beta ? BOUND_LOWER : + PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER, + depth, bestMove, ss->staticEval, TT.generation()); assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); @@ -1138,19 +1145,18 @@ moves_loop: // When in check search starts from here // qsearch() is the quiescence search function, which is called by the main - // search function when the remaining depth is zero (or, to be more precise, - // less than ONE_PLY). + // search function with depth zero, or recursively with depth less than ONE_PLY. template Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) { const bool PvNode = NT == PV; - assert(NT == PV || NT == NonPV); assert(InCheck == !!pos.checkers()); assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE); assert(PvNode || (alpha == beta - 1)); assert(depth <= DEPTH_ZERO); + assert(depth / ONE_PLY * ONE_PLY == depth); Move pv[MAX_PLY+1]; StateInfo st; @@ -1160,6 +1166,7 @@ moves_loop: // When in check search starts from here Value bestValue, value, ttValue, futilityValue, futilityBase, oldAlpha; bool ttHit, givesCheck, evasionPrunable; Depth ttDepth; + int moveCount; if (PvNode) { @@ -1170,9 +1177,10 @@ moves_loop: // When in check search starts from here ss->currentMove = bestMove = MOVE_NONE; ss->ply = (ss-1)->ply + 1; + moveCount = 0; // Check for an instant draw or if the maximum ply has been reached - if (pos.is_draw() || ss->ply >= MAX_PLY) + if (pos.is_draw(ss->ply) || ss->ply >= MAX_PLY) return ss->ply >= MAX_PLY && !InCheck ? evaluate(pos) : DrawValue[pos.side_to_move()]; @@ -1196,10 +1204,7 @@ moves_loop: // When in check search starts from here && ttValue != VALUE_NONE // Only in case of TT access race && (ttValue >= beta ? (tte->bound() & BOUND_LOWER) : (tte->bound() & BOUND_UPPER))) - { - ss->currentMove = ttMove; // Can be MOVE_NONE return ttValue; - } // Evaluate the position statically if (InCheck) @@ -1245,17 +1250,18 @@ moves_loop: // When in check search starts from here // to search the moves. Because the depth is <= 0 here, only captures, // queen promotions and checks (only if depth >= DEPTH_QS_CHECKS) will // be generated. - MovePicker mp(pos, ttMove, depth, pos.this_thread()->history, to_sq((ss-1)->currentMove)); - CheckInfo ci(pos); + MovePicker mp(pos, ttMove, depth, to_sq((ss-1)->currentMove)); // Loop through the moves until no moves remain or a beta cutoff occurs while ((move = mp.next_move()) != MOVE_NONE) { assert(is_ok(move)); - givesCheck = type_of(move) == NORMAL && !ci.dcCandidates - ? ci.checkSquares[type_of(pos.piece_on(from_sq(move)))] & to_sq(move) - : pos.gives_check(move, ci); + givesCheck = type_of(move) == NORMAL && !pos.discovered_check_candidates() + ? pos.check_squares(type_of(pos.piece_on(from_sq(move)))) & to_sq(move) + : pos.gives_check(move); + + moveCount++; // Futility pruning if ( !InCheck @@ -1273,7 +1279,7 @@ moves_loop: // When in check search starts from here continue; } - if (futilityBase <= alpha && pos.see(move) <= VALUE_ZERO) + if (futilityBase <= alpha && !pos.see_ge(move, VALUE_ZERO + 1)) { bestValue = std::max(bestValue, futilityBase); continue; @@ -1282,21 +1288,25 @@ moves_loop: // When in check search starts from here // Detect non-capture evasions that are candidates to be pruned evasionPrunable = InCheck + && (depth != DEPTH_ZERO || moveCount > 2) && bestValue > VALUE_MATED_IN_MAX_PLY && !pos.capture(move); // Don't search moves with negative SEE values if ( (!InCheck || evasionPrunable) && type_of(move) != PROMOTION - && pos.see_sign(move) < VALUE_ZERO) + && !pos.see_ge(move)) continue; // Speculative prefetch as early as possible prefetch(TT.first_entry(pos.key_after(move))); // Check for legality just before making the move - if (!pos.legal(move, ci.pinned)) + if (!pos.legal(move)) + { + moveCount--; continue; + } ss->currentMove = move; @@ -1308,7 +1318,7 @@ moves_loop: // When in check search starts from here assert(value > -VALUE_INFINITE && value < VALUE_INFINITE); - // Check for new best move + // Check for a new best move if (value > bestValue) { bestValue = value; @@ -1384,11 +1394,20 @@ moves_loop: // When in check search starts from here } - // update_stats() updates