X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fsearch.cpp;h=e2cf76b81b7d97fc312de720bf8a41c88c068e6e;hp=da22c5cff066f505ba5eed5537904fc0ed97d32b;hb=79232be02a03a5e2225b30f843e9597fd85951dc;hpb=b8cfc255d46113573a0869e56224a382c74dfcdc diff --git a/src/search.cpp b/src/search.cpp index da22c5cf..e2cf76b8 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -19,22 +19,20 @@ #include #include -#include #include #include #include #include -#include "book.h" #include "evaluate.h" #include "movegen.h" #include "movepick.h" -#include "notation.h" +#include "rkiss.h" #include "search.h" #include "timeman.h" #include "thread.h" #include "tt.h" -#include "ucioption.h" +#include "uci.h" namespace Search { @@ -42,7 +40,6 @@ namespace Search { LimitsType Limits; std::vector RootMoves; Position RootPos; - Color RootColor; Time::point SearchTime; StateStackPtr SetupStates; } @@ -53,31 +50,27 @@ using namespace Search; namespace { - // Set to true to force running with one thread. Used for debugging - const bool FakeSplit = false; - // Different node types, used as template parameter - enum NodeType { Root, PV, NonPV, SplitPointRoot, SplitPointPV, SplitPointNonPV }; + enum NodeType { Root, PV, NonPV }; // Dynamic razoring margin based on depth - inline Value razor_margin(Depth d) { return Value(512 + 16 * int(d)); } + inline Value razor_margin(Depth d) { return Value(512 + 32 * d); } // Futility lookup tables (initialized at startup) and their access functions - int FutilityMoveCounts[2][32]; // [improving][depth] + int FutilityMoveCounts[2][16]; // [improving][depth] inline Value futility_margin(Depth d) { - return Value(100 * int(d)); + return Value(200 * d); } // Reduction lookup tables (initialized at startup) and their access function int8_t Reductions[2][2][64][64]; // [pv][improving][depth][moveNumber] template inline Depth reduction(bool i, Depth d, int mn) { - - return (Depth) Reductions[PvNode][i][std::min(int(d) / ONE_PLY, 63)][std::min(mn, 63)]; + return (Depth) Reductions[PvNode][i][std::min(int(d), 63)][std::min(mn, 63)]; } - size_t MultiPV, PVIdx; + size_t PVIdx; TimeManager TimeMgr; double BestMoveChanges; Value DrawValue[COLOR_NB]; @@ -85,7 +78,7 @@ namespace { GainsStats Gains; MovesStats Countermoves, Followupmoves; - template + template Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode); template @@ -94,22 +87,26 @@ namespace { void id_loop(Position& pos); Value value_to_tt(Value v, int ply); Value value_from_tt(Value v, int ply); - void update_stats(Position& pos, Stack* ss, Move move, Depth depth, Move* quiets, int quietsCnt); - string uci_pv(const Position& pos, int depth, Value alpha, Value beta); + void update_pv(Move* pv, Move move, Move* childPv); + void update_stats(const Position& pos, Stack* ss, Move move, Depth depth, Move* quiets, int quietsCnt); + string uci_pv(const Position& pos, Depth depth, Value alpha, Value beta); struct Skill { - Skill(int l) : level(l), best(MOVE_NONE) {} + Skill(int l, size_t rootSize) : level(l), + candidates(l < 20 ? std::min(4, (int)rootSize) : 0), + best(MOVE_NONE) {} ~Skill() { - if (enabled()) // Swap best PV line with the sub-optimal one + if (candidates) // Swap best PV line with the sub-optimal one std::swap(RootMoves[0], *std::find(RootMoves.begin(), RootMoves.end(), best ? best : pick_move())); } - bool enabled() const { return level < 20; } - bool time_to_pick(int depth) const { return depth == 1 + level; } + size_t candidates_size() const { return candidates; } + bool time_to_pick(Depth depth) const { return depth == 1 + level; } Move pick_move(); int level; + size_t candidates; Move best; }; @@ -120,59 +117,62 @@ namespace { void Search::init() { - int d; // depth (ONE_PLY == 2) - int hd; // half depth (ONE_PLY == 1) - int mc; // moveCount - // Init reductions array - for (hd = 1; hd < 64; ++hd) for (mc = 1; mc < 64; ++mc) - { - double pvRed = 0.00 + log(double(hd)) * log(double(mc)) / 3.00; - double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25; - Reductions[1][1][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0); - Reductions[0][1][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0); + for (int d = 1; d < 64; ++d) + for (int mc = 1; mc < 64; ++mc) + { + double pvRed = 0.00 + log(double(d)) * log(double(mc)) / 3.00; + double nonPVRed = 0.33 + log(double(d)) * log(double(mc)) / 2.25; - Reductions[1][0][hd][mc] = Reductions[1][1][hd][mc]; - Reductions[0][0][hd][mc] = Reductions[0][1][hd][mc]; + Reductions[1][1][d][mc] = int8_t( pvRed >= 1.0 ? pvRed + 0.5: 0); + Reductions[0][1][d][mc] = int8_t(nonPVRed >= 1.0 ? nonPVRed + 0.5: 0); - if (Reductions[0][0][hd][mc] > 2 * ONE_PLY) - Reductions[0][0][hd][mc] += ONE_PLY; + Reductions[1][0][d][mc] = Reductions[1][1][d][mc]; + Reductions[0][0][d][mc] = Reductions[0][1][d][mc]; - else if (Reductions[0][0][hd][mc] > 1 * ONE_PLY) - Reductions[0][0][hd][mc] += ONE_PLY / 2; - } + // Increase reduction when eval is not improving + if (Reductions[0][0][d][mc] >= 2) + Reductions[0][0][d][mc] += 1; + } // Init futility move count array - for (d = 0; d < 32; ++d) + for (int d = 0; d < 16; ++d) { - FutilityMoveCounts[0][d] = int(2.4 + 0.222 * pow(d + 0.00, 1.8)); - FutilityMoveCounts[1][d] = int(3.0 + 0.300 * pow(d + 0.98, 1.8)); + FutilityMoveCounts[0][d] = int(2.4 + 0.773 * pow(d + 0.00, 1.8)); + FutilityMoveCounts[1][d] = int(2.9 + 1.045 * pow(d + 0.49, 1.8)); } } /// Search::perft() is our utility to verify move generation. All the leaf nodes /// up to the given depth are generated and counted and the sum returned. - -static uint64_t perft(Position& pos, Depth depth) { +template +uint64_t Search::perft(Position& pos, Depth depth) { StateInfo st; - uint64_t cnt = 0; + uint64_t cnt, nodes = 0; CheckInfo ci(pos); - const bool leaf = depth == 2 * ONE_PLY; + const bool leaf = (depth == 2 * ONE_PLY); for (MoveList it(pos); *it; ++it) { - pos.do_move(*it, st, ci, pos.gives_check(*it, ci)); - cnt += leaf ? MoveList(pos).size() : ::perft(pos, depth - ONE_PLY); - pos.undo_move(*it); + if (Root && depth <= ONE_PLY) + cnt = 1, nodes++; + else + { + pos.do_move(*it, st, ci, pos.gives_check(*it, ci)); + cnt = leaf ? MoveList(pos).size() : perft(pos, depth - ONE_PLY); + nodes += cnt; + pos.undo_move(*it); + } + if (Root) + sync_cout << UCI::format_move(*it, pos.is_chess960()) << ": " << cnt << sync_endl; } - return cnt; + return nodes; } -uint64_t Search::perft(Position& pos, Depth depth) { - return depth > ONE_PLY ? ::perft(pos, depth) : MoveList(pos).size(); -} +template uint64_t Search::perft(Position& pos, Depth depth); + /// Search::think() is the external interface to Stockfish's search, and is /// called by the main thread when the program receives the UCI 'go' command. It @@ -180,88 +180,32 @@ uint64_t Search::perft(Position& pos, Depth depth) { void Search::think() { - static PolyglotBook book; // Defined static to initialize the PRNG only once + TimeMgr.init(Limits, RootPos.game_ply(), RootPos.side_to_move()); - RootColor = RootPos.side_to_move(); - TimeMgr.init(Limits, RootPos.game_ply(), RootColor); + int cf = Options["Contempt"] * PawnValueEg / 100; // From centipawns + DrawValue[ RootPos.side_to_move()] = VALUE_DRAW - Value(cf); + DrawValue[~RootPos.side_to_move()] = VALUE_DRAW + Value(cf); if (RootMoves.empty()) { RootMoves.push_back(MOVE_NONE); sync_cout << "info depth 0 score " - << score_to_uci(RootPos.checkers() ? -VALUE_MATE : VALUE_DRAW) + << UCI::format_value(RootPos.checkers() ? -VALUE_MATE : VALUE_DRAW) << sync_endl; - - goto finalize; - } - - if (Options["OwnBook"] && !Limits.infinite && !Limits.mate) - { - Move bookMove = book.probe(RootPos, Options["Book File"], Options["Best Book Move"]); - - if (bookMove && std::count(RootMoves.begin(), RootMoves.end(), bookMove)) - { - std::swap(RootMoves[0], *std::find(RootMoves.begin(), RootMoves.end(), bookMove)); - goto finalize; - } - } - - if (Options["Contempt Factor"] && !Options["UCI_AnalyseMode"]) - { - int cf = Options["Contempt Factor"] * PawnValueMg / 100; // From centipawns - cf = cf * Material::game_phase(RootPos) / PHASE_MIDGAME; // Scale down with phase - DrawValue[ RootColor] = VALUE_DRAW - Value(cf); - DrawValue[~RootColor] = VALUE_DRAW + Value(cf); } else - DrawValue[WHITE] = DrawValue[BLACK] = VALUE_DRAW; - - if (Options["Write Search Log"]) { - Log log(Options["Search Log Filename"]); - log << "\nSearching: " << RootPos.fen() - << "\ninfinite: " << Limits.infinite - << " ponder: " << Limits.ponder - << " time: " << Limits.time[RootColor] - << " increment: " << Limits.inc[RootColor] - << " moves to go: " << Limits.movestogo - << std::endl; - } - - // Reset the threads, still sleeping: will wake up at split time - for (size_t i = 0; i < Threads.size(); ++i) - Threads[i]->maxPly = 0; - - Threads.sleepWhileIdle = Options["Idle Threads Sleep"]; - Threads.timer->run = true; - Threads.timer->notify_one(); // Wake up the recurring timer - - id_loop(RootPos); // Let's start searching ! - - Threads.timer->run = false; // Stop the timer - Threads.sleepWhileIdle = true; // Send idle threads to sleep + for (size_t i = 0; i < Threads.size(); ++i) + Threads[i]->maxPly = 0; - if (Options["Write Search Log"]) - { - Time::point elapsed = Time::now() - SearchTime + 1; + Threads.timer->run = true; + Threads.timer->notify_one(); // Wake up the recurring timer - Log log(Options["Search Log Filename"]); - log << "Nodes: " << RootPos.nodes_searched() - << "\nNodes/second: " << RootPos.nodes_searched() * 1000 / elapsed - << "\nBest move: " << move_to_san(RootPos, RootMoves[0].pv[0]); + id_loop(RootPos); // Let's start searching ! - StateInfo st; - RootPos.do_move(RootMoves[0].pv[0], st); - log << "\nPonder move: " << move_to_san(RootPos, RootMoves[0].pv[1]) << std::endl; - RootPos.undo_move(RootMoves[0].pv[0]); + Threads.timer->run = false; } -finalize: - - // When search is stopped this info is not printed - sync_cout << "info nodes " << RootPos.nodes_searched() - << " time " << Time::now() - SearchTime + 1 << sync_endl; - // When we reach the maximum depth, we can arrive here without a raise of // Signals.stop. However, if we are pondering or in an infinite search, // the UCI protocol states that we shouldn't print the best move before the @@ -273,9 +217,8 @@ finalize: RootPos.this_thread()->wait_for(Signals.stop); } - // Best move could be MOVE_NONE when searching on a stalemate position - sync_cout << "bestmove " << move_to_uci(RootMoves[0].pv[0], RootPos.is_chess960()) - << " ponder " << move_to_uci(RootMoves[0].pv[1], RootPos.is_chess960()) + sync_cout << "bestmove " << UCI::format_move(RootMoves[0].pv[0], RootPos.is_chess960()) + << " ponder " << UCI::format_move(RootMoves[0].pv[1], RootPos.is_chess960()) << sync_endl; } @@ -288,14 +231,13 @@ namespace { void id_loop(Position& pos) { - Stack stack[MAX_PLY_PLUS_6], *ss = stack+2; // To allow referencing (ss-2) - int depth; + Stack stack[MAX_PLY+4], *ss = stack+2; // To allow referencing (ss-2) and (ss+2) + Depth depth; Value bestValue, alpha, beta, delta; std::memset(ss-2, 0, 5 * sizeof(Stack)); - (ss-1)->currentMove = MOVE_NULL; // Hack to skip update gains - depth = 0; + depth = DEPTH_ZERO; BestMoveChanges = 0; bestValue = delta = alpha = -VALUE_INFINITE; beta = VALUE_INFINITE; @@ -306,18 +248,15 @@ namespace { Countermoves.clear(); Followupmoves.clear(); - MultiPV = Options["MultiPV"]; - Skill skill(Options["Skill Level"]); + size_t multiPV = Options["MultiPV"]; + Skill skill(Options["Skill Level"], RootMoves.size()); // Do we have to play with skill handicap? In this case enable MultiPV search // that we will use behind the scenes to retrieve a set of possible moves. - if (skill.enabled() && MultiPV < 4) - MultiPV = 4; - - MultiPV = std::min(MultiPV, RootMoves.size()); + multiPV = std::max(multiPV, skill.candidates_size()); // Iterative deepening loop until requested to stop or target depth reached - while (++depth <= MAX_PLY && !Signals.stop && (!Limits.depth || depth <= Limits.depth)) + while (++depth < DEPTH_MAX && !Signals.stop && (!Limits.depth || depth <= Limits.depth)) { // Age out PV variability metric BestMoveChanges *= 0.5; @@ -328,10 +267,10 @@ namespace { RootMoves[i].prevScore = RootMoves[i].score; // MultiPV loop. We perform a full root search for each PV line - for (PVIdx = 0; PVIdx < MultiPV && !Signals.stop; ++PVIdx) + for (PVIdx = 0; PVIdx < std::min(multiPV, RootMoves.size()) && !Signals.stop; ++PVIdx) { // Reset aspiration window starting size - if (depth >= 5) + if (depth >= 5 * ONE_PLY) { delta = Value(16); alpha = std::max(RootMoves[PVIdx].prevScore - delta,-VALUE_INFINITE); @@ -343,7 +282,7 @@ namespace { // high/low anymore. while (true) { - bestValue = search(pos, ss, alpha, beta, depth * ONE_PLY, false); + bestValue = search(pos, ss, alpha, beta, depth, false); // Bring the best move to the front. It is critical that sorting // is done with a stable algorithm because all the values but the @@ -374,14 +313,17 @@ namespace { // re-search, otherwise exit the loop. if (bestValue <= alpha) { + beta = (alpha + beta) / 2; alpha = std::max(bestValue - delta, -VALUE_INFINITE); Signals.failedLowAtRoot = true; Signals.stopOnPonderhit = false; } else if (bestValue >= beta) + { + alpha = (alpha + beta) / 2; beta = std::min(bestValue + delta, VALUE_INFINITE); - + } else break; @@ -393,27 +335,19 @@ namespace { // Sort the PV lines searched so far and update the GUI std::stable_sort(RootMoves.begin(), RootMoves.begin() + PVIdx + 1); - if (PVIdx + 1 == MultiPV || Time::now() - SearchTime > 3000) + if (Signals.stop) + sync_cout << "info nodes " << RootPos.nodes_searched() + << " time " << Time::now() - SearchTime << sync_endl; + + else if ( PVIdx + 1 == std::min(multiPV, RootMoves.size()) + || Time::now() - SearchTime > 3000) sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl; } - Time::point iterationTime = Time::now() - SearchTime; - // If skill levels are enabled and time is up, pick a sub-optimal best move - if (skill.enabled() && skill.time_to_pick(depth)) + if (skill.candidates_size() && skill.time_to_pick(depth)) skill.pick_move(); - if (Options["Write Search Log"]) - { - RootMove& rm = RootMoves[0]; - if (skill.best != MOVE_NONE) - rm = *std::find(RootMoves.begin(), RootMoves.end(), skill.best); - - Log log(Options["Search Log Filename"]); - log << pretty_pv(pos, depth, rm.score, Time::now() - SearchTime, &rm.pv[0]) - << std::endl; - } - // Have we found a "mate in x"? if ( Limits.mate && bestValue >= VALUE_MATE_IN_MAX_PLY @@ -423,19 +357,14 @@ namespace { // Do we have time for the next iteration? Can we stop searching now? if (Limits.use_time_management() && !Signals.stop && !Signals.stopOnPonderhit) { - bool stop = false; // Local variable, not the volatile Signals.stop - // Take some extra time if the best move has changed - if (depth > 4 && depth < 50 && MultiPV == 1) + if (depth > 4 * ONE_PLY && multiPV == 1) TimeMgr.pv_instability(BestMoveChanges); // Stop the search if only one legal move is available or all // of the available time has been used. if ( RootMoves.size() == 1 - || iterationTime > TimeMgr.available_time() ) - stop = true; - - if (stop) + || Time::now() - SearchTime > TimeMgr.available_time()) { // If we are allowed to ponder do not stop the search now but // keep pondering until the GUI sends "ponderhit" or "stop". @@ -456,18 +385,17 @@ namespace { // repeat all this work again. We also don't need to store anything to the hash // table here: This is taken care of after we return from the split point. - template + template Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) { - const bool PvNode = (NT == PV || NT == Root || NT == SplitPointPV || NT == SplitPointRoot); - const bool SpNode = (NT == SplitPointPV || NT == SplitPointNonPV || NT == SplitPointRoot); - const bool RootNode = (NT == Root || NT == SplitPointRoot); + const bool RootNode = NT == Root; + const bool PvNode = NT == PV || NT == Root; assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE); assert(PvNode || (alpha == beta - 1)); assert(depth > DEPTH_ZERO); - Move quietsSearched[64]; + Move pv[MAX_PLY+1], quietsSearched[64]; StateInfo st; const TTEntry *tte; SplitPoint* splitPoint; @@ -475,7 +403,7 @@ namespace { Move ttMove, move, excludedMove, bestMove; Depth ext, newDepth, predictedDepth; Value bestValue, value, ttValue, eval, nullValue, futilityValue; - bool inCheck, givesCheck, pvMove, singularExtensionNode, improving; + bool inCheck, givesCheck, singularExtensionNode, improving; bool captureOrPromotion, dangerous, doFullDepthSearch; int moveCount, quietCount; @@ -499,10 +427,7 @@ namespace { moveCount = quietCount = 0; bestValue = -VALUE_INFINITE; - ss->currentMove = ss->ttMove = (ss+1)->excludedMove = bestMove = MOVE_NONE; ss->ply = (ss-1)->ply + 1; - (ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO; - (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE; // Used to send selDepth info to GUI if (PvNode && thisThread->maxPly < ss->ply) @@ -511,8 +436,8 @@ namespace { if (!RootNode) { // Step 2. Check for aborted search and immediate draw - if (Signals.stop || pos.is_draw() || ss->ply > MAX_PLY) - return ss->ply > MAX_PLY && !inCheck ? evaluate(pos) : DrawValue[pos.side_to_move()]; + if (Signals.stop || pos.is_draw() || ss->ply >= MAX_PLY) + return ss->ply >= MAX_PLY && !inCheck ? evaluate(pos) : DrawValue[pos.side_to_move()]; // Step 3. Mate distance pruning. Even if we mate at the next move our score // would be at best mate_in(ss->ply+1), but if alpha is already bigger because @@ -526,6 +451,12 @@ namespace { return alpha; } + assert(0 <= ss->ply && ss->ply < MAX_PLY); + + ss->currentMove = ss->ttMove = (ss+1)->excludedMove = bestMove = MOVE_NONE; + (ss+1)->skipNullMove = false; (ss+1)->reduction = DEPTH_ZERO; + (ss+2)->killers[0] = (ss+2)->killers[1] = MOVE_NONE; + // Step 4. Transposition table lookup // We don't want the score of a partial search to overwrite a previous full search // TT value, so we use a different position key in case of an excluded move. @@ -535,19 +466,14 @@ namespace { ss->ttMove = ttMove = RootNode ? RootMoves[PVIdx].pv[0] : tte ? tte->move() : MOVE_NONE; ttValue = tte ? value_from_tt(tte->value(), ss->ply) : VALUE_NONE; - // At PV nodes we check for exact scores, whilst at non-PV nodes we check for - // a fail high/low. The biggest advantage to probing at PV nodes is to have a - // smooth experience in analysis mode. We don't probe at Root nodes otherwise - // we should also update RootMoveList to avoid bogus output. - if ( !RootNode + // At non-PV nodes we check for a fail high/low. We don't probe at PV nodes + if ( !PvNode && tte && tte->depth() >= depth && ttValue != VALUE_NONE // Only in case of TT access race - && ( PvNode ? tte->bound() == BOUND_EXACT - : ttValue >= beta ? (tte->bound() & BOUND_LOWER) - : (tte->bound() & BOUND_UPPER))) + && (ttValue >= beta ? (tte->bound() & BOUND_LOWER) + : (tte->bound() & BOUND_UPPER))) { - TT.refresh(tte); ss->currentMove = ttMove; // Can be MOVE_NONE // If ttMove is quiet, update killers, history, counter move and followup move on TT hit @@ -577,7 +503,9 @@ namespace { } else { - eval = ss->staticEval = evaluate(pos); + eval = ss->staticEval = + (ss-1)->currentMove != MOVE_NULL ? evaluate(pos) : -(ss-1)->staticEval + 2 * Eval::Tempo; + TT.store(posKey, VALUE_NONE, BOUND_NONE, DEPTH_NONE, MOVE_NONE, ss->staticEval); } @@ -585,6 +513,7 @@ namespace { && ss->staticEval != VALUE_NONE && (ss-1)->staticEval != VALUE_NONE && (move = (ss-1)->currentMove) != MOVE_NULL + && move != MOVE_NONE && type_of(move) == NORMAL) { Square to = to_sq(move); @@ -596,9 +525,12 @@ namespace { && depth < 4 * ONE_PLY && eval + razor_margin(depth) <= alpha && ttMove == MOVE_NONE - && abs(beta) < VALUE_MATE_IN_MAX_PLY && !pos.pawn_on_7th(pos.side_to_move())) { + if ( depth <= ONE_PLY + && eval + razor_margin(3 * ONE_PLY) <= alpha) + return qsearch(pos, ss, alpha, beta, DEPTH_ZERO); + Value ralpha = alpha - razor_margin(depth); Value v = qsearch(pos, ss, ralpha, ralpha+1, DEPTH_ZERO); if (v <= ralpha) @@ -610,8 +542,7 @@ namespace { && !ss->skipNullMove && depth < 7 * ONE_PLY && eval - futility_margin(depth) >= beta - && abs(beta) < VALUE_MATE_IN_MAX_PLY - && abs(eval) < VALUE_KNOWN_WIN + && eval < VALUE_KNOWN_WIN // Do not return unproven wins && pos.non_pawn_material(pos.side_to_move())) return eval - futility_margin(depth); @@ -620,7 +551,6 @@ namespace { && !ss->skipNullMove && depth >= 2 * ONE_PLY && eval >= beta - && abs(beta) < VALUE_MATE_IN_MAX_PLY && pos.non_pawn_material(pos.side_to_move())) { ss->currentMove = MOVE_NULL; @@ -628,14 +558,12 @@ namespace { assert(eval - beta >= 0); // Null move dynamic reduction based on depth and value - Depth R = 3 * ONE_PLY - + depth / 4 - + int(eval - beta) / PawnValueMg * ONE_PLY; + Depth R = (3 + depth / 4 + std::min(int(eval - beta) / PawnValueMg, 3)) * ONE_PLY; pos.do_null_move(st); (ss+1)->skipNullMove = true; nullValue = depth-R < ONE_PLY ? -qsearch(pos, ss+1, -beta, -beta+1, DEPTH_ZERO) - : - search(pos, ss+1, -beta, -beta+1, depth-R, !cutNode); + : - search(pos, ss+1, -beta, -beta+1, depth-R, !cutNode); (ss+1)->skipNullMove = false; pos.undo_null_move(); @@ -645,13 +573,13 @@ namespace { if (nullValue >= VALUE_MATE_IN_MAX_PLY) nullValue = beta; - if (depth < 12 * ONE_PLY) + if (depth < 12 * ONE_PLY && abs(beta) < VALUE_KNOWN_WIN) return nullValue; // Do verification search at high depths ss->skipNullMove = true; Value v = depth-R < ONE_PLY ? qsearch(pos, ss, beta-1, beta, DEPTH_ZERO) - : search(pos, ss, beta-1, beta, depth-R, false); + : search(pos, ss, beta-1, beta, depth-R, false); ss->skipNullMove = false; if (v >= beta) @@ -668,8 +596,8 @@ namespace { && !ss->skipNullMove && abs(beta) < VALUE_MATE_IN_MAX_PLY) { - Value rbeta = beta + 200; - Depth rdepth = depth - ONE_PLY - 3 * ONE_PLY; + Value rbeta = std::min(beta + 200, VALUE_INFINITE); + Depth rdepth = depth - 4 * ONE_PLY; assert(rdepth >= ONE_PLY); assert((ss-1)->currentMove != MOVE_NONE); @@ -683,7 +611,7 @@ namespace { { ss->currentMove = move; pos.do_move(move, st, ci, pos.gives_check(move, ci)); - value = -search(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode); + value = -search(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode); pos.undo_move(move); if (value >= rbeta) return value; @@ -693,12 +621,11 @@ namespace { // Step 10. Internal iterative deepening (skipped when in check) if ( depth >= (PvNode ? 5 * ONE_PLY : 8 * ONE_PLY) && !ttMove - && (PvNode || ss->staticEval + Value(256) >= beta)) + && (PvNode || ss->staticEval + 256 >= beta)) { - Depth d = depth - 2 * ONE_PLY - (PvNode ? DEPTH_ZERO : depth / 4); - + Depth d = 2 * (depth - 2 * ONE_PLY) - (PvNode ? DEPTH_ZERO : depth / 2); ss->skipNullMove = true; - search(pos, ss, alpha, beta, d, true); + search(pos, ss, alpha, beta, d / 2, true); ss->skipNullMove = false; tte = TT.probe(posKey); @@ -726,6 +653,8 @@ moves_loop: // When in check and at SpNode search starts from here && !SpNode && depth >= 8 * ONE_PLY && ttMove != MOVE_NONE + /* && ttValue != VALUE_NONE Already implicit in the next condition */ + && abs(ttValue) < VALUE_KNOWN_WIN && !excludedMove // Recursive singular search is not allowed && (tte->bound() & BOUND_LOWER) && tte->depth() >= depth - 3 * ONE_PLY; @@ -762,11 +691,14 @@ moves_loop: // When in check and at SpNode search starts from here Signals.firstRootMove = (moveCount == 1); if (thisThread == Threads.main() && Time::now() - SearchTime > 3000) - sync_cout << "info depth " << depth / ONE_PLY - << " currmove " << move_to_uci(move, pos.is_chess960()) + sync_cout << "info depth " << depth + << " currmove " << UCI::format_move(move, pos.is_chess960()) << " currmovenumber " << moveCount + PVIdx << sync_endl; } + if (PvNode) + (ss+1)->pv = NULL; + ext = DEPTH_ZERO; captureOrPromotion = pos.capture_or_promotion(move); @@ -790,15 +722,12 @@ moves_loop: // When in check and at SpNode search starts from here if ( singularExtensionNode && move == ttMove && !ext - && pos.legal(move, ci.pinned) - && abs(ttValue) < VALUE_KNOWN_WIN) + && pos.legal(move, ci.pinned)) { - assert(ttValue != VALUE_NONE); - - Value rBeta = ttValue - int(depth); + Value rBeta = ttValue - int(2 * depth); ss->excludedMove = move; ss->skipNullMove = true; - value = search(pos, ss, rBeta - 1, rBeta, depth / 2, cutNode); + value = search(pos, ss, rBeta - 1, rBeta, depth / 2, cutNode); ss->skipNullMove = false; ss->excludedMove = MOVE_NONE; @@ -814,12 +743,11 @@ moves_loop: // When in check and at SpNode search starts from here && !captureOrPromotion && !inCheck && !dangerous - /* && move != ttMove Already implicit in the next condition */ && bestValue > VALUE_MATED_IN_MAX_PLY) { // Move count based pruning if ( depth < 16 * ONE_PLY - && moveCount >= FutilityMoveCounts[improving][depth] ) + && moveCount >= FutilityMoveCounts[improving][depth]) { if (SpNode) splitPoint->mutex.lock(); @@ -832,8 +760,8 @@ moves_loop: // When in check and at SpNode search starts from here // Futility pruning: parent node if (predictedDepth < 7 * ONE_PLY) { - futilityValue = ss->staticEval + futility_margin(predictedDepth) - + Value(128) + Gains[pos.moved_piece(move)][to_sq(move)]; + futilityValue = ss->staticEval + futility_margin(predictedDepth) + + 128 + Gains[pos.moved_piece(move)][to_sq(move)]; if (futilityValue <= alpha) { @@ -859,6 +787,9 @@ moves_loop: // When in check and at SpNode search starts from here } } + // Speculative prefetch as early as possible + prefetch((char*)TT.first_entry(pos.key_after(move))); + // Check for legality just before making the move if (!RootNode && !SpNode && !pos.legal(move, ci.pinned)) { @@ -866,7 +797,6 @@ moves_loop: // When in check and at SpNode search starts from here continue; } - pvMove = PvNode && moveCount == 1; ss->currentMove = move; if (!SpNode && !captureOrPromotion && quietCount < 64) quietsSearched[quietCount++] = move; @@ -877,41 +807,45 @@ moves_loop: // When in check and at SpNode search starts from here // Step 15. Reduced depth search (LMR). If the move fails high it will be // re-searched at full depth. if ( depth >= 3 * ONE_PLY - && !pvMove + && moveCount > 1 && !captureOrPromotion - && move != ttMove && move != ss->killers[0] && move != ss->killers[1]) { ss->reduction = reduction(improving, depth, moveCount); - if (!PvNode && cutNode) + if ( (!PvNode && cutNode) + || History[pos.piece_on(to_sq(move))][to_sq(move)] < 0) ss->reduction += ONE_PLY; - else if (History[pos.piece_on(to_sq(move))][to_sq(move)] < 0) - ss->reduction += ONE_PLY / 2; - if (move == countermoves[0] || move == countermoves[1]) ss->reduction = std::max(DEPTH_ZERO, ss->reduction - ONE_PLY); + // Decrease reduction for moves that escape a capture + if ( ss->reduction + && type_of(move) == NORMAL + && type_of(pos.piece_on(to_sq(move))) != PAWN + && pos.see(make_move(to_sq(move), from_sq(move))) < 0) + ss->reduction = std::max(DEPTH_ZERO, ss->reduction - ONE_PLY); + Depth d = std::max(newDepth - ss->reduction, ONE_PLY); if (SpNode) alpha = splitPoint->alpha; - value = -search(pos, ss+1, -(alpha+1), -alpha, d, true); + value = -search(pos, ss+1, -(alpha+1), -alpha, d, true); - // Research at intermediate depth if reduction is very high + // Re-search at intermediate depth if reduction is very high if (value > alpha && ss->reduction >= 4 * ONE_PLY) { Depth d2 = std::max(newDepth - 2 * ONE_PLY, ONE_PLY); - value = -search(pos, ss+1, -(alpha+1), -alpha, d2, true); + value = -search(pos, ss+1, -(alpha+1), -alpha, d2, true); } doFullDepthSearch = (value > alpha && ss->reduction != DEPTH_ZERO); ss->reduction = DEPTH_ZERO; } else - doFullDepthSearch = !pvMove; + doFullDepthSearch = !PvNode || moveCount > 1; // Step 16. Full depth search, when LMR is skipped or fails high if (doFullDepthSearch) @@ -919,20 +853,26 @@ moves_loop: // When in check and at SpNode search starts from here if (SpNode) alpha = splitPoint->alpha; - value = newDepth < ONE_PLY ? - givesCheck ? -qsearch(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) - : -qsearch(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) - : - search(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode); + value = newDepth < ONE_PLY ? + givesCheck ? -qsearch(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) + : -qsearch(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) + : - search(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode); } // For PV nodes only, do a full PV search on the first move or after a fail // high (in the latter case search only if value < beta), otherwise let the // parent node fail low with value <= alpha and to try another move. - if (PvNode && (pvMove || (value > alpha && (RootNode || value < beta)))) - value = newDepth < ONE_PLY ? - givesCheck ? -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO) - : -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO) - : - search(pos, ss+1, -beta, -alpha, newDepth, false); + if (PvNode && (moveCount == 1 || (value > alpha && (RootNode || value < beta)))) + { + (ss+1)->pv = pv; + (ss+1)->pv[0] = MOVE_NONE; + + value = newDepth < ONE_PLY ? + givesCheck ? -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO) + : -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO) + : - search(pos, ss+1, -beta, -alpha, newDepth, false); + } + // Step 17. Undo move pos.undo_move(move); @@ -946,27 +886,31 @@ moves_loop: // When in check and at SpNode search starts from here alpha = splitPoint->alpha; } - // Finished searching the move. If Signals.stop is true, the search - // was aborted because the user interrupted the search or because we - // ran out of time. In this case, the return value of the search cannot - // be trusted, and we don't update the best move and/or PV. + // Finished searching the move. If a stop or a cutoff occurred, the return + // value of the search cannot be trusted, and we return immediately without + // updating best move, PV and TT. if (Signals.stop || thisThread->cutoff_occurred()) - return value; // To avoid returning VALUE_INFINITE + return VALUE_ZERO; if (RootNode) { RootMove& rm = *std::find(RootMoves.begin(), RootMoves.end(), move); // PV move or new best move ? - if (pvMove || value > alpha) + if (moveCount == 1 || value > alpha) { rm.score = value; - rm.extract_pv_from_tt(pos); + rm.pv.resize(1); + + assert((ss+1)->pv); + + for (Move* m = (ss+1)->pv; *m != MOVE_NONE; ++m) + rm.pv.push_back(*m); // We record how often the best move has been changed in each // iteration. This information is used for time management: When // the best move changes frequently, we allocate some more time. - if (!pvMove) + if (moveCount > 1) ++BestMoveChanges; } else @@ -984,6 +928,9 @@ moves_loop: // When in check and at SpNode search starts from here { bestMove = SpNode ? splitPoint->bestMove = move : move; + if (PvNode && !RootNode) // Update pv even in fail-high case + update_pv(SpNode ? splitPoint->ss->pv : ss->pv, move, (ss+1)->pv); + if (PvNode && value < beta) // Update alpha! Always alpha < beta alpha = SpNode ? splitPoint->alpha = value : value; else @@ -1000,14 +947,20 @@ moves_loop: // When in check and at SpNode search starts from here // Step 19. Check for splitting the search if ( !SpNode + && Threads.size() >= 2 && depth >= Threads.minimumSplitDepth - && Threads.available_slave(thisThread) + && ( !thisThread->activeSplitPoint + || !thisThread->activeSplitPoint->allSlavesSearching) && thisThread->splitPointsSize < MAX_SPLITPOINTS_PER_THREAD) { - assert(bestValue < beta); + assert(bestValue > -VALUE_INFINITE && bestValue < beta); + + thisThread->split(pos, ss, alpha, beta, &bestValue, &bestMove, + depth, moveCount, &mp, NT, cutNode); + + if (Signals.stop || thisThread->cutoff_occurred()) + return VALUE_ZERO; - thisThread->split(pos, ss, alpha, beta, &bestValue, &bestMove, - depth, moveCount, &mp, NT, cutNode); if (bestValue >= beta) break; } @@ -1016,30 +969,31 @@ moves_loop: // When in check and at SpNode search starts from here if (SpNode) return bestValue; + // Following condition would detect a stop or a cutoff set only after move + // loop has been completed. But in this case bestValue is valid because we + // have fully searched our subtree, and we can anyhow save the result in TT. + /* + if (Signals.stop || thisThread->cutoff_occurred()) + return VALUE_DRAW; + */ + // Step 20. Check for mate and stalemate // All legal moves have been searched and if there are no legal moves, it - // must be mate or stalemate. Note that we can have a false positive in - // case of Signals.stop or thread.cutoff_occurred() are set, but this is - // harmless because return value is discarded anyhow in the parent nodes. - // If we are in a singular extension search then return a fail low score. - // A split node has at least one move - the one tried before to be splitted. + // must be mate or stalemate. If we are in a singular extension search then + // return a fail low score. if (!moveCount) - return excludedMove ? alpha - : inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()]; + bestValue = excludedMove ? alpha + : inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()]; - // If we have pruned all the moves without searching return a fail-low score - if (bestValue == -VALUE_INFINITE) - bestValue = alpha; + // Quiet best move: update killers, history, countermoves and followupmoves + else if (bestValue >= beta && !pos.capture_or_promotion(bestMove) && !inCheck) + update_stats(pos, ss, bestMove, depth, quietsSearched, quietCount - 1); TT.store(posKey, value_to_tt(bestValue, ss->ply), bestValue >= beta ? BOUND_LOWER : PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER, depth, bestMove, ss->staticEval); - // Quiet best move: update killers, history, countermoves and followupmoves - if (bestValue >= beta && !pos.capture_or_promotion(bestMove) && !inCheck) - update_stats(pos, ss, bestMove, depth, quietsSearched, quietCount - 1); - assert(bestValue > -VALUE_INFINITE && bestValue < VALUE_INFINITE); return bestValue; @@ -1053,7 +1007,7 @@ moves_loop: // When in check and at SpNode search starts from here template Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) { - const bool PvNode = (NT == PV); + const bool PvNode = NT == PV; assert(NT == PV || NT == NonPV); assert(InCheck == !!pos.checkers()); @@ -1061,6 +1015,7 @@ moves_loop: // When in check and at SpNode search starts from here assert(PvNode || (alpha == beta - 1)); assert(depth <= DEPTH_ZERO); + Move pv[MAX_PLY+1]; StateInfo st; const TTEntry* tte; Key posKey; @@ -1069,16 +1024,21 @@ moves_loop: // When in check and at SpNode search starts from here bool givesCheck, evasionPrunable; Depth ttDepth; - // To flag BOUND_EXACT a node with eval above alpha and no available moves if (PvNode) - oldAlpha = alpha; + { + oldAlpha = alpha; // To flag BOUND_EXACT when eval above alpha and no available moves + (ss+1)->pv = pv; + ss->pv[0] = MOVE_NONE; + } ss->currentMove = bestMove = MOVE_NONE; ss->ply = (ss-1)->ply + 1; // Check for an instant draw or if the maximum ply has been reached - if (pos.is_draw() || ss->ply > MAX_PLY) - return ss->ply > MAX_PLY && !InCheck ? evaluate(pos) : DrawValue[pos.side_to_move()]; + if (pos.is_draw() || ss->ply >= MAX_PLY) + return ss->ply >= MAX_PLY && !InCheck ? evaluate(pos) : DrawValue[pos.side_to_move()]; + + assert(0 <= ss->ply && ss->ply < MAX_PLY); // Decide whether or not to include checks: this fixes also the type of // TT entry depth that we are going to use. Note that in qsearch we use @@ -1092,12 +1052,12 @@ moves_loop: // When in check and at SpNode search starts from here ttMove = tte ? tte->move() : MOVE_NONE; ttValue = tte ? value_from_tt(tte->value(),ss->ply) : VALUE_NONE; - if ( tte + if ( !PvNode + && tte && tte->depth() >= ttDepth && ttValue != VALUE_NONE // Only in case of TT access race - && ( PvNode ? tte->bound() == BOUND_EXACT - : ttValue >= beta ? (tte->bound() & BOUND_LOWER) - : (tte->bound() & BOUND_UPPER))) + && (ttValue >= beta ? (tte->bound() & BOUND_LOWER) + : (tte->bound() & BOUND_UPPER))) { ss->currentMove = ttMove; // Can be MOVE_NONE return ttValue; @@ -1123,7 +1083,8 @@ moves_loop: // When in check and at SpNode search starts from here bestValue = ttValue; } else - ss->staticEval = bestValue = evaluate(pos); + ss->staticEval = bestValue = + (ss-1)->currentMove != MOVE_NULL ? evaluate(pos) : -(ss-1)->staticEval + 2 * Eval::Tempo; // Stand pat. Return immediately if static value is at least beta if (bestValue >= beta) @@ -1138,7 +1099,7 @@ moves_loop: // When in check and at SpNode search starts from here if (PvNode && bestValue > alpha) alpha = bestValue; - futilityBase = bestValue + Value(128); + futilityBase = bestValue + 128; } // Initialize a MovePicker object for the current position, and prepare @@ -1161,7 +1122,6 @@ moves_loop: // When in check and at SpNode search starts from here if ( !PvNode && !InCheck && !givesCheck - && move != ttMove && futilityBase > -VALUE_KNOWN_WIN && !pos.advanced_pawn_push(move)) { @@ -1191,11 +1151,13 @@ moves_loop: // When in check and at SpNode search starts from here // Don't search moves with negative SEE values if ( !PvNode && (!InCheck || evasionPrunable) - && move != ttMove && type_of(move) != PROMOTION && pos.see_sign(move) < VALUE_ZERO) continue; + // Speculative prefetch as early as possible + prefetch((char*)TT.first_entry(pos.key_after(move))); + // Check for legality just before making the move if (!pos.legal(move, ci.pinned)) continue; @@ -1217,6 +1179,9 @@ moves_loop: // When in check and at SpNode search starts from here if (value > alpha) { + if (PvNode) // Update pv even in fail-high case + update_pv(ss->pv, move, (ss+1)->pv); + if (PvNode && value < beta) // Update alpha here! Always alpha < beta { alpha = value; @@ -1273,10 +1238,19 @@ moves_loop: // When in check and at SpNode search starts from here } + // update_pv() adds current move and appends child pv[] + + void update_pv(Move* pv, Move move, Move* childPv) { + + for (*pv++ = move; childPv && *childPv != MOVE_NONE; ) + *pv++ = *childPv++; + *pv = MOVE_NONE; + } + // update_stats() updates killers, history, countermoves and followupmoves stats after a fail-high // of a quiet move. - void update_stats(Position& pos, Stack* ss, Move move, Depth depth, Move* quiets, int quietsCnt) { + void update_stats(const Position& pos, Stack* ss, Move move, Depth depth, Move* quiets, int quietsCnt) { if (ss->killers[0] != move) { @@ -1308,8 +1282,8 @@ moves_loop: // When in check and at SpNode search starts from here } - // When playing with a strength handicap, choose best move among the MultiPV - // set using a statistical rule dependent on 'level'. Idea by Heinz van Saanen. + // When playing with a strength handicap, choose best move among the first 'candidates' + // RootMoves using a statistical rule dependent on 'level'. Idea by Heinz van Saanen. Move Skill::pick_move() { @@ -1320,7 +1294,7 @@ moves_loop: // When in check and at SpNode search starts from here rk.rand(); // RootMoves are already sorted by score in descending order - int variance = std::min(RootMoves[0].score - RootMoves[MultiPV - 1].score, PawnValueMg); + int variance = std::min(RootMoves[0].score - RootMoves[candidates - 1].score, PawnValueMg); int weakness = 120 - 2 * level; int max_s = -VALUE_INFINITE; best = MOVE_NONE; @@ -1328,12 +1302,12 @@ moves_loop: // When in check and at SpNode search starts from here // Choose best move. For each move score we add two terms both dependent on // weakness. One deterministic and bigger for weaker moves, and one random, // then we choose the move with the resulting highest score. - for (size_t i = 0; i < MultiPV; ++i) + for (size_t i = 0; i < candidates; ++i) { int s = RootMoves[i].score; // Don't allow crazy blunders even at very low skills - if (i > 0 && RootMoves[i-1].score > s + 2 * PawnValueMg) + if (i > 0 && RootMoves[i - 1].score > s + 2 * PawnValueMg) break; // This is our magic formula @@ -1354,9 +1328,9 @@ moves_loop: // When in check and at SpNode search starts from here // requires that all (if any) unsearched PV lines are sent using a previous // search score. - string uci_pv(const Position& pos, int depth, Value alpha, Value beta) { + string uci_pv(const Position& pos, Depth depth, Value alpha, Value beta) { - std::stringstream s; + std::stringstream ss; Time::point elapsed = Time::now() - SearchTime + 1; size_t uciPVSize = std::min((size_t)Options["MultiPV"], RootMoves.size()); int selDepth = 0; @@ -1372,88 +1346,54 @@ moves_loop: // When in check and at SpNode search starts from here if (depth == 1 && !updated) continue; - int d = updated ? depth : depth - 1; + Depth d = updated ? depth : depth - ONE_PLY; Value v = updated ? RootMoves[i].score : RootMoves[i].prevScore; - if (s.rdbuf()->in_avail()) // Not at first line - s << "\n"; + if (ss.rdbuf()->in_avail()) // Not at first line + ss << "\n"; - s << "info depth " << d - << " seldepth " << selDepth - << " score " << (i == PVIdx ? score_to_uci(v, alpha, beta) : score_to_uci(v)) - << " nodes " << pos.nodes_searched() - << " nps " << pos.nodes_searched() * 1000 / elapsed - << " time " << elapsed - << " multipv " << i + 1 - << " pv"; + ss << "info depth " << d / ONE_PLY + << " seldepth " << selDepth + << " multipv " << i + 1 + << " score " << (i == PVIdx ? UCI::format_value(v, alpha, beta) : UCI::format_value(v)) + << " nodes " << pos.nodes_searched() + << " nps " << pos.nodes_searched() * 1000 / elapsed + << " time " << elapsed + << " pv"; - for (size_t j = 0; RootMoves[i].pv[j] != MOVE_NONE; ++j) - s << " " << move_to_uci(RootMoves[i].pv[j], pos.is_chess960()); + for (size_t j = 0; j < RootMoves[i].pv.size(); ++j) + ss << " " << UCI::format_move(RootMoves[i].pv[j], pos.is_chess960()); } - return s.str(); + return ss.str(); } } // namespace -/// RootMove::extract_pv_from_tt() builds a PV by adding moves from the TT table. -/// We also consider both failing high nodes and BOUND_EXACT nodes here to -/// ensure that we have a ponder move even when we fail high at root. This -/// results in a long PV to print that is important for position analysis. - -void RootMove::extract_pv_from_tt(Position& pos) { - - StateInfo state[MAX_PLY_PLUS_6], *st = state; - const TTEntry* tte; - int ply = 0; - Move m = pv[0]; - - pv.clear(); - - do { - pv.push_back(m); - - assert(MoveList(pos).contains(pv[ply])); - - pos.do_move(pv[ply++], *st++); - tte = TT.probe(pos.key()); - - } while ( tte - && pos.pseudo_legal(m = tte->move()) // Local copy, TT could change - && pos.legal(m, pos.pinned_pieces(pos.side_to_move())) - && ply < MAX_PLY - && (!pos.is_draw() || ply < 2)); - - pv.push_back(MOVE_NONE); // Must be zero-terminating - - while (ply) pos.undo_move(pv[--ply]); -} - - /// RootMove::insert_pv_in_tt() is called at the end of a search iteration, and /// inserts the PV back into the TT. This makes sure the old PV moves are searched /// first, even if the old TT entries have been overwritten. void RootMove::insert_pv_in_tt(Position& pos) { - StateInfo state[MAX_PLY_PLUS_6], *st = state; + StateInfo state[MAX_PLY], *st = state; const TTEntry* tte; - int ply = 0; + size_t idx = 0; - do { + for ( ; idx < pv.size(); ++idx) + { tte = TT.probe(pos.key()); - if (!tte || tte->move() != pv[ply]) // Don't overwrite correct entries - TT.store(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE, pv[ply], VALUE_NONE); + if (!tte || tte->move() != pv[idx]) // Don't overwrite correct entries + TT.store(pos.key(), VALUE_NONE, BOUND_NONE, DEPTH_NONE, pv[idx], VALUE_NONE); - assert(MoveList(pos).contains(pv[ply])); + assert(MoveList(pos).contains(pv[idx])); - pos.do_move(pv[ply++], *st++); - - } while (pv[ply] != MOVE_NONE); + pos.do_move(pv[idx], *st++); + } - while (ply) pos.undo_move(pv[--ply]); + while (idx) pos.undo_move(pv[--idx]); } @@ -1467,52 +1407,19 @@ void Thread::idle_loop() { assert(!this_sp || (this_sp->masterThread == this && searching)); - while (true) + while (!exit) { - // If we are not searching, wait for a condition to be signaled instead of - // wasting CPU time polling for