X-Git-Url: https://git.sesse.net/?p=stockfish;a=blobdiff_plain;f=src%2Fsearch.cpp;h=fbe6b2c052fa3fee50e7f98bcf37639134e438a1;hp=7188925c0e73c2f3e2fae8d5e2c1b77e5dea2374;hb=b8e6f83cfb913fa079edd3690a8720f09eb7b388;hpb=b534176d4acc15ca5d7fdf3f44d1afb4e33c899a diff --git a/src/search.cpp b/src/search.cpp index 7188925c..fbe6b2c0 100644 --- a/src/search.cpp +++ b/src/search.cpp @@ -43,7 +43,7 @@ namespace Search { std::vector RootMoves; Position RootPos; Color RootColor; - Time::point SearchTime, IterationTime; + Time::point SearchTime; StateStackPtr SetupStates; } @@ -57,16 +57,16 @@ namespace { const bool FakeSplit = false; // Different node types, used as template parameter - enum NodeType { Root, PV, NonPV, SplitPointRoot, SplitPointPV, SplitPointNonPV }; + enum NodeType { Root, PV, NonPV }; // Dynamic razoring margin based on depth - inline Value razor_margin(Depth d) { return Value(512 + 16 * int(d)); } + inline Value razor_margin(Depth d) { return Value(512 + 16 * d); } // Futility lookup tables (initialized at startup) and their access functions int FutilityMoveCounts[2][32]; // [improving][depth] inline Value futility_margin(Depth d) { - return Value(100 * int(d)); + return Value(100 * d); } // Reduction lookup tables (initialized at startup) and their access function @@ -77,7 +77,7 @@ namespace { return (Depth) Reductions[PvNode][i][std::min(int(d) / ONE_PLY, 63)][std::min(mn, 63)]; } - size_t PVSize, PVIdx; + size_t MultiPV, PVIdx; TimeManager TimeMgr; double BestMoveChanges; Value DrawValue[COLOR_NB]; @@ -85,7 +85,7 @@ namespace { GainsStats Gains; MovesStats Countermoves, Followupmoves; - template + template Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode); template @@ -127,10 +127,10 @@ void Search::init() { // Init reductions array for (hd = 1; hd < 64; ++hd) for (mc = 1; mc < 64; ++mc) { - double pvRed = log(double(hd)) * log(double(mc)) / 3.0; + double pvRed = 0.00 + log(double(hd)) * log(double(mc)) / 3.00; double nonPVRed = 0.33 + log(double(hd)) * log(double(mc)) / 2.25; - Reductions[1][1][hd][mc] = (int8_t) ( pvRed >= 1.0 ? floor( pvRed * int(ONE_PLY)) : 0); - Reductions[0][1][hd][mc] = (int8_t) (nonPVRed >= 1.0 ? floor(nonPVRed * int(ONE_PLY)) : 0); + Reductions[1][1][hd][mc] = int8_t( pvRed >= 1.0 ? pvRed * int(ONE_PLY) : 0); + Reductions[0][1][hd][mc] = int8_t(nonPVRed >= 1.0 ? nonPVRed * int(ONE_PLY) : 0); Reductions[1][0][hd][mc] = Reductions[1][1][hd][mc]; Reductions[0][0][hd][mc] = Reductions[0][1][hd][mc]; @@ -145,8 +145,8 @@ void Search::init() { // Init futility move count array for (d = 0; d < 32; ++d) { - FutilityMoveCounts[0][d] = int(2.4 + 0.222 * pow(d + 0.0, 1.8)); - FutilityMoveCounts[1][d] = int(3.0 + 0.3 * pow(d + 0.98, 1.8)); + FutilityMoveCounts[0][d] = int(2.4 + 0.222 * pow(d + 0.00, 1.8)); + FutilityMoveCounts[1][d] = int(3.0 + 0.300 * pow(d + 0.98, 1.8)); } } @@ -185,6 +185,10 @@ void Search::think() { RootColor = RootPos.side_to_move(); TimeMgr.init(Limits, RootPos.game_ply(), RootColor); + int cf = Options["Contempt Factor"] * PawnValueEg / 100; // From centipawns + DrawValue[ RootColor] = VALUE_DRAW - Value(cf); + DrawValue[~RootColor] = VALUE_DRAW + Value(cf); + if (RootMoves.empty()) { RootMoves.push_back(MOVE_NONE); @@ -206,16 +210,6 @@ void Search::think() { } } - if (Options["Contempt Factor"] && !Options["UCI_AnalyseMode"]) - { - int cf = Options["Contempt Factor"] * PawnValueMg / 100; // From centipawns - cf = cf * Material::game_phase(RootPos) / PHASE_MIDGAME; // Scale down with phase - DrawValue[ RootColor] = VALUE_DRAW - Value(cf); - DrawValue[~RootColor] = VALUE_DRAW + Value(cf); - } - else - DrawValue[WHITE] = DrawValue[BLACK] = VALUE_DRAW; - if (Options["Write Search Log"]) { Log log(Options["Search Log Filename"]); @@ -225,7 +219,7 @@ void Search::think() { << " time: " << Limits.time[RootColor] << " increment: " << Limits.inc[RootColor] << " moves to go: " << Limits.movestogo - << std::endl; + << "\n" << std::endl; } // Reset the threads, still sleeping: will wake up at split time @@ -306,21 +300,21 @@ namespace { Countermoves.clear(); Followupmoves.clear(); - PVSize = Options["MultiPV"]; + MultiPV = Options["MultiPV"]; Skill skill(Options["Skill Level"]); // Do we have to play with skill handicap? In this case enable MultiPV search // that we will use behind the scenes to retrieve a set of possible moves. - if (skill.enabled() && PVSize < 4) - PVSize = 4; + if (skill.enabled() && MultiPV < 4) + MultiPV = 4; - PVSize = std::min(PVSize, RootMoves.size()); + MultiPV = std::min(MultiPV, RootMoves.size()); // Iterative deepening loop until requested to stop or target depth reached while (++depth <= MAX_PLY && !Signals.stop && (!Limits.depth || depth <= Limits.depth)) { // Age out PV variability metric - BestMoveChanges *= 0.8; + BestMoveChanges *= 0.5; // Save the last iteration's scores before first PV line is searched and // all the move scores except the (new) PV are set to -VALUE_INFINITE. @@ -328,7 +322,7 @@ namespace { RootMoves[i].prevScore = RootMoves[i].score; // MultiPV loop. We perform a full root search for each PV line - for (PVIdx = 0; PVIdx < PVSize && !Signals.stop; ++PVIdx) + for (PVIdx = 0; PVIdx < MultiPV && !Signals.stop; ++PVIdx) { // Reset aspiration window starting size if (depth >= 5) @@ -343,7 +337,7 @@ namespace { // high/low anymore. while (true) { - bestValue = search(pos, ss, alpha, beta, depth * ONE_PLY, false); + bestValue = search(pos, ss, alpha, beta, depth * ONE_PLY, false); // Bring the best move to the front. It is critical that sorting // is done with a stable algorithm because all the values but the @@ -393,12 +387,10 @@ namespace { // Sort the PV lines searched so far and update the GUI std::stable_sort(RootMoves.begin(), RootMoves.begin() + PVIdx + 1); - if (PVIdx + 1 == PVSize || Time::now() - SearchTime > 3000) + if (PVIdx + 1 == MultiPV || Time::now() - SearchTime > 3000) sync_cout << uci_pv(pos, depth, alpha, beta) << sync_endl; } - IterationTime = Time::now() - SearchTime; - // If skill levels are enabled and time is up, pick a sub-optimal best move if (skill.enabled() && skill.time_to_pick(depth)) skill.pick_move(); @@ -423,20 +415,14 @@ namespace { // Do we have time for the next iteration? Can we stop searching now? if (Limits.use_time_management() && !Signals.stop && !Signals.stopOnPonderhit) { - bool stop = false; // Local variable, not the volatile Signals.stop - // Take some extra time if the best move has changed - if (depth > 4 && depth < 50 && PVSize == 1) + if (depth > 4 && depth < 50 && MultiPV == 1) TimeMgr.pv_instability(BestMoveChanges); - // Stop the search if only one legal move is available or most - // of the available time has been used. We probably don't have - // enough time to search the first move at the next iteration anyway. + // Stop the search if only one legal move is available or all + // of the available time has been used. if ( RootMoves.size() == 1 - || IterationTime > (TimeMgr.available_time() * 62) / 100) - stop = true; - - if (stop) + || Time::now() - SearchTime > TimeMgr.available_time()) { // If we are allowed to ponder do not stop the search now but // keep pondering until the GUI sends "ponderhit" or "stop". @@ -457,14 +443,13 @@ namespace { // repeat all this work again. We also don't need to store anything to the hash // table here: This is taken care of after we return from the split point. - template + template Value search(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth, bool cutNode) { - const bool PvNode = (NT == PV || NT == Root || NT == SplitPointPV || NT == SplitPointRoot); - const bool