X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fsearch.cpp;h=e8760b7372bb13a8edefa5155da39a1bfb854544;hp=9a1fa821211c317bed64fb25e71a82d9604a23d9;hb=72d8d27234260df70b630b1606574b0f92b998f8;hpb=91601d7f95a3e84d2d46ca9a36637508197dbdab diff --git a/src/search.cpp b/src/search.cpp index 9a1fa821..e8760b73 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -17,6 +17,7 @@ along with this program. If not, see . */ +#include #include #include #include @@ -24,7 +25,6 @@ #include #include #include -#include #include "book.h" #include "evaluate.h" @@ -42,7 +42,7 @@ namespace Search { volatile SignalsType Signals; LimitsType Limits; - std::vector RootMoves; + std::vector SearchMoves; Position RootPosition; } @@ -60,15 +60,21 @@ namespace { enum NodeType { Root, PV, NonPV, SplitPointRoot, SplitPointPV, SplitPointNonPV }; // RootMove struct is used for moves at the root of the tree. For each root - // move, we store a score, a node count, and a PV (really a refutation - // in the case of moves which fail low). Score is normally set at - // -VALUE_INFINITE for all non-pv moves. + // move we store a score, a node count, and a PV (really a refutation in the + // case of moves which fail low). Score is normally set at -VALUE_INFINITE for + // all non-pv moves. struct RootMove { - // RootMove::operator<() is the comparison function used when - // sorting the moves. A move m1 is considered to be better - // than a move m2 if it has an higher score + RootMove(){} + RootMove(Move m) { + nodes = 0; + score = prevScore = -VALUE_INFINITE; + pv.push_back(m); + pv.push_back(MOVE_NONE); + } + bool operator<(const RootMove& m) const { return score < m.score; } + bool operator==(const Move& m) const { return pv[0] == m; } void extract_pv_from_tt(Position& pos); void insert_pv_in_tt(Position& pos); @@ -79,15 +85,6 @@ namespace { std::vector pv; }; - // RootMoveList struct is mainly a std::vector of RootMove objects - struct RootMoveList : public std::vector { - - void init(Position& pos, Move rootMoves[]); - RootMove* find(const Move& m, int startIndex = 0); - - int bestMoveChanges; - }; - /// Constants @@ -147,9 +144,10 @@ namespace { /// Namespace variables - RootMoveList Rml; - size_t MultiPV, UCIMultiPV, MultiPVIdx; + std::vector RootMoves; + size_t MultiPV, UCIMultiPV, PVIdx; TimeManager TimeMgr; + int BestMoveChanges; int SkillLevel; bool SkillLevelEnabled; History H; @@ -157,14 +155,13 @@ namespace { /// Local functions - Move id_loop(Position& pos, Move rootMoves[], Move* ponderMove); - template Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth); template Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth); + void id_loop(Position& pos); bool check_is_dangerous(Position &pos, Move move, Value futilityBase, Value beta, Value *bValue); bool connected_moves(const Position& pos, Move m1, Move m2); Value value_to_tt(Value v, int ply); @@ -172,19 +169,15 @@ namespace { bool can_return_tt(const TTEntry* tte, Depth depth, Value beta, int ply); bool connected_threat(const Position& pos, Move m, Move threat); Value refine_eval(const TTEntry* tte, Value defaultEval, int ply); - void update_history(const Position& pos, Move move, Depth depth, Move movesSearched[], int moveCount); - void do_skill_level(Move* best, Move* ponder); - + Move do_skill_level(); int elapsed_time(bool reset = false); string score_to_uci(Value v, Value alpha = -VALUE_INFINITE, Value beta = VALUE_INFINITE); - string speed_to_uci(int64_t nodes); - string pv_to_uci(const Move pv[], int pvNum, bool chess960); - string pretty_pv(Position& pos, int depth, Value score, int time, Move pv[]); - string depth_to_uci(Depth depth); - - // MovePickerExt template class extends MovePicker and allows to choose at compile - // time the proper moves source according to the type of node. In the default case - // we simply create and use a standard MovePicker object. + void pv_info_to_log(Position& pos, int depth, Value score, int time, Move pv[]); + void pv_info_to_uci(const Position& pos, int