X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fsearch.cpp;h=ccea71ca0842eaaa073cde03f9987ed934e4eaca;hp=3ba276809bd67cddd5537f455e5e9d8e9275486d;hb=4840643fedbfc33d118cdc13c8435b062e3da99b;hpb=db4b8ee000912f88927757eb8dee255b8d66a4b4 diff --git a/src/search.cpp b/src/search.cpp index 3ba27680..ccea71ca 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -191,26 +191,19 @@ void Search::think() { sync_cout << "info depth 0 score " << UCI::format_value(RootPos.checkers() ? -VALUE_MATE : VALUE_DRAW) << sync_endl; - - goto finalize; } + else + { + for (size_t i = 0; i < Threads.size(); ++i) + Threads[i]->maxPly = 0; - // Reset the threads, still sleeping: will wake up at split time - for (size_t i = 0; i < Threads.size(); ++i) - Threads[i]->maxPly = 0; - - Threads.timer->run = true; - Threads.timer->notify_one(); // Wake up the recurring timer - - id_loop(RootPos); // Let's start searching ! - - Threads.timer->run = false; // Stop the timer + Threads.timer->run = true; + Threads.timer->notify_one(); // Wake up the recurring timer -finalize: + id_loop(RootPos); // Let's start searching ! - // When search is stopped this info is not printed - sync_cout << "info nodes " << RootPos.nodes_searched() - << " time " << Time::now() - SearchTime + 1 << sync_endl; + Threads.timer->run = false; + } // When we reach the maximum depth, we can arrive here without a raise of // Signals.stop. However, if we are pondering or in an infinite search, @@ -223,7 +216,6 @@ finalize: RootPos.this_thread()->wait_for(Signals.stop); } - // Best move could be MOVE_NONE when searching on a stalemate position sync_cout << "bestmove " << UCI::format_move(RootMoves[0].pv[0], RootPos.is_chess960()) << " ponder " << UCI::format_move(RootMoves[0].pv[1], RootPos.is_chess960()) << sync_endl; @@ -263,7 +255,7 @@ namespace { multiPV = std::max(multiPV, skill.candidates_size()); // Iterative deepening loop until requested to stop or target depth reached - while (++depth < MAX_PLY && !Signals.stop && (!Limits.depth || depth <= Limits.depth)) + while (++depth < DEPTH_MAX && !Signals.stop && (!Limits.depth || depth <= Limits.depth)) { // Age out PV variability metric BestMoveChanges *= 0.5; @@ -342,9 +334,12 @@ namespace { // Sort the PV lines searched so far and update the GUI std::stable_sort(RootMoves.begin(), RootMoves.begin() + PVIdx + 1); - if ( !Signals.stop - && ( PVIdx + 1 == std::min(multiPV, RootMoves.size()) - || Time::now() - SearchTime > 3000)) + if (Signals.stop) + sync_cout << "info nodes " << RootPos.nodes_searched() + << " time " << Time::now() - SearchTime << sync_endl; + + else if ( PVIdx + 1 == std::min(multiPV, RootMoves.size()) + || Time::now() - SearchTime > 3000) sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl; } @@ -399,6 +394,7 @@ namespace { assert(PvNode || (alpha == beta - 1)); assert(depth > DEPTH_ZERO); + PVEntry pv; Move quietsSearched[64]; StateInfo st; const TTEntry *tte; @@ -474,13 +470,12 @@ namespace { // a fail high/low. The biggest advantage to probing at PV nodes is to have a // smooth experience in analysis mode. We don't probe at Root nodes otherwise // we should also update RootMoveList to avoid bogus output. - if ( !RootNode + if ( !PvNode && tte && tte->depth() >= depth && ttValue != VALUE_NONE // Only in case of TT access race - && ( PvNode ? tte->bound() == BOUND_EXACT - : ttValue >= beta ? (tte->bound() & BOUND_LOWER) - : (tte->bound() & BOUND_UPPER))) + && (ttValue >= beta ? (tte->bound() & BOUND_LOWER) + : (tte->bound() & BOUND_UPPER))) { ss->currentMove = ttMove; // Can be MOVE_NONE @@ -704,6 +699,9 @@ moves_loop: // When in check and at SpNode search starts from here << " currmovenumber " << moveCount + PVIdx << sync_endl; } + if (PvNode) + (ss+1)->pv = NULL; + ext = DEPTH_ZERO; captureOrPromotion = pos.capture_or_promotion(move); @@ -867,11 +865,14 @@ moves_loop: // When in check and at SpNode search starts from here // For PV nodes only, do a full PV search on the first move or after a fail // high (in the latter case search only if value < beta), otherwise let the // parent node fail low with value <= alpha and to try another move. - if (PvNode && (moveCount == 1 || (value > alpha && (RootNode || value < beta)))) + if (PvNode && (moveCount == 1 || (value > alpha && (RootNode || value < beta)))) { + pv.pv[0] = MOVE_NONE; + (ss+1)->pv = &pv; value = newDepth < ONE_PLY ? givesCheck ? -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO) : -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO) : - search(pos, ss+1, -beta, -alpha, newDepth, false); + } // Step 17. Undo move pos.undo_move(move); @@ -899,7 +900,9 @@ moves_loop: // When in check and