SpNode = (NT == SplitPointPV || NT == SplitPointNonPV || NT == SplitPointRoot); - const bool RootNode = (NT == Root || NT == SplitPointRoot); + const bool RootNode = NT == Root; + const bool PvNode = NT == PV || NT == Root; - assert(alpha >= -VALUE_INFINITE && alpha < beta && beta <= VALUE_INFINITE); + assert(-VALUE_INFINITE <= alpha && alpha < beta && beta <= VALUE_INFINITE); assert(PvNode || (alpha == beta - 1)); assert(depth > DEPTH_ZERO); @@ -513,7 +498,7 @@ namespace { { // Step 2. Check for aborted search and immediate draw if (Signals.stop || pos.is_draw() || ss->ply > MAX_PLY) - return DrawValue[pos.side_to_move()]; + return ss->ply > MAX_PLY && !inCheck ? evaluate(pos) : DrawValue[pos.side_to_move()]; // Step 3. Mate distance pruning. Even if we mate at the next move our score // would be at best mate_in(ss->ply+1), but if alpha is already bigger because @@ -548,7 +533,6 @@ namespace { : ttValue >= beta ? (tte->bound() & BOUND_LOWER) : (tte->bound() & BOUND_UPPER))) { - TT.refresh(tte); ss->currentMove = ttMove; // Can be MOVE_NONE // If ttMove is quiet, update killers, history, counter move and followup move on TT hit @@ -636,7 +620,7 @@ namespace { pos.do_null_move(st); (ss+1)->skipNullMove = true; nullValue = depth-R < ONE_PLY ? -qsearch(pos, ss+1, -beta, -beta+1, DEPTH_ZERO) - : - search(pos, ss+1, -beta, -beta+1, depth-R, !cutNode); + : - search(pos, ss+1, -beta, -beta+1, depth-R, !cutNode); (ss+1)->skipNullMove = false; pos.undo_null_move(); @@ -652,7 +636,7 @@ namespace { // Do verification search at high depths ss->skipNullMove = true; Value v = depth-R < ONE_PLY ? qsearch(pos, ss, beta-1, beta, DEPTH_ZERO) - : search(pos, ss, beta-1, beta, depth-R, false); + : search(pos, ss, beta-1, beta, depth-R, false); ss->skipNullMove = false; if (v >= beta) @@ -669,8 +653,8 @@ namespace { && !ss->skipNullMove && abs(beta) < VALUE_MATE_IN_MAX_PLY) { - Value rbeta = beta + 200; - Depth rdepth = depth - ONE_PLY - 3 * ONE_PLY; + Value rbeta = std::min(beta + 200, VALUE_INFINITE); + Depth rdepth = depth - 4 * ONE_PLY; assert(rdepth >= ONE_PLY); assert((ss-1)->currentMove != MOVE_NONE); @@ -684,7 +668,7 @@ namespace { { ss->currentMove = move; pos.do_move(move, st, ci, pos.gives_check(move, ci)); - value = -search(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode); + value = -search(pos, ss+1, -rbeta, -rbeta+1, rdepth, !cutNode); pos.undo_move(move); if (value >= rbeta) return value; @@ -692,14 +676,14 @@ namespace { } // Step 10. Internal iterative deepening (skipped when in check) - if ( depth >= (PvNode ? 5 * ONE_PLY : 8 * ONE_PLY) - && ttMove == MOVE_NONE - && (PvNode || ss->staticEval + Value(256) >= beta)) + if ( depth >= (PvNode ? 5 * ONE_PLY : 8 * ONE_PLY) + && !ttMove + && (PvNode || ss->staticEval + 256 >= beta)) { Depth d = depth - 2 * ONE_PLY - (PvNode ? DEPTH_ZERO : depth / 4); ss->skipNullMove = true; - search(pos, ss, alpha, beta, d, true); + search(pos, ss, alpha, beta, d, true); ss->skipNullMove = false; tte = TT.probe(posKey); @@ -780,7 +764,7 @@ moves_loop: // When in check and at SpNode search starts from here || pos.advanced_pawn_push(move); // Step 12. Extend checks - if (givesCheck && pos.see_sign(move) >= 0) + if (givesCheck && pos.see_sign(move) >= VALUE_ZERO) ext = ONE_PLY; // Singular extension search. If all moves but one fail low on a search of @@ -799,7 +783,7 @@ moves_loop: // When in check and at SpNode search starts from here Value rBeta = ttValue - int(depth); ss->excludedMove = move; ss->skipNullMove = true; - value = search(pos, ss, rBeta - 1, rBeta, depth / 2, cutNode); + value = search(pos, ss, rBeta - 1, rBeta, depth / 2, cutNode); ss->skipNullMove = false; ss->excludedMove = MOVE_NONE; @@ -834,7 +818,7 @@ moves_loop: // When in check and at SpNode search starts from here if (predictedDepth < 7 * ONE_PLY) { futilityValue = ss->staticEval + futility_margin(predictedDepth) - + Value(128) + Gains[pos.moved_piece(move)][to_sq(move)]; + + 128 + Gains[pos.moved_piece(move)][to_sq(move)]; if (futilityValue <= alpha) { @@ -851,7 +835,7 @@ moves_loop: // When in check and at SpNode search starts from here } // Prune moves with negative SEE at low depths - if (predictedDepth < 4 * ONE_PLY && pos.see_sign(move) < 0) + if (predictedDepth < 4 * ONE_PLY && pos.see_sign(move) < VALUE_ZERO) { if (SpNode) splitPoint->mutex.lock(); @@ -899,13 +883,13 @@ moves_loop: // When in check and at SpNode search starts from here if (SpNode) alpha = splitPoint->alpha; - value = -search(pos, ss+1, -(alpha+1), -alpha, d, true); + value = -search(pos, ss+1, -(alpha+1), -alpha, d, true); // Research at intermediate depth if reduction is very high if (value > alpha && ss->reduction >= 4 * ONE_PLY) { Depth d2 = std::max(newDepth - 2 * ONE_PLY, ONE_PLY); - value = -search(pos, ss+1, -(alpha+1), -alpha, d2, true); + value = -search(pos, ss+1, -(alpha+1), -alpha, d2, true); } doFullDepthSearch = (value > alpha && ss->reduction != DEPTH_ZERO); @@ -923,7 +907,7 @@ moves_loop: // When in check and at SpNode search starts from here value = newDepth < ONE_PLY ? givesCheck ? -qsearch(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) : -qsearch(pos, ss+1, -(alpha+1), -alpha, DEPTH_ZERO) - : - search(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode); + : - search(pos, ss+1, -(alpha+1), -alpha, newDepth, !cutNode); } // For PV nodes only, do a full PV search on the first move or after a fail @@ -933,7 +917,7 @@ moves_loop: // When in check and at SpNode search starts from here value = newDepth < ONE_PLY ? givesCheck ? -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO) : -qsearch(pos, ss+1, -beta, -alpha, DEPTH_ZERO) - : - search(pos, ss+1, -beta, -alpha, newDepth, false); + : - search(pos, ss+1, -beta, -alpha, newDepth, false); // Step 17. Undo move pos.undo_move(move); @@ -947,12 +931,11 @@ moves_loop: // When in check and at SpNode search starts from here alpha = splitPoint->alpha; } - // Finished searching the move. If Signals.stop is true, the search - // was aborted because the user interrupted the search or because we - // ran out of time. In this case, the return value of the search cannot - // be trusted, and we don't update the best move and/or PV. + // Finished searching the move. If a stop or a cutoff occurred, the return + // value of the search cannot be trusted, and we return immediately without + // updating best move, PV and TT. if (Signals.stop || thisThread->cutoff_occurred()) - return value; // To avoid returning VALUE_INFINITE + return VALUE_ZERO; if (RootNode) { @@ -1005,10 +988,14 @@ moves_loop: // When in check and at SpNode search starts from here && Threads.available_slave(thisThread) && thisThread->splitPointsSize < MAX_SPLITPOINTS_PER_THREAD) { - assert(bestValue < beta); + assert(bestValue > -VALUE_INFINITE && bestValue < beta); thisThread->split(pos, ss, alpha, beta, &bestValue, &bestMove, depth, moveCount, &mp, NT, cutNode); + + if (Signals.stop || thisThread->cutoff_occurred()) + return VALUE_ZERO; + if (bestValue >= beta) break; } @@ -1017,21 +1004,22 @@ moves_loop: // When in check and at SpNode search starts from here if (SpNode) return bestValue; + // Following condition would detect a stop or a cutoff set only after move + // loop has been completed. But in this case bestValue is valid because we + // have fully searched our subtree, and we can anyhow save the result in TT. + /* + if (Signals.stop || thisThread->cutoff_occurred()) + return VALUE_DRAW; + */ + // Step 20. Check for mate and stalemate // All legal moves have been searched and if there are no legal moves, it - // must be mate or stalemate. Note