depth, Value alpha, Value beta); + + // MovePickerExt class template extends MovePicker and allows to choose at + // compile time the proper moves source according to the type of node. In the + // default case we simply create and use a standard MovePicker object. template struct MovePickerExt : public MovePicker { MovePickerExt(const Position& p, Move ttm, Depth d, const History& h, Stack* ss, Value b) @@ -209,17 +202,17 @@ namespace { return os << move_to_uci(m, chess960); } - // When formatting a move for std::cout we must know if we are in Chess960 - // or not. To keep using the handy operator<<() on the move the trick is to - // embed this flag in the stream itself. Function-like named enum set960 is - // used as a custom manipulator and the stream internal general-purpose array, - // accessed through ios_base::iword(), is used to pass the flag to the move's - // operator<<() that will read it to properly format castling moves. + // When formatting a move for std::cout we must know if we are in Chess960 or + // not. To keep using the handy operator<<() on the move the trick is to embed + // this flag in the stream itself. Function-like named enum set960 is used as + // a custom manipulator and the stream internal general-purpose array, accessed + // through ios_base::iword(), is used to pass the flag to the move's operator<< + // that will read it to properly format castling moves. enum set960 {}; - std::ostream& operator<< (std::ostream& os, const set960& f) { + std::ostream& operator<<(std::ostream& os, const set960& f) { - os.iword(0) = int(f); + os.iword(0) = f; return os; } @@ -250,7 +243,7 @@ namespace { } // namespace -/// init_search() is called during startup to initialize various lookup tables +/// Search::init() is called during startup to initialize various lookup tables void Search::init() { @@ -277,8 +270,8 @@ void Search::init() { } -/// perft() is our utility to verify move generation. All the leaf nodes up to -/// the given depth are generated and counted and the sum returned. +/// Search::perft() is our utility to verify move generation. All the leaf nodes +/// up to the given depth are generated and counted and the sum returned. int64_t Search::perft(Position& pos, Depth depth) { @@ -302,9 +295,9 @@ int64_t Search::perft(Position& pos, Depth depth) { } -/// think() is the external interface to Stockfish's search, and is called by the -/// main thread when the program receives the UCI 'go' command. It searches from -/// RootPosition and at the end prints the "bestmove" to output. +/// Search::think() is the external interface to Stockfish's search, and is +/// called by the main thread when the program receives the UCI 'go' command. It +/// searches from RootPosition and at the end prints the "bestmove" to output. void Search::think() { @@ -313,6 +306,16 @@ void Search::think() { Position& pos = RootPosition; elapsed_time(true); TimeMgr.init(Limits, pos.startpos_ply_counter()); + TT.new_search(); + H.clear(); + RootMoves.clear(); + + // Populate RootMoves with all the legal moves (default) or, if a SearchMoves + // is given, with the subset of legal moves to search. + for (MoveList ml(pos); !ml.end(); ++ml) + if ( SearchMoves.empty() + || std::count(SearchMoves.begin(), SearchMoves.end(), ml.move())) + RootMoves.push_back(RootMove(ml.move())); // Set output stream mode: normal or chess960. Castling notation is different cout << set960(pos.is_chess960()); @@ -323,13 +326,12 @@ void Search::think() { book.open(Options["Book File"].value()); Move bookMove = book.probe(pos, Options["Best Book Move"].value()); - if (bookMove != MOVE_NONE) - { - if (!Signals.stop && (Limits.ponder || Limits.infinite)) - Threads.wait_for_stop_or_ponderhit(); - cout << "bestmove " << bookMove << endl; - return; + if ( bookMove != MOVE_NONE + && std::count(RootMoves.begin(), RootMoves.end(), bookMove)) + { + std::swap(RootMoves[0], *std::find(RootMoves.begin(), RootMoves.end(), bookMove)); + goto finish; } } @@ -345,7 +347,7 @@ void