work. - while ((!searching && Threads.sleepWhileIdle) || exit) - { - if (exit) - { - assert(!this_sp); - return; - } - - // Grab the lock to avoid races with Thread::notify_one() - mutex.lock(); - - // If we are master and all slaves have finished then exit idle_loop - if (this_sp && !this_sp->slavesMask) - { - mutex.unlock(); - break; - } - - // Do sleep after retesting sleep conditions under lock protection. In - // particular we need to avoid a deadlock in case a master thread has, - // in the meanwhile, allocated us and sent the notify_one() call before - // we had the chance to grab the lock. - if (!searching && !exit) - sleepCondition.wait(mutex); - - mutex.unlock(); - } - // If this thread has been assigned work, launch a search - if (searching) + while (searching) { - assert(!exit); - Threads.mutex.lock(); - assert(searching); assert(activeSplitPoint); SplitPoint* sp = activeSplitPoint; Threads.mutex.unlock(); - Stack stack[MAX_PLY_PLUS_6], *ss = stack+2; // To allow referencing (ss-2) + Stack stack[MAX_PLY+4], *ss = stack+2; // To allow referencing (ss-2) and (ss+2) Position pos(*sp->pos, this); std::memcpy(ss-2, sp->ss-2, 5 * sizeof(Stack)); @@ -1524,32 +1431,30 @@ void Thread::idle_loop() { activePosition = &pos; - switch (sp->nodeType) { - case Root: - search(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode); - break; - case PV: - search(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode); - break; - case NonPV: - search(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode); - break; - default: + if (sp->nodeType == NonPV) + search(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode); + + else if (sp->nodeType == PV) + search(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode); + + else if (sp->nodeType == Root) + search(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode); + + else assert(false); - } assert(searching); searching = false; activePosition = NULL; - sp->slavesMask &= ~(1ULL << idx); + sp->slavesMask.reset(idx); + sp->allSlavesSearching = false; sp->nodes += pos.nodes_searched(); // Wake up the master thread so to allow it to return from the idle // loop in case we are the last slave of the split point. - if ( Threads.sleepWhileIdle - && this != sp->masterThread - && !sp->slavesMask) + if ( this != sp->masterThread + && sp->slavesMask.none()) { assert(!sp->masterThread->searching); sp->masterThread->notify_one(); @@ -1557,21 +1462,58 @@ void Thread::idle_loop() { // After releasing the lock we can't access any SplitPoint related data // in a safe way because it could have been released under our feet by - // the sp master. Also accessing other Thread objects is unsafe because - // if we are exiting there is a chance that they are already freed. + // the sp master. sp->mutex.unlock(); + + // Try to late join to another split point if none of its slaves has + // already finished. + if (Threads.size() > 2) + for (size_t i = 0; i < Threads.size(); ++i) + { + const int size = Threads[i]->splitPointsSize; // Local copy + sp = size ? &Threads[i]->splitPoints[size - 1] : NULL; + + if ( sp + && sp->allSlavesSearching + && available_to(Threads[i])) + { + // Recheck the conditions under lock protection + Threads.mutex.lock(); + sp->mutex.lock(); + + if ( sp->allSlavesSearching + && available_to(Threads[i])) + { + sp->slavesMask.set(idx); + activeSplitPoint = sp; + searching = true; + } + + sp->mutex.unlock(); + Threads.mutex.unlock(); + + break; // Just a single attempt + } + } } - // If this thread is the master of a split point and all slaves have finished - // their work at this split point, return from the idle loop. - if (this_sp && !this_sp->slavesMask) + // Grab the lock to avoid races with Thread::notify_one() + mutex.lock(); + + // If we are master and all slaves have finished then exit idle_loop + if (this_sp && this_sp->slavesMask.none()) { - this_sp->mutex.lock(); - bool finished = !this_sp->slavesMask; // Retest under lock protection - this_sp->mutex.unlock(); - if (finished) - return; + assert(!searching); + mutex.unlock(); + break; } + + // If we are not searching, wait for a condition to be signaled instead of + // wasting CPU time polling for work. + if (!searching && !exit) + sleepCondition.wait(mutex); + + mutex.unlock(); } } @@ -1583,7 +1525,7 @@ void Thread::idle_loop() { void check_time() { static Time::point lastInfoTime = Time::now(); - int64_t nodes = 0; // Workaround silly 'uninitialized' gcc warning + Time::point elapsed = Time::now() - SearchTime; if (Time::now() - lastInfoTime >= 1000) { @@ -1591,14 +1533,24 @@ void check_time() { dbg_print(); } - if (Limits.ponder) - return; + if (Limits.use_time_management() && !Limits.ponder) + { + bool stillAtFirstMove = Signals.firstRootMove + && !Signals.failedLowAtRoot + && elapsed > TimeMgr.available_time() * 75 / 100; + + if ( stillAtFirstMove + || elapsed > TimeMgr.maximum_time() - 2 * TimerThread::Resolution) + Signals.stop = true; + } + else if (Limits.movetime && elapsed >= Limits.movetime) + Signals.stop = true; - if (Limits.nodes) + else if (Limits.nodes) { Threads.mutex.lock(); - nodes = RootPos.nodes_searched(); + int64_t nodes = RootPos.nodes_searched(); // Loop across all split points and sum accumulated SplitPoint nodes plus // all the currently active positions nodes. @@ -1610,30 +1562,17 @@ void check_time() { sp.mutex.lock(); nodes += sp.nodes; - Bitboard sm = sp.slavesMask; - while (sm) - { - Position* pos = Threads[pop_lsb(&sm)]->activePosition; - if (pos) - nodes += pos->nodes_searched(); - } + + for (size_t idx = 0; idx < Threads.size(); ++idx) + if (sp.slavesMask.test(idx) && Threads[idx]->activePosition) + nodes += Threads[idx]->activePosition->nodes_searched(); sp.mutex.unlock(); } Threads.mutex.unlock(); - } - Time::point elapsed = Time::now() - SearchTime; - bool stillAtFirstMove = Signals.firstRootMove - && !Signals.failedLowAtRoot - && elapsed > TimeMgr.available_time() * 75 / 100; - - bool noMoreTime = elapsed > TimeMgr.maximum_time() - 2 * TimerThread::Resolution - || stillAtFirstMove; - - if ( (Limits.use_time_management() && noMoreTime) - || (Limits.movetime && elapsed >= Limits.movetime) - || (Limits.nodes && nodes >= Limits.nodes)) - Signals.stop = true; + if (nodes >= Limits.nodes) + Signals.stop = true; + } }