that we can have a false positive in - // case of Signals.stop or thread.cutoff_occurred() are set, but this is - // harmless because return value is discarded anyhow in the parent nodes. - // If we are in a singular extension search then return a fail low score. - // A split node has at least one move - the one tried before to be splitted. + // must be mate or stalemate. If we are in a singular extension search then + // return a fail low score. if (!moveCount) return excludedMove ? alpha : inCheck ? mated_in(ss->ply) : DrawValue[pos.side_to_move()]; - // If we have pruned all the moves without searching return a fail-low score - if (bestValue == -VALUE_INFINITE) - bestValue = alpha; - TT.store(posKey, value_to_tt(bestValue, ss->ply), bestValue >= beta ? BOUND_LOWER : PvNode && bestMove ? BOUND_EXACT : BOUND_UPPER, @@ -1054,7 +1042,7 @@ moves_loop: // When in check and at SpNode search starts from here template Value qsearch(Position& pos, Stack* ss, Value alpha, Value beta, Depth depth) { - const bool PvNode = (NT == PV); + const bool PvNode = NT == PV; assert(NT == PV || NT == NonPV); assert(InCheck == !!pos.checkers()); @@ -1079,7 +1067,7 @@ moves_loop: // When in check and at SpNode search starts from here // Check for an instant draw or if the maximum ply has been reached if (pos.is_draw() || ss->ply > MAX_PLY) - return DrawValue[pos.side_to_move()]; + return ss->ply > MAX_PLY && !InCheck ? evaluate(pos) : DrawValue[pos.side_to_move()]; // Decide whether or not to include checks: this fixes also the type of // TT entry depth that we are going to use. Note that in qsearch we use @@ -1139,7 +1127,7 @@ moves_loop: // When in check and at SpNode search starts from here if (PvNode && bestValue > alpha) alpha = bestValue; - futilityBase = bestValue + Value(128); + futilityBase = bestValue + 128; } // Initialize a MovePicker object for the current position, and prepare @@ -1176,7 +1164,7 @@ moves_loop: // When in check and at SpNode search starts from here continue; } - if (futilityBase < beta && pos.see(move) <= 0) + if (futilityBase < beta && pos.see(move) <= VALUE_ZERO) { bestValue = std::max(bestValue, futilityBase); continue; @@ -1194,7 +1182,7 @@ moves_loop: // When in check and at SpNode search starts from here && (!InCheck || evasionPrunable) && move != ttMove && type_of(move) != PROMOTION - && pos.see_sign(move) < 0) + && pos.see_sign(move) < VALUE_ZERO) continue; // Check for legality just before making the move @@ -1321,7 +1309,7 @@ moves_loop: // When in check and at SpNode search starts from here rk.rand(); // RootMoves are already sorted by score in descending order - int variance = std::min(RootMoves[0].score - RootMoves[PVSize - 1].score, PawnValueMg); + int variance = std::min(RootMoves[0].score - RootMoves[MultiPV - 1].score, PawnValueMg); int weakness = 120 - 2 * level; int max_s = -VALUE_INFINITE; best = MOVE_NONE; @@ -1329,7 +1317,7 @@ moves_loop: // When in check and at SpNode search starts from here // Choose best move. For each move score we add two terms both dependent on // weakness. One deterministic and bigger for weaker moves, and one random, // then we choose the move with the resulting highest score. - for (size_t i = 0; i < PVSize; ++i) + for (size_t i = 0; i < MultiPV; ++i) { int s = RootMoves[i].score; @@ -1357,7 +1345,7 @@ moves_loop: // When in check and at SpNode search starts from here string uci_pv(const Position& pos, int depth, Value alpha, Value beta) { - std::stringstream s; + std::stringstream ss; Time::point elapsed = Time::now() - SearchTime + 1; size_t uciPVSize = std::min((size_t)Options["MultiPV"], RootMoves.size()); int selDepth = 0; @@ -1376,23 +1364,23 @@ moves_loop: // When in check and at SpNode search starts from here int d = updated ? depth : depth - 1; Value v = updated ? RootMoves[i].score : RootMoves[i].prevScore; - if (s.rdbuf()->in_avail()) // Not at first line - s << "\n"; + if (ss.rdbuf()->in_avail()) // Not at first line + ss << "\n"; - s << "info depth " << d - << " seldepth " << selDepth - << " score " << (i == PVIdx ? score_to_uci(v, alpha, beta) : score_to_uci(v)) - << " nodes " << pos.nodes_searched() - << " nps " << pos.nodes_searched() * 1000 / elapsed - << " time " << elapsed - << " multipv " << i + 1 - << " pv"; + ss << "info depth " << d + << " seldepth " << selDepth + << " score " << (i == PVIdx ? score_to_uci(v, alpha, beta) : score_to_uci(v)) + << " nodes " << pos.nodes_searched() + << " nps " << pos.nodes_searched() * 1000 / elapsed + << " time " << elapsed + << " multipv " << i + 1 + << " pv"; for (size_t j = 0; RootMoves[i].pv[j] != MOVE_NONE; ++j) - s << " " << move_to_uci(RootMoves[i].pv[j], pos.is_chess960()); + ss << " " << move_to_uci(RootMoves[i].pv[j], pos.is_chess960()); } - return s.str(); + return ss.str(); } } // namespace @@ -1484,7 +1472,7 @@ void Thread::idle_loop() { mutex.lock(); // If we are master and all slaves have finished then exit idle_loop - if (this_sp && !this_sp->slavesMask) + if (this_sp && this_sp->slavesMask.none()) { mutex.unlock(); break; @@ -1525,32 +1513,30 @@ void Thread::idle_loop() { activePosition = &pos; - switch (sp->nodeType) { - case Root: - search(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode); - break; - case PV: - search(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode); - break; - case NonPV: - search(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode); - break; - default: + if (sp->nodeType == NonPV) + search(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode); + + else if (sp->nodeType == PV) + search(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode); + + else if (sp->nodeType == Root) + search(pos, ss, sp->alpha, sp->beta, sp->depth, sp->cutNode); + + else assert(false); - } assert(searching); searching = false; activePosition = NULL; - sp->slavesMask &= ~(1ULL << idx); + sp->slavesMask.reset(idx); sp->nodes += pos.nodes_searched(); // Wake up the master thread so to allow it to return from the idle // loop in case we are the last slave of the split point. if ( Threads.sleepWhileIdle && this != sp->masterThread - && !sp->slavesMask) + && sp->slavesMask.none()) { assert(!sp->masterThread->searching); sp->masterThread->notify_one(); @@ -1565,10 +1551,10 @@ void Thread::idle_loop() { // If this thread is the master of a split point and all slaves have finished // their work at this split point, return from the idle loop. - if (this_sp && !this_sp->slavesMask) + if (this_sp && this_sp->slavesMask.none()) { this_sp->mutex.lock(); - bool finished = !this_sp->slavesMask; // Retest under lock protection + bool finished = this_sp->slavesMask.none(); // Retest under lock protection this_sp->mutex.unlock(); if (finished) return; @@ -1611,13 +1597,10 @@ void check_time() { sp.mutex.lock(); nodes += sp.nodes; - Bitboard sm = sp.slavesMask; - while (sm) - { - Position* pos = Threads[pop_lsb(&sm)]->activePosition; - if (pos) - nodes += pos->nodes_searched(); - } + + for (size_t idx = 0; idx < Threads.size(); ++idx) + if (sp.slavesMask.test(idx) && Threads[idx]->activePosition) + nodes += Threads[idx]->activePosition->nodes_searched(); sp.mutex.unlock(); } @@ -1628,9 +1611,7 @@ void check_time() { Time::point elapsed = Time::now() - SearchTime; bool stillAtFirstMove = Signals.firstRootMove && !Signals.failedLowAtRoot - && ( elapsed > TimeMgr.available_time() - || ( elapsed > (TimeMgr.available_time() * 62) / 100 - && elapsed > IterationTime * 1.4)); + && elapsed > TimeMgr.available_time() * 75 / 100; bool noMoreTime = elapsed > TimeMgr.maximum_time() - 2 * TimerThread::Resolution || stillAtFirstMove;