Search::think() { } UCIMultiPV = Options["MultiPV"].value(); - SkillLevel = Options["Skill Level"].value(); + SkillLevel = Options["Skill Level"].value(); // Do we have to play with skill handicap? In this case enable MultiPV that // we will use behind the scenes to retrieve a set of possible moves. @@ -364,7 +366,6 @@ void Search::think() { << endl; } - // Wake up needed threads and reset maxPly counter for (int i = 0; i < Threads.size(); i++) { Threads[i].maxPly = 0; @@ -378,9 +379,8 @@ void Search::think() { else Threads.set_timer(100); - // We're ready to start thinking. Call the iterative deepening loop function - Move ponderMove = MOVE_NONE; - Move bestMove = id_loop(pos, &RootMoves[0], &ponderMove); + // We're ready to start searching. Call the iterative deepening loop function + id_loop(pos); // Stop timer and send all the slaves to sleep, if not already sleeping Threads.set_timer(0); @@ -393,14 +393,16 @@ void Search::think() { Log log(Options["Search Log Filename"].value()); log << "Nodes: " << pos.nodes_searched() << "\nNodes/second: " << (e > 0 ? pos.nodes_searched() * 1000 / e : 0) - << "\nBest move: " << move_to_san(pos, bestMove); + << "\nBest move: " << move_to_san(pos, RootMoves[0].pv[0]); StateInfo st; - pos.do_move(bestMove, st); - log << "\nPonder move: " << move_to_san(pos, ponderMove) << endl; - pos.undo_move(bestMove); // Return from think() with unchanged position + pos.do_move(RootMoves[0].pv[0], st); + log << "\nPonder move: " << move_to_san(pos, RootMoves[0].pv[1]) << endl; + pos.undo_move(RootMoves[0].pv[0]); } +finish: + // When we reach max depth we arrive here even without a StopRequest, but if // we are pondering or in infinite search, we shouldn't print the best move // before we are told to do so. @@ -408,12 +410,12 @@ void Search::think() { Threads.wait_for_stop_or_ponderhit(); // Could be MOVE_NONE when searching on a stalemate position - cout << "bestmove " << bestMove; + cout << "bestmove " << RootMoves[0].pv[0]; // UCI protol is not clear on allowing sending an empty ponder move, instead // it is clear that ponder move is optional. So skip it if empty. - if (ponderMove != MOVE_NONE) - cout << " ponder " << ponderMove; + if (RootMoves[0].pv[1] != MOVE_NONE) + cout << " ponder " << RootMoves[0].pv[1]; cout << endl; } @@ -425,57 +427,49 @@ namespace { // with increasing depth until the allocated thinking time has been consumed, // user stops the search, or the maximum search depth is reached. - Move id_loop(Position& pos, Move rootMoves[], Move* ponderMove) { + void id_loop(Position& pos) { Stack ss[PLY_MAX_PLUS_2]; - Value bestValues[PLY_MAX_PLUS_2]; - int bestMoveChanges[PLY_MAX_PLUS_2]; - int depth, aspirationDelta; - Value bestValue, alpha, beta; - Move bestMove, skillBest, skillPonder; + int depth, prevBestMoveChanges; + Value bestValue, alpha, beta, delta; bool bestMoveNeverChanged = true; + Move skillBest = MOVE_NONE; memset(ss, 0, 4 * sizeof(Stack)); - TT.new_search(); - H.clear(); - *ponderMove = bestMove = skillBest = skillPonder = MOVE_NONE; - depth = aspirationDelta = 0; - bestValue = alpha = -VALUE_INFINITE, beta = VALUE_INFINITE; + depth = BestMoveChanges = 0; + bestValue = delta = -VALUE_INFINITE; ss->currentMove = MOVE_NULL; // Hack to skip update gains - Rml.init(pos, rootMoves); - // Handle special case of searching on a mate/stalemate position - if (Rml.empty()) + // Handle the special case of a mate/stalemate position + if (RootMoves.empty()) { - cout << "info" << depth_to_uci(DEPTH_ZERO) - << score_to_uci(pos.in_check() ? -VALUE_MATE : VALUE_DRAW, alpha, beta) << endl; + cout << "info depth 0" + << score_to_uci(pos.in_check() ? -VALUE_MATE : VALUE_DRAW) << endl; - return MOVE_NONE; + RootMoves.push_back(MOVE_NONE); + return; } // Iterative deepening loop until requested to stop or target depth reached while (!Signals.stop && ++depth <= PLY_MAX && (!Limits.maxDepth || depth <= Limits.maxDepth)) { - // Save now last iteration's scores, before Rml moves are reordered - for (size_t i = 