at SpNode search starts from here if (moveCount == 1 || value > alpha) { rm.score = value; - rm.extract_pv_from_tt(pos); + rm.pv.resize(1); + for (int i = 0; (ss+1)->pv && i < MAX_PLY && (ss+1)->pv->pv[i] != MOVE_NONE; ++i) + rm.pv.push_back((ss+1)->pv->pv[i]); // We record how often the best move has been changed in each // iteration. This information is used for time management: When @@ -922,6 +925,12 @@ moves_loop: // When in check and at SpNode search starts from here { bestMove = SpNode ? splitPoint->bestMove = move : move; + if (NT == PV) { + ss->pv->update(move, (ss+1)->pv); + if (SpNode) + splitPoint->ss->pv->update(move, (ss+1)->pv); + } + if (PvNode && value < beta) // Update alpha! Always alpha < beta alpha = SpNode ? splitPoint->alpha = value : value; else @@ -1006,6 +1015,7 @@ moves_loop: // When in check and at SpNode search starts from here assert(PvNode || (alpha == beta - 1)); assert(depth <= DEPTH_ZERO); + PVEntry pv; StateInfo st; const TTEntry* tte; Key posKey; @@ -1014,10 +1024,14 @@ moves_loop: // When in check and at SpNode search starts from here bool givesCheck, evasionPrunable; Depth ttDepth; - // To flag BOUND_EXACT a node with eval above alpha and no available moves - if (PvNode) + if (PvNode) { + // To flag BOUND_EXACT a node with eval above alpha and no available moves oldAlpha = alpha; + (ss+1)->pv = &pv; + ss->pv->pv[0] = MOVE_NONE; + } + ss->currentMove = bestMove = MOVE_NONE; ss->ply = (ss-1)->ply + 1; @@ -1039,12 +1053,12 @@ moves_loop: // When in check and at SpNode search starts from here ttMove = tte ? tte->move() : MOVE_NONE; ttValue = tte ? value_from_tt(tte->value(),ss->ply) : VALUE_NONE; - if ( tte + if ( !PvNode + && tte && tte->depth() >= ttDepth && ttValue != VALUE_NONE // Only in case of TT access race - && ( PvNode ? tte->bound() == BOUND_EXACT - : ttValue >= beta ? (tte->bound() & BOUND_LOWER) - : (tte->bound() & BOUND_UPPER))) + && (ttValue >= beta ? (tte->bound() & BOUND_LOWER) + : (tte->bound() & BOUND_UPPER))) { ss->currentMove = ttMove; // Can be MOVE_NONE return ttValue; @@ -1166,6 +1180,9 @@ moves_loop: // When in check and at SpNode search starts from here if (value > alpha) { + if (PvNode) + ss->pv->update(move, &pv); + if (PvNode && value < beta) // Update alpha here! Always alpha < beta { alpha = value; @@ -1336,7 +1353,7 @@ moves_loop: // When in check and at SpNode search starts from here << " time " << elapsed << " pv"; - for (size_t j = 0; RootMoves[i].pv[j] != MOVE_NONE; ++j) + for (size_t j = 0; j < RootMoves[i].pv.size(); ++j) ss << " " << UCI::format_move(RootMoves[i].pv[j], pos.is_chess960()); } @@ -1346,43 +1363,6 @@ moves_loop: // When in check and at SpNode search starts from here } // namespace -/// RootMove::extract_pv_from_tt() builds a PV by adding moves from the TT table. -/// We also consider both failing high nodes and BOUND_EXACT nodes here to -/// ensure that we have a ponder move even when we fail high at root. This -/// results in a long PV to print that is important for position analysis. - -void RootMove::extract_pv_from_tt(Position& pos) { - - StateInfo state[MAX_PLY], *st = state; - const TTEntry* tte; - int ply = 1; // At root ply is 1... - Move m = pv[0]; // ...instead pv[] array starts from 0 - Value expectedScore = score; - - pv.clear(); - - do { - pv.push_back(m); - - assert(MoveList(pos).contains(pv[ply - 1])); - - pos.do_move(pv[ply++ - 1], *st++); - tte = TT.probe(pos.key()); - expectedScore = -expectedScore; - - } while ( tte - && expectedScore == value_from_tt(tte->value(), ply) - && pos.pseudo_legal(m = tte->move()) // Local copy, TT could change - && pos.legal(m, pos.pinned_pieces(pos.side_to_move())) - && ply < MAX_PLY - && (!pos.is_draw() || ply <= 2)); - - pv.push_back(MOVE_NONE); // Must be zero-terminating - - while (--ply) pos.undo_move(pv[ply - 1]); -} - - /// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and /// inserts the PV back into the TT. This makes sure the old PV moves are searched /// first, even if the old TT entries have been overwritten. @@ -1391,19 +1371,17 @@ void RootMove::insert_pv_in_tt(Position& pos) { StateInfo state[MAX_PLY], *st = state; const TTEntry* tte; - int idx = 0; // Ply starts from 1, we need to start from 0 + int idx = 0; - do { + for (; idx < int(pv.size()); ++idx) { tte = TT.probe(pos.key()); if (!tte || tte->move() != pv[idx]) // Don't overwrite correct entries TT.store(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE, pv[idx], VALUE_NONE); assert(MoveList(pos).contains(pv[idx])); - - pos.do_move(pv[idx++], *st++); - - } while (pv[idx] != MOVE_NONE); + pos.do_move(pv[idx], *st++); + } while (idx) pos.undo_move(pv[--idx]); }