killers, history, countermove and countermove - // history when a new quiet best move is found. + // update_cm_stats() updates countermove and follow-up move history + + void update_cm_stats(Stack* ss, Piece pc, Square s, int bonus) { + + for (int i : {1, 2, 4}) + if (is_ok((ss-i)->currentMove)) + (ss-i)->history->update(pc, s, bonus); + } + + + // update_stats() updates move sorting heuristics when a new quiet best move is found void update_stats(const Position& pos, Stack* ss, Move move, - Depth depth, Move* quiets, int quietsCnt) { + Move* quiets, int quietsCnt, int bonus) { if (ss->killers[0] != move) { @@ -1396,37 +1415,22 @@ moves_loop: // When in check search starts from here ss->killers[0] = move; } - Value bonus = Value((depth / ONE_PLY) * (depth / ONE_PLY) + depth / ONE_PLY - 1); - - Square prevSq = to_sq((ss-1)->currentMove); - CounterMovesStats& cmh = CounterMovesHistory[pos.piece_on(prevSq)][prevSq]; + Color c = pos.side_to_move(); Thread* thisThread = pos.this_thread(); - - thisThread->history.update(pos.moved_piece(move), to_sq(move), bonus); + thisThread->history.update(c, move, bonus); + update_cm_stats(ss, pos.moved_piece(move), to_sq(move), bonus); if (is_ok((ss-1)->currentMove)) { - thisThread->counterMoves.update(pos.piece_on(prevSq), prevSq, move); - cmh.update(pos.moved_piece(move), to_sq(move), bonus); + Square prevSq = to_sq((ss-1)->currentMove); + thisThread->counterMoves[pos.piece_on(prevSq)][prevSq]=move; } // Decrease all the other played quiet moves for (int i = 0; i < quietsCnt; ++i) { - thisThread->history.update(pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus); - - if (is_ok((ss-1)->currentMove)) - cmh.update(pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus); - } - - // Extra penalty for a quiet TT move in previous ply when it gets refuted - if ( (ss-1)->moveCount == 1 - && !pos.captured_piece_type() - && is_ok((ss-2)->currentMove)) - { - Square prevPrevSq = to_sq((ss-2)->currentMove); - CounterMovesStats& prevCmh = CounterMovesHistory[pos.piece_on(prevPrevSq)][prevPrevSq]; - prevCmh.update(pos.piece_on(prevSq), prevSq, -bonus - 2 * (depth + 1) / ONE_PLY); + thisThread->history.update(c, quiets[i], -bonus); + update_cm_stats(ss, pos.moved_piece(quiets[i]), to_sq(quiets[i]), -bonus); } } @@ -1436,7 +1440,7 @@ moves_loop: // When in check search starts from here Move Skill::pick_best(size_t multiPV) { - const Search::RootMoveVector& rootMoves = Threads.main()->rootMoves; + const RootMoves& rootMoves = Threads.main()->rootMoves; static PRNG rng(now()); // PRNG sequence should be non-deterministic // RootMoves are already sorted by score in descending order @@ -1446,8 +1450,8 @@ moves_loop: // When in check search starts from here int maxScore = -VALUE_INFINITE; // Choose best move. For each move score we add two terms, both dependent on - // weakness. One deterministic and bigger for weaker levels, and one random, - // then we choose the move with the resulting highest score. + // weakness. One is deterministic and bigger for weaker levels, and one is + // random. Then we choose the move with the resulting highest score. for (size_t i = 0; i < multiPV; ++i) { // This is our magic formula @@ -1485,19 +1489,9 @@ moves_loop: // When in check search starts from here if (Limits.ponder) return; - if (Limits.use_time_management()) - { - bool stillAtFirstMove = Signals.firstRootMove.load(std::memory_order_relaxed) - && !Signals.failedLowAtRoot.load(std::memory_order_relaxed) - && elapsed > Time.available() * 3 / 4; - - if (stillAtFirstMove || elapsed > Time.maximum() - 10) - Signals.stop = true; - } - else if (Limits.movetime && elapsed >= Limits.movetime) - Signals.stop = true; - - else if (Limits.nodes && Threads.nodes_searched() >= Limits.nodes) + if ( (Limits.use_time_management() && elapsed > Time.maximum() - 10) + || (Limits.movetime && elapsed >= Limits.movetime) + || (Limits.nodes && Threads.nodes_searched() >= (uint64_t)Limits.nodes)) Signals.stop = true; } @@ -1511,14 +1505,15 @@ string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) { std::stringstream ss; int elapsed = Time.elapsed() + 1; - const Search::RootMoveVector& rootMoves = pos.this_thread()->rootMoves; + const RootMoves& rootMoves = pos.this_thread()->rootMoves; size_t PVIdx = pos.this_thread()->PVIdx; size_t multiPV = std::min((size_t)Options["MultiPV"], rootMoves.size()); - uint64_t nodes_searched = Threads.nodes_searched(); + uint64_t nodesSearched = Threads.nodes_searched(); + uint64_t tbHits = Threads.tb_hits() + (TB::RootInTB ? rootMoves.size() : 0); for (size_t i = 0; i < multiPV; ++i) { - bool updated = (i <= PVIdx); + bool updated = (i <= PVIdx && rootMoves[i].score != -VALUE_INFINITE); if (depth == ONE_PLY && !updated) continue; @@ -1541,13 +1536,13 @@ string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) { if (!tb && i == PVIdx) ss << (v >= beta ? " lowerbound" : v <= alpha ? " upperbound" : ""); - ss << " nodes " << nodes_searched - << " nps " << nodes_searched * 1000 / elapsed; + ss << " nodes " << nodesSearched + << " nps " << nodesSearched * 1000 / elapsed; if (elapsed > 1000) // Earlier makes little sense ss << " hashfull " << TT.hashfull(); - ss << " tbhits " << TB::Hits + ss << " tbhits " << tbHits << " time " << elapsed << " pv"; @@ -1559,55 +1554,71 @@ string UCI::pv(const Position& pos, Depth depth, Value alpha, Value beta) { } -/// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and -/// inserts the PV back into the TT. This makes sure the old PV moves are searched -/// first, even if the old TT entries have been overwritten. - -void RootMove::insert_pv_in_tt(Position& pos) { - - StateInfo state[MAX_PLY], *st = state; - bool ttHit; - - for (Move m : pv) - { - assert(MoveList(pos).contains(m)); - - TTEntry* tte = TT.probe(pos.key(), ttHit); - - if (!ttHit || tte->move() != m) // Don't overwrite correct entries - tte->save(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE, - m, VALUE_NONE, TT.generation()); - - pos.do_move(m, *st++, pos.gives_check(m, CheckInfo(pos))); - } - - for (size_t i = pv.size(); i > 0; ) - pos.undo_move(pv[--i]); -} - - /// RootMove::extract_ponder_from_tt() is called in case we have no ponder move -/// before exiting the search, for instance in case we stop the search during a +/// before exiting the search, for instance, in case we stop the search during a /// fail high at root. We try hard to have a ponder move to return to the GUI, /// otherwise in case of 'ponder on' we have nothing to think on. -bool RootMove::extract_ponder_from_tt(Position& pos) -{ +bool RootMove::extract_ponder_from_tt(Position& pos) { + StateInfo st; bool ttHit; assert(pv.size() == 1); - pos.do_move(pv[0], st, pos.gives_check(pv[0], CheckInfo(pos))); + if (!pv[0]) + return false; + + pos.do_move(pv[0], st); TTEntry* tte = TT.probe(pos.key(), ttHit); - pos.undo_move(pv[0]); if (ttHit) { Move m = tte->move(); // Local copy to be SMP safe if (MoveList(pos).contains(m)) - return pv.push_back(m), true; + pv.push_back(m); + } + + pos.undo_move(pv[0]); + return pv.size() > 1; +} + +void Tablebases::filter_root_moves(Position& pos, Search::RootMoves& rootMoves) { + + RootInTB = false; + UseRule50 = Options["Syzygy50MoveRule"]; + ProbeDepth = Options["SyzygyProbeDepth"] * ONE_PLY; + Cardinality = Options["SyzygyProbeLimit"]; + + // Skip TB probing when no TB found: !TBLargest -> !TB::Cardinality + if (Cardinality > MaxCardinality) + { + Cardinality = MaxCardinality; + ProbeDepth = DEPTH_ZERO; + } + + if (Cardinality < popcount(pos.pieces()) || pos.can_castle(ANY_CASTLING)) + return; + + // If the current root position is in the tablebases, then RootMoves + // contains only moves that preserve the draw or the win. + RootInTB = root_probe(pos, rootMoves, TB::Score); + + if (RootInTB) + Cardinality = 0; // Do not probe tablebases during the search + + else // If DTZ tables are missing, use WDL tables as a fallback + { + // Filter out moves that do not preserve the draw or the win. + RootInTB = root_probe_wdl(pos, rootMoves, TB::Score); + + // Only probe during search if winning + if (RootInTB && TB::Score <= VALUE_DRAW) + Cardinality = 0; } - return false; + if (RootInTB && !UseRule50) + TB::Score = TB::Score > VALUE_DRAW ? VALUE_MATE - MAX_PLY - 1 + : TB::Score < VALUE_DRAW ? -VALUE_MATE + MAX_PLY + 1 + : VALUE_DRAW; }