0; i < Rml.size(); i++) - Rml[i].prevScore = Rml[i].score; + // Save last iteration's scores before first PV line is searched and all + // the move scores but the (new) PV are set to -VALUE_INFINITE. + for (size_t i = 0; i < RootMoves.size(); i++) + RootMoves[i].prevScore = RootMoves[i].score; - Rml.bestMoveChanges = 0; + prevBestMoveChanges = BestMoveChanges; + BestMoveChanges = 0; // MultiPV loop. We perform a full root search for each PV line - for (MultiPVIdx = 0; MultiPVIdx < std::min(MultiPV, Rml.size()); MultiPVIdx++) + for (PVIdx = 0; PVIdx < std::min(MultiPV, RootMoves.size()); PVIdx++) { - // Calculate dynamic aspiration window based on previous iterations - if (depth >= 5 && abs(Rml[MultiPVIdx].prevScore) < VALUE_KNOWN_WIN) + // Set aspiration window default width + if (depth >= 5 && abs(RootMoves[PVIdx].prevScore) < VALUE_KNOWN_WIN) { - int prevDelta1 = bestValues[depth - 1] - bestValues[depth - 2]; - int prevDelta2 = bestValues[depth - 2] - bestValues[depth - 3]; - - aspirationDelta = std::min(std::max(abs(prevDelta1) + abs(prevDelta2) / 2, 16), 24); - aspirationDelta = (aspirationDelta + 7) / 8 * 8; // Round to match grainSize - - alpha = std::max(Rml[MultiPVIdx].prevScore - aspirationDelta, -VALUE_INFINITE); - beta = std::min(Rml[MultiPVIdx].prevScore + aspirationDelta, VALUE_INFINITE); + delta = Value(16); + alpha = RootMoves[PVIdx].prevScore - delta; + beta = RootMoves[PVIdx].prevScore + delta; } else { @@ -496,100 +490,77 @@ namespace { // we want to keep the same order for all the moves but the new // PV that goes to the front. Note that in case of MultiPV search // the already searched PV lines are preserved. - sort(Rml.begin() + MultiPVIdx, Rml.end()); + sort(RootMoves.begin() + PVIdx, RootMoves.end()); // In case we have found an exact score and we are going to leave // the fail high/low loop then reorder the PV moves, otherwise // leave the last PV move in its position so to be searched again. // Of course this is needed only in MultiPV search. - if (MultiPVIdx && bestValue > alpha && bestValue < beta) - sort(Rml.begin(), Rml.begin() + MultiPVIdx); + if (PVIdx && bestValue > alpha && bestValue < beta) + sort(RootMoves.begin(), RootMoves.begin() + PVIdx); - // Write PV back to transposition table in case the relevant entries - // have been overwritten during the search. - for (size_t i = 0; i <= MultiPVIdx; i++) - Rml[i].insert_pv_in_tt(pos); + // Write PV back to transposition table in case the relevant + // entries have been overwritten during the search. + for (size_t i = 0; i <= PVIdx; i++) + RootMoves[i].insert_pv_in_tt(pos); - // If search has been stopped exit the aspiration window loop, - // note that sorting and writing PV back to TT is safe becuase - // Rml is still valid, although refers to the previous iteration. + // If search has been stopped exit the aspiration window loop. + // Sorting and writing PV back to TT is safe becuase RootMoves + // is still valid, although refers to previous iteration. if (Signals.stop) break; // Send full PV info to GUI if we are going to leave the loop or - // if we have a fail high/low and we are deep in the search. UCI - // protocol requires to send all the PV lines also if are still - // to be searched and so refer to the previous search's score. + // if we have a fail high/low and we are deep in the search. if ((bestValue > alpha && bestValue < beta) || elapsed_time() > 2000) - for (size_t i = 0; i < std::min(UCIMultiPV, Rml.size()); i++) - { - bool updated = (i <= MultiPVIdx); - - if (depth == 1 && !updated) - continue; - - Depth d = (updated ? depth : depth - 1) * ONE_PLY; - Value s = (updated ? Rml[i].score : Rml[i].prevScore); - - cout << "info" - << depth_to_uci(d) - << (i == MultiPVIdx ? score_to_uci(s, alpha, beta) : score_to_uci(s)) - << speed_to_uci(pos.nodes_searched()) - << pv_to_uci(&Rml[i].pv[0], i + 1, pos.is_chess960()) - << endl; - } + pv_info_to_uci(pos, depth, alpha, beta); // In case of failing high/low increase aspiration window and // research, otherwise exit the fail high/low loop. if (bestValue >= beta) { - beta = std::min(beta + aspirationDelta, VALUE_INFINITE); - aspirationDelta += aspirationDelta / 2; + beta += delta; + delta += delta / 2; } else if (bestValue <= alpha) { Signals.failedLowAtRoot = true; Signals.stopOnPonderhit = false; - alpha = std::max(alpha - aspirationDelta, -VALUE_INFINITE); - aspirationDelta += aspirationDelta / 2; + alpha -= delta; + delta += delta / 2; } else break; + assert(alpha >= -VALUE_INFINITE && beta <= VALUE_INFINITE); + } while (abs(bestValue) < VALUE_KNOWN_WIN); } - bestMove = Rml[0].pv[0]; - *ponderMove = Rml[0].pv[1]; - bestValues[depth] = bestValue; - bestMoveChanges[depth] = Rml.bestMoveChanges; - - // Skills: Do we need to pick now the best and the ponder moves ? + // Skills: Do we need to pick now the best move ? if (SkillLevelEnabled && depth == 1 + SkillLevel) - do_skill_level(&skillBest, &skillPonder); + skillBest = do_skill_level(); if (Options["Use Search Log"].value()) - { - Log log(Options["Search Log Filename"].value()); - log << pretty_pv(pos, depth, bestValue, elapsed_time(), &Rml[0].pv[0]) << endl; - } + pv_info_to_log(pos, depth, bestValue, elapsed_time(), &RootMoves[0].pv[0]); // Filter out startup noise when monitoring best move stability - if (depth > 2 && bestMoveChanges[depth]) + if (depth > 2 && BestMoveChanges) bestMoveNeverChanged = false; // Do we have time for the next iteration? Can we stop searching now? if (!Signals.stop && !Signals.stopOnPonderhit && Limits.useTimeManagement()) { - bool stop = false; // Local variable instead of the volatile Signals.stop + bool stop = false; // Local variable, not the volatile Signals.stop // Take in account some extra time if the best move has changed if (depth > 4 && depth < 50) - TimeMgr.pv_instability(bestMoveChanges[depth], bestMoveChanges[depth - 1]); + TimeMgr.pv_instability(BestMoveChanges, prevBestMoveChanges); - // Stop search if most of available time is already consumed. We probably don't - // have enough time to search the first move at the next iteration anyway. + // Stop search if most of available time is already consumed. We + // probably don't have enough time to search the first move at the + // next iteration anyway. if (elapsed_time() > (TimeMgr.available_time() * 62) / 100) stop = true; @@ -600,7 +571,7 @@ namespace { || elapsed_time() > (TimeMgr.available_time() * 40) / 100)) { Value rBeta = bestValue - EasyMoveMargin; - (ss+1)->excludedMove = bestMove; + (ss+1)->excludedMove = RootMoves[0].pv[0]; (ss+1)->skipNullMove = true; Value v = search(pos, ss+1, rBeta - 1, rBeta, (depth * ONE_PLY) / 2); (ss+1)->skipNullMove = false; @@ -622,17 +593,14 @@ namespace { } } - // When using skills overwrite best and ponder moves with the sub-optimal ones + // When using skills swap best PV line with the sub-optimal one if (SkillLevelEnabled) { if (skillBest == MOVE_NONE) // Still unassigned ? - do_skill_level(&skillBest, &skillPonder); + skillBest = do_skill_level(); - bestMove = skillBest; - *ponderMove = skillPonder; + std::swap(RootMoves[0], *std::find(RootMoves.begin(), RootMoves.end(), skillBest)); } - - return bestMove; } @@ -717,7 +685,7 @@ namespace { excludedMove = ss->excludedMove; posKey = excludedMove ? pos.get_exclusion_key() : pos.get_key(); tte = TT.probe(posKey); - ttMove = RootNode ? Rml[MultiPVIdx].pv[0] : tte ? tte->move() : MOVE_NONE; + ttMove = RootNode ? RootMoves[PVIdx].pv[0] : tte ? tte->move() : MOVE_NONE; // At PV nodes we check for exact scores, while at non-PV nodes we check for // a fail high/low. Biggest advantage at probing at PV nodes is to have a @@ -940,7 +908,7 @@ split_point_start: // At split points actual search starts from here // At root obey the "searchmoves" option and skip moves not listed in Root // Move List, as a consequence any illegal move is also skipped. In MultiPV // mode we also skip PV moves which have been already searched. - if (RootNode && !Rml.find(move, MultiPVIdx)) + if (RootNode && !std::count(RootMoves.begin() + PVIdx, RootMoves.end(), move)) continue; // At PV and SpNode nodes we want all moves to be legal since the beginning @@ -963,9 +931,9 @@ split_point_start: // At split points actual search starts from here nodes = pos.nodes_searched(); if (pos.thread() == 0 && elapsed_time() > 2000) - cout << "info" << depth_to_uci(depth) + cout << "info depth " << depth / ONE_PLY << " currmove " << move - << " currmovenumber " << moveCount + MultiPVIdx << endl; + << " currmovenumber " << moveCount + PVIdx << endl; } isPvMove = (PvNode && moveCount <= 1); @@ -1126,26 +1094,26 @@ split_point_start: // At split points actual search starts from here // be trusted, and we don't update the best move and/or PV. if (RootNode && !Signals.stop) { - RootMove* rm = Rml.find(move); - rm->nodes += pos.nodes_searched() - nodes; + RootMove& rm = *std::find(RootMoves.begin(), RootMoves.end(), move); + rm.nodes += pos.nodes_searched() - nodes; // PV move or new best move ? if (isPvMove || value > alpha) { - rm->score = value; - rm->extract_pv_from_tt(pos); + rm.score = value; + rm.extract_pv_from_tt(pos); // We record how often the best move has been changed in each // iteration. This information is used for time management: When // the best move changes frequently, we allocate some more time. if (!isPvMove && MultiPV == 1) - Rml.bestMoveChanges++; + BestMoveChanges++; } else // All other moves but the PV are set to the lowest value, this // is not a problem when sorting becuase sort is stable and move // position in the list is preserved, just the PV is pushed up. - rm->score = -VALUE_INFINITE; + rm.score = -VALUE_INFINITE; } @@ -1197,7 +1165,7 @@ split_point_start: // At split points actual search starts from here } // Step 21. Update tables - // Update transposition table entry, history and killers + // Update transposition table entry, killers and history if (!SpNode && !Signals.stop && !thread.cutoff_occurred()) { move = bestValue <= oldAlpha ? MOVE_NONE : ss->bestMove; @@ -1206,16 +1174,25 @@ split_point_start: // At split points actual search starts from here TT.store(posKey, value_to_tt(bestValue, ss->ply), vt, depth, move, ss->eval, ss->evalMargin); - // Update killers and history only for non capture moves that fails high - if ( bestValue >= beta - && !pos.is_capture_or_promotion(move)) + // Update killers and history for non capture cut-off moves + if (bestValue >= beta && !pos.is_capture_or_promotion(move)) { if (move != ss->killers[0]) { ss->killers[1] = ss->killers[0]; ss->killers[0] = move; } - update_history(pos, move, depth, movesSearched, playedMoveCount); + + // Increase history value of the cut-off move + Value bonus = Value(int(depth) * int(depth)); + H.add(pos.piece_on(move_from(move)), move_to(move), bonus); + + // Decrease history of all the other played non-capture moves + for (int i = 0; i < playedMoveCount - 1; i++) + { + Move m = movesSearched[i]; + H.add(pos.piece_on(move_from(m)), move_to(m), -bonus); + } } } @@ -1647,27 +1624,6 @@ split_point_start: // At split points actual search starts from here } - // update_history() registers a good move that produced a beta-cutoff in - // history and marks as failures all the other moves of that ply. - - void update_history(const Position& pos, Move move, Depth depth, - Move movesSearched[], int moveCount) { - Move m; - Value bonus = Value(int(depth) * int(depth)); - - H.update(pos.piece_on(move_from(move)), move_to(move), bonus); - - for (int i = 0; i < moveCount - 1; i++) - { - m = movesSearched[i]; - - assert(m != move); - - H.update(pos.piece_on(move_from(m)), move_to(m), -bonus); - } - } - - // current_search_time() returns the number of milliseconds which have passed // since the beginning of the current search. @@ -1704,61 +1660,49 @@ split_point_start: // At split points actual search starts from here } - // speed_to_uci() returns a string with time stats of current search suitable - // to be sent to UCI gui. + // pv_info_to_uci() sends search info to GUI. UCI protocol requires to send all + // the PV lines also if are still to be searched and so refer to the previous + // search score. - string speed_to_uci(int64_t nodes) { + void pv_info_to_uci(const Position& pos, int depth, Value alpha, Value beta) { - std::stringstream s; int t = elapsed_time(); + int selDepth = 0; - s << " nodes " << nodes - << " nps " << (t > 0 ? int(nodes * 1000 / t) : 0) - << " time " << t; - - return s.str(); - } - - - // pv_to_uci() returns a string with information on the current PV line - // formatted according to UCI specification. - - string pv_to_uci(const Move pv[], int pvNum, bool chess960) { - - std::stringstream s; - - s << " multipv " << pvNum << " pv " << set960(chess960); - - for ( ; *pv != MOVE_NONE; pv++) - s << *pv << " "; - - return s.str(); - } - + for (int i = 0; i < Threads.size(); i++) + if (Threads[i].maxPly > selDepth) + selDepth = Threads[i].maxPly; - // depth_to_uci() returns a string with information on the current depth and - // seldepth formatted according to UCI specification. + for (size_t i = 0; i < std::min(UCIMultiPV, RootMoves.size()); i++) + { + bool updated = (i <= PVIdx); - string depth_to_uci(Depth depth) { + if (depth == 1 && !updated) + continue; - std::stringstream s; + int d = (updated ? depth : depth - 1); + Value s = (updated ? RootMoves[i].score : RootMoves[i].prevScore); - // Retrieve max searched depth among threads - int selDepth = 0; - for (int i = 0; i < Threads.size(); i++) - if (Threads[i].maxPly > selDepth) - selDepth = Threads[i].maxPly; + cout << "info" + << " depth " << d + << " seldepth " << selDepth + << (i == PVIdx ? score_to_uci(s, alpha, beta) : score_to_uci(s)) + << " nodes " << pos.nodes_searched() + << " nps " << (t > 0 ? pos.nodes_searched() * 1000 / t : 0) + << " time " << t + << " multipv " << i + 1 << " pv"; - s << " depth " << depth / ONE_PLY << " seldepth " << selDepth; + for (int j = 0; RootMoves[i].pv[j] != MOVE_NONE; j++) + cout << " " << RootMoves[i].pv[j]; - return s.str(); + cout << endl; + } } - // pretty_pv() creates a human-readable string from a position and a PV. - // It is used to write search information to the log file (which is created - // when the UCI parameter "Use Search Log" is "true"). It uses the two helpers - // time_to_string() and score_to_string() to format time and score respectively. + // pv_info_to_log() writes human-readable search information to the log file + // (which is created when the UCI parameter "Use Search Log" is "true"). It + // uses the two below helpers to pretty format time and score respectively. string time_to_string(int millisecs) { @@ -1774,7 +1718,8 @@ split_point_start: // At split points actual search starts from here if (hours) s << hours << ':'; - s << std::setfill('0') << std::setw(2) << minutes << ':' << std::setw(2) << seconds; + s << std::setfill('0') << std::setw(2) << minutes << ':' + << std::setw(2) << seconds; return s.str(); } @@ -1787,25 +1732,23 @@ split_point_start: // At split points actual search starts from here else if (v <= VALUE_MATED_IN_PLY_MAX) s << "-#" << (VALUE_MATE + v) / 2; else - s << std::setprecision(2) << std::fixed << std::showpos << float(v) / PawnValueMidgame; + s << std::setprecision(2) << std::fixed << std::showpos + << float(v) / PawnValueMidgame; return s.str(); } - string pretty_pv(Position& pos, int depth, Value value, int time, Move pv[]) { + void pv_info_to_log(Position& pos, int depth, Value value, int time, Move pv[]) { const int64_t K = 1000; const int64_t M = 1000000; - const int startColumn = 28; - const size_t maxLength = 80 - startColumn; StateInfo state[PLY_MAX_PLUS_2], *st = state; Move* m = pv; - string san; + string san, padding; + size_t length; std::stringstream s; - size_t length = 0; - // First print depth, score, time and searched nodes... s << set960(pos.is_chess960()) << std::setw(2) << depth << std::setw(8) << score_to_string(value) @@ -1813,113 +1756,82 @@ split_point_start: // At split points actual search starts from here if (pos.nodes_searched() < M) s << std::setw(8) << pos.nodes_searched() / 1 << " "; + else if (pos.nodes_searched() < K * M) s << std::setw(7) << pos.nodes_searched() / K << "K "; + else s << std::setw(7) << pos.nodes_searched() / M << "M "; - // ...then print the full PV line in short algebraic notation + padding = string(s.str().length(), ' '); + length = padding.length(); + while (*m != MOVE_NONE) { san = move_to_san(pos, *m); - length += san.length() + 1; - if (length > maxLength) + if (length + san.length() > 80) { - length = san.length() + 1; - s << "\n" + string(startColumn, ' '); + s << "\n" + padding; + length = padding.length(); } + s << san << ' '; + length += san.length() + 1; pos.do_move(*m++, *st++); } - // Restore original position before to leave - while (m != pv) pos.undo_move(*--m); + while (m != pv) + pos.undo_move(*--m); - return s.str(); + Log l(Options["Search Log Filename"].value()); + l << s.str() << endl; } // When playing with strength handicap choose best move among the MultiPV set // using a statistical rule dependent on SkillLevel. Idea by Heinz van Saanen. - void do_skill_level(Move* best, Move* ponder) { + Move do_skill_level() { assert(MultiPV > 1); static RKISS rk; - // Rml list is already sorted by score in descending order - int s; - size_t size = std::min(MultiPV, Rml.size()); - int max_s = -VALUE_INFINITE; - int max = Rml[0].score; - int var = std::min(max - Rml[size - 1].score, int(PawnValueMidgame)); - int wk = 120 - 2 * SkillLevel; - - // PRNG sequence should be non deterministic + // PRNG sequence should be not deterministic for (int i = abs(get_system_time() % 50); i > 0; i--) rk.rand(); - // Choose best move. For each move's score we add two terms both dependent - // on wk, one deterministic and bigger for weaker moves, and one random, + // RootMoves are already sorted by score in descending order + size_t size = std::min(MultiPV, RootMoves.size()); + int variance = std::min(RootMoves[0].score - RootMoves[size - 1].score, PawnValueMidgame); + int weakness = 120 - 2 * SkillLevel; + int max_s = -VALUE_INFINITE; + Move best = MOVE_NONE; + + // Choose best move. For each move score we add two terms both dependent on + // weakness, one deterministic and bigger for weaker moves, and one random, // then we choose the move with the resulting highest score. for (size_t i = 0; i < size; i++) { - s = Rml[i].score; + int s = RootMoves[i].score; // Don't allow crazy blunders even at very low skills - if (i > 0 && Rml[i-1].score > s + EasyMoveMargin) + if (i > 0 && RootMoves[i-1].score > s + EasyMoveMargin) break; - // This is our magical formula - s += ((max - s) * wk + var * (rk.rand() % wk)) / 128; + // This is our magic formula + s += ( weakness * int(RootMoves[0].score - s) + + variance * (rk.rand() % weakness)) / 128; if (s > max_s) { max_s = s; - *best = Rml[i].pv[0]; - *ponder = Rml[i].pv[1]; + best = RootMoves[i].pv[0]; } } - } - - - // RootMove and RootMoveList method's definitions - - void RootMoveList::init(Position& pos, Move rootMoves[]) { - - Move* sm; - bestMoveChanges = 0; - clear(); - - // Generate all legal moves and add them to RootMoveList - for (MoveList ml(pos); !ml.end(); ++ml) - { - // If we have a rootMoves[] list then verify the move - // is in the list before to add it. - for (sm = rootMoves; *sm && *sm != ml.move(); sm++) {} - - if (sm != rootMoves && *sm != ml.move()) - continue; - - RootMove rm; - rm.pv.push_back(ml.move()); - rm.pv.push_back(MOVE_NONE); - rm.score = rm.prevScore = -VALUE_INFINITE; - rm.nodes = 0; - push_back(rm); - } - } - - RootMove* RootMoveList::find(const Move& m, int startIndex) { - - for (size_t i = startIndex; i < size(); i++) - if ((*this)[i].pv[0] == m) - return &(*this)[i]; - - return NULL; + return best; } @@ -1970,7 +1882,7 @@ split_point_start: // At split points actual search starts from here Value v, m = VALUE_NONE; int ply = 0; - assert(pv[0] != MOVE_NONE && pos.is_pseudo_legal(pv[0])); + assert(pv[ply] != MOVE_NONE && pos.is_pseudo_legal(pv[ply])); do { k